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Abstract This paper discusses methodological problems of
standard errors and treatment effects. First, heteroskedasti-
city- and cluster-robust estimates are considered as well as
problems with Bernoulli distributed regressors, outliers and
partially identified parameters. Second, procedures to de-
termine treatment effects are analyzed. Four principles are
in the focus: difference-in-differences estimators, matching
procedures, treatment effects in quantile regression analysis
and regression discontinuity approaches. These methods are
applied to Cobb-Douglas functions using IAB establishment
panel data.

Different heteroskedasticity-consistent procedures lead
to similar results of standard errors. Cluster-robust estimates
show evident deviates. Dummies with a mean near 0.5 have
a smaller variance of the coefficient estimates than others.
Not all outliers have a strong influence on significance. New
methods to handle the problem of partially identified param-
eters lead to more efficient estimates.

The four discussed treatment procedures are applied to
the question whether company-level pacts affect the output.
In contrast to unconditional difference-in-differences and to
estimates without matching the company-level effect is posi-
tive but insignificant if conditional difference-in-differences,
nearest-neighbor or Mahalanobis metric matching is ap-
plied. The latter result has to be specified under quantile
treatment effects analysis. The higher the quantile the higher
is the positive company-level pact effect and there is a ten-
dency from insignificant to significant effects. A sharp re-
gression discontinuity analysis shows a structural break at a
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probability of 0.5 that a company-level pact exists. No spe-
cific effect of the Great Recession can be detected. Fuzzy
regression discontinuity estimates reveal that the company-
level pact effect is significantly lower in East than in West
Germany.
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Schätzung von Standardfehlern und Kausaleffekten in
der empirischen Wirtschaftsforschung – Methoden und
Anwendungen

Zusammenfassung Dieser Beitrag diskutiert Möglichkei-
ten zur Schätzung von Standardfehlern und Kausaleffek-
ten. Zunächst werden heteroskedastie- und gruppenrobus-
te Schätzungen für Standardfehler betrachtet sowie Auffäl-
ligkeitenund Probleme bei Dummy-Variablen als Regres-
soren, Ausreißern und nur partiell identifizierten Parame-
tern erörtert. Danach geht es um Verfahren zur Bestimmung
von Treatmenteffekten. Vier Prinzipien werden hierzuvor-
gestellt: Differenz-von-Differenzen-Schätzer, Matchingver-
fahren, Kausaleffekte in der Quantilsregressionsanalyse und
Ansätze zur Bestimmung von Diskontinuitäten bei Regres-
sionsschätzungen. Anwendungen erfolgen im zweiten Teil
der Arbeit auf Cobb-Douglas-Produktionsfunktionen unter
Verwendung von IAB-Betriebspaneldaten.

Verschiedene heteroskedastiekonsistente Verfahren füh-
ren zu recht ähnlichen Ergebnissen bei den Standardfehlern.
Clusterrobuste Schätzungen zeigen dagegen deutliche Ab-
weichungen. Dummies als Regressoren mit einem Mittel-
wert in der Nähe von 0.5 weisen kleinere Varianzen der
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Koeffizienterschätzer auf als andere. Nicht alle Ausreißer
haben einen nennenswerten Einfluss auf die Signifikanz.
Neuere Methoden zur Behandlung des Problems von nur
partiell identifizierten Parametern führen zu effizienteren
Schätzungen.

Die vier diskutierten Verfahren zur Bestimmung der Wir-
kungen von Maßnahmen werden auf das Problem, ob be-
triebliche Bündnisse einen signifikanten Einfluss auf den
Produktionsoutput haben, angewandt. Im Gegensatz zu
nicht konditionalen Differenz-von-Differenzen-Schätzern
und Schätzern ohne Matching sind die Effekte betriebli-
cher Bündnisse bei bedingten Differenz-von-Differenzen-
Schätzern und Matching-Verfahren zwar positiv, aber in-
signifikant. Diese Aussage ist auf Basis der Treatment-
Quantilsanalysezu präzisieren. Je höher die Quantile sind,
umso größer ist die Wirkung betrieblicher Bündnisse mit ei-
ner Tendenz von insignifikanten zu signifikanten Effekten.
Die deterministische Regressionsanalyse mit Diskontinui-
täten zeigt einen Strukturbruch bei Wahrscheinlichkeit 0.5,
dass ein betriebliches Bündnis existiert. Es lassen sich kei-
ne spezifischen Effekte während der Rezession 2009 aus-
machen. Schätzungen im Rahmen stochastischer Diskonti-
nuitätsansätze offenbaren, dass die Wirkungen betrieblicher
Bündnisse in Ostdeutschland signifikant niedriger ausfallen
als in Westdeutschland.

1 Introduction

Contents, questions and methods have changed in empirical
economics in the last 20 years. Many methods were devel-
oped in the past but the application in empirical economics
follows with a lag. Some methods are well-known but have
experienced only little attention. New approaches focus on
characteristics of the data, on modified estimators, on cor-
rect specifications, on unobserved heterogeneity, on endo-
geneity and on causal effects. Real data sets are not com-
patible with the assumptions of classical models. Therefore,
modified methods were suggested for the estimation and in-
ference.

The road map of the following considerations are four
hypotheses where the first two and the second two belong
together:

(1) Significance is an important indicator in empirical eco-
nomics but the results are sometimes misleading.

(2) Assumptions’ violation, clustering of the data, outliers
and only partially identified parameters are often the
reason of wrong standard errors using classical meth-
ods.

(3) The estimation of average effects is useful but subgroup
analysis and quantile regressions are important supple-
ments.

(4) Causal effects are of great interest but the determination
is based on disparate approaches with varying results.

In the following some econometric methods are developed,
presented and applied to Cobb-Douglas production func-
tions.

2 Econometric methods

2.1 Significance and standard errors in regression models

The working horse in empirical economics is the classical
linear model

yi = x′
iβ + ui, i = 1, . . . , n.

The coefficient vector β is estimated by ordinary least
squares (OLS)

β̂ = (
X′X

)−1
X′y

and the covariance matrix by

V̂ (β̂) = σ̂ 2(X′X
)−1

,

where X is the design matrix and σ̂ 2 the estimated variance
of the disturbances. The influence of a regressor, e.g. xk ,
on the regressand y is called significant at a 5 percent level

if |t | = |β̂k/

√
V̂ (β̂k)| > t0.975. In empirical papers this re-

sult is often documented by an asterisk and implicitly inter-
preted as a good one, while insignificance is a negative sig-
nal. Ziliak and McCloskey (2008) and Krämer (2011) have
criticized this procedure although the analysis is extended
by robustness tests in many investigations. Three types of
mistakes can lead to a misleading interpretation:

(1) There does not exist any effect but due to technical in-
efficiencies a significant effect is reported.

(2) The effect is small but due to the precision of the esti-
mates a significant effect is determined.

(3) There exists a strong effect but due to the variability of
the estimates the statistical effect cannot be detected.

The consequence cannot be to neglect the instrument of sig-
nificance. But what can we do? The following proposals
may help to clarify why some standard errors are high and
others low, why some influences are significant and others
not, whether alternative procedures can reduce the danger
of one of the three mistakes:

• Compute robust standard errors.
• Analyze whether variation within clusters is only small in

comparison with variation between the clusters.
• Check whether dummies as regressors with high or low

probability are responsible for insignificance.
• Test whether outliers induce large standard errors.
• Consider the problem of partially identified parameters.
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• Detect whether collinearity is effective.
• Investigate alternative specifications.
• Use sub-samples and compare the results.
• Execute sensitivity analyses (Leamer 1985).
• Employ the sniff test (Hamermesh 2000) in order to detect

whether econometric results are in accord with economic
plausibility.

2.1.1 Heteroskedasticity-robust standard errors

OLS estimates are inefficient or biased and inconsistent if
assumptions of the classical linear model are violated. We
need alternatives which are robust to the violation of specific
assumptions. In empirical papers we find often the hint that
robust standard errors are displayed. This is imprecise. In
most cases this means only heteroskedasticity-robust. This
should be mentioned and also that the estimation is based
on White’s approach. If we know the type of heteroskedas-
ticity, a transformation of the regression model should be
preferred, namely

yi

σi

= β0

σi

+ β1
x1i

σi

+ · · · + βK

xKi

σi

+ ui

σi

,

where i = 1, . . . , n. Typically, the individual variances of the
error term are unknown. In the case of unknown and unspe-
cific heteroscedasticity White (1980) recommends the fol-
lowing estimation of the covariance matrix

V̂white(β̂) = (
X′X

)−1
(∑

û2
i xix

′
i

)(
X′X

)−1
.

Such estimates are asymptotically heteroscedasticity-robust.
In many empirical investigations this robust estimator is rou-
tinely applied without testing whether heteroskedasticity ex-
ists. We should stress that those estimated standard errors are
more biased than conventional estimators if residuals are ho-
moskedastic. As long as there is not too much heteroskedas-
ticity, robust standard errors are also biased downward. In
the literature we find some suggestions to modify this esti-
mator, namely to weight the squared residuals û2

i :

hc1 = n

n − K
û2

i

hcj = 1

(1 − cii)
δj

û2
i ,

where j = 2,3,4, cii is the main diagonal element of
X′(X′X)−1X and δj = 1;2;min[γ1, (ncii)/K] + min[γ2,

(ncii)/K], γ1 and γ2 are real positive constants.
The intention is to obtain more efficient estimates. It can

be shown for hc2 that under homoskedasticity the mean of
û2

i is the same as σ 2(1 − cii). Therefore, we should expect
that the hc2 option leads under homoskedasticity to better

estimates in small samples than the simple hc1 option. Then
E(û2

i /(1 − cii)) is σ 2. The second correction is presented
by MacKinnon and White (1985). This is an approximation
of a more complicated estimator which is based on a jack-
knife estimator—see Sect. 2.1.2. Applications demonstrate
that the standard error increases started with OLS via hc1,
hc2 to the hc3 option. Simulations, however, do not show
a clear preference. As one cannot be sure which case is the
correct one, a conservative choice is preferable (Angrist and
Pischke 2009, p. 302). The estimator should be chosen that
has the largest standard error. This means the null hypoth-
esis (H0: no influence on the regressand) keeps up longer
than with other options.

Cribari-Neto and da Silva (2011) suggest γ1 = 1 and
γ2 = 1.5 in hc4. The intention is to weaken the effect of
influential observations compared with hc2 and hc3 or in
other words to enlarge the standard errors. In an earlier ver-
sion (Cribari-Neto et al. 2007) a slight modification is pre-
sented: hc∗

4 = 1/(1 − cii)
δ4∗ , where δ4∗ = min(4, ncii/K).

It is argued that the presence of high leverage observations
is more decisive for the finite-sample behavior of the consis-
tent estimators of V (β̂) than the intensity of heteroskedas-
ticity, hc4 and hc4∗ aim at discounting for leverage points—
see Sect. 2.1.5—more heavily than hc2 and hc3. The same
authors formulate a further estimator

hc5 = 1

(1 − cii)δ5
û2

i ,

where δ5 = min(
ncii

K
,max(4,

nkcii,max
K

)), k is a predefined
constant, where k = 0.7 is suggested. In this case squared
residuals are affected by the maximal leverage.

2.1.2 Re-sampling procedures

Other possibilities to determine the standard error are the
jackknife and the bootstrap estimator. These are re-sampling
procedures, which construct sub-samples with n − 1 obser-
vations in the jackknife case. Sequentially, one observation
is eliminated. The former methods compare the estimated
coefficients of the total sample size β̂ with those after elim-
inating one observation β̂−i . The jackknife estimator of the
covariance matrix is

V̂jack = n − K

n

n∑

i=1

(β̂−i − β̂)(β̂−i − β̂)′.

There exist many ways to bootstrap regression estimates.
The basic idea is assume that the sample with n elements
is the population and B times m elements (sampling with
replacement) are drawn, where m ≤ n and m > n is feasible.
If β̂ ′

boot = (β̂(1)′m, . . . , β̂(B)′m) are the bootstrap estimators
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of the coefficients the asymptotic covariance matrix is

V̂boot = 1

B

B∑

b=1

(
β̂(b)m − β̂

)(
β̂(b)m − β̂

)′
,

where β̂ is the estimator with the original sample size n.
Alternatively, β̂ can be substituted by β̄ = 1/B

∑
β̂(b)m.

Bootstrap estimates of the standard error are especially help-
ful when it is difficult to compute standard errors by conven-
tional methods, e.g. 2SLS estimators under heteroskedastic-
ity or cluster-robust standard errors when many small clus-
ters or only short panels exist. The jackknife can be viewed
as a linear approximation of the bootstrap estimator. A fur-
ther popular way to estimate the standard errors is the delta
method. This approach is especially used for nonlinear func-
tions of parameter estimates γ̂ = g(β̂). An asymptotic ap-
proximation of the covariance matrix of a vector of such
functions is determined. It can be shown that

n1/2(γ̂ − γ0) ∼ N
(
0,G0V

∞(β̂)G′
0

)
,

where γ0 is the vector of the true values of γ , G0 is an l ×
K matrix with typical element ∂gi(β)/∂βj , evaluated at β0,
and V ∞ is the asymptotic covariance matrix of n1/2(β̂ −
β0).

2.1.3 The Moulton problem

The variance of a regressor is low if this variable strongly
varies between groups but only little within groups (Moul-
ton 1986, 1987, 1990). This is especially the case if indus-
try, regional and macroeconomic variables are introduced
in a microeconomic model or panel data are considered. In
a more general context this is called the problem of clus-
ter sampling. Individuals or establishments are sampled in
groups or clusters. Consequence may be a weighted esti-
mation that adjust for differences in sampling rates. How-
ever, weighting is not always necessary and estimates may
understate the true standard errors. Some empirical investi-
gations note that cluster-robust standard errors are displayed
but do not mention the cluster variable. If panel data are used
then this is usually the identification variable of the individ-
uals or firms. In many specifications more than one cluster
variable, e.g. a regional and an industry variable, is incor-
porated. Then it is misleading if the cluster variable is not
mentioned. Furthermore, then a sequential determination of
a cluster-robust correction is not qualified if there is a de-
pendency between the cluster variables. If we can assume
that there is a hierarchy of the cluster variables then a multi-
level approach can be applied (Raudenbush and Bryk 2002;
Goldstein 2003). Cameron and Miller (2010) suggest a two-
way clustering procedure. The covariance matrix can be de-
termined by

V̂two-way(β̂) = V̂1(β̂) + V̂1(β̂) − V̂1∩2(β̂)

when the three components are computed by

V̂ (β̂) = (
X′X

)−1
B̂

(
X′X

)−1

B̂ =
(

G∑

g=1

X′
gûgû

′
gXg

)

.

Different ways of clustering can be used. Cluster-robust in-
ference asymptotics are based on G → ∞. In many applica-
tions there are only a few clusters. In this case ûg has to be
modified. One way is the following transformation

ũg =
√

G

G − 1
ûg.

Further methods and suggestions in the literature are pre-
sented by Cameron and Miller (2010) and Wooldridge
(2003).

A simple and extreme example shall demonstrate the
cluster problem.

Example Assume a data set with 5 observations (n = 5) and
4 variables (V 1–V 4).

i V 1 V 2 V 3 V 4

1 24 123 −234 −8
2 875 87 54 3
3 −12 1234 −876 345
4 231 −87 −65 9808
5 43 34 9 −765

The linear model

V 1 = β1 + β2V 2 + β3V 3 + β4V 4 + u

is estimated by OLS using the original data set (1M). Then
the data set is doubled (2M), quadrupled (4M) and octupli-
cated (8M). The following OLS estimates result.

β̂

1M 2M 4M 8M
σ̂

β̂
σ̂

β̂
σ̂

β̂
σ̂

β̂

V 2 1.7239 1.7532 0.7158 0.4383 0.2922
V 3 2.7941 2.3874 0.9747 0.5969 0.3979
V 4 0.0270 0.0618 0.0252 0.0154 0.0103
const 323.2734 270.5781 110.463 67.64452 45.0963

The coefficients of 1M to 8M are the same, however, the
standard errors decrease if the same data set is multiplied.
Namely, the variance is only 1/6, 1/16 and 1/36 of the orig-
inal variance. The general relationship can be shown as fol-
lows. For the original data set (X1) the covariance matrix
is

V̂1(β̂) = σ̂ 2
1

(
X′

1X1
)−1

.
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Using X1 = · · · = XF the F times enlarged data set with the
design matrix X′ =: (X′

1 · · ·X′
F ) leads to

σ̂ 2
F = 1

F · n − K

F ·n∑

i=1

û2
i = F(n − K)

F · n − K
σ̂ 2

1

and

V̂F (β̂) = σ̂ 2
F

(
X′X

)−1 = σ̂ 2
F

1

F
· (X′

1X1
)−1

= n − K

F · n − K
V̂1(β̂).

K is the number of regressors including the constant term, n

is the number of observations in the original data set (num-
ber of clusters), F is the number of observations within a
cluster. In the numerical example with F = 8, K = 4, n = 5
the Moulton factor MF that indicates the deflation factor of
the variance is

MF = n − K

F · n − K
= 1

36
.

This is exactly the same as it was demonstrated in the nu-
merical example. Analogously the estimated values 1/6 and
1/16 can be determined. As the multiplying of the data set
does not add any further information to the simple original
data set not only the coefficients but also the standard er-
rors should be the same. Therefore, it is necessary to correct
the covariance matrix. Statistical packages, e.g. Stata, sup-
ply cluster-robust estimates

V̂ (β̂)C =
(

C∑

c=1

X′
cXc

)−1 C∑

c=1

X′
cûcûcXc

(
C∑

c=1

X′
cXc

)−1

,

where C is the number of clusters. In our specific case this
is the number of observations n. This approach implicitly
assumes that F is small and n → ∞. If this assumption does
not hold a degrees-of-freedom correction

df C = F · n − 1

F · n − K
· n

n − 1

is helpful. df C · V̂ (β̂)C is the default option in Stata and cor-
rects for the number of clusters in practice being finite. Nev-
ertheless, this correction eliminates only partially the under-
estimated standard errors. In other words, the corrected t-

statistic of the regressor xk is larger than that of β̂k/

√
V̂1k .

2.1.4 Large standard errors of dichotomous regressors
with small or large mean

Another problem with estimated standard errors can be in-
duced by Bernoulli distributed regressors. Assume a simple
two-variable classical regression model

y = a + b · D + u.

D is a dummy variable and the variance of b̂ is

V (b̂) = σ 2

n
· 1

s2
D

,

where

s2
D = P̂ (D = 1) · P̂ (D = 0) =: p̂(1 − p̂)

= (n|D = 1)

n
·
(

1 − (n|D = 1)

n

)
.

If s2
D is determined by D̄ = (n|D = 1)/n we find that

D̄ is at most 0.5. V (b̂) is minimal at given n and σ 2 when
the sample variance of D reaches the maximum, if D̄ = 0.5.
This result holds only for inhomogeneous models.

Example An income variable (Y = Y0/107) with 53,664 ob-
servations is regressed on a Bernoulli distributed random
variable RV . The coefficient β1 of the linear model Y =
β0 + β1RV + u is estimated by OLS, where alternative val-
ues of the mean of RV (RV ) are assumed (0.1,0.2, . . . ,0.9)

Y β̂1 std.err.

RV = 0.1 −0.3727 0.6819
RV = 0.2 −0.5970 0.5100
RV = 0.3 −0.4768 0.4455
RV = 0.4 0.3068 0.4170
RV = 0.5 0.1338 0.4094
RV = 0.6 0.0947 0.4187
RV = 0.7 −0.0581 0.4479
RV = 0.8 −0.1860 0.5140
RV = 0.9 −0.1010 0.6827

This example confirms the theoretical result. The standard
error is smallest if RV = 0.5 and increases systematically
if the mean of RV decreases or increases. An extension
to multiple regression models seems possible—see applica-
tions in the Appendix, Tables 11, 12, 13, 14. The more D̄

deviates from 0.5, the larger or smaller is the mean of D,
the higher is the tendency to insignificant effects. A caveat
is necessary. The conclusion that the t-value of a dichoto-
mous regressor D1 is always smaller than that of D2, when
V (D1) > V (D2), is not unavoidable. The basic effect of D1

on y may be larger than that of D2 on y. The theoretical re-
sult aims on specific variables and not on the comparison be-
tween regressors. In practice, significance is determined by

t = b̂/

√
V̂ (b̂). However, we do not find a systematic influ-

ence of b̂ on t if D̄ varies. Nevertheless, the random differ-
ences in the influence of D on y can dominate the D̄ effect
via s2

D . The comparison of Table 13 with Table 14 shows
that the influence of a works council (WOCO) is stronger
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than that of a company-level pact (CLP). The coefficients of
the former regressor are larger and the standard errors are
lower than that of the latter regressor so that the t-values are
larger. In both cases the standard errors increase if the mean
of the regressor is reduced. The comparison of line 1 in Ta-
ble 13 with line 9 in Table 14, where the mean of CLP and
WOCO is nearly the same, makes clear that the stronger ba-
sic effect of WOCO on lnY dominates the mean reduction
effect of WOCO. The t-value in line 9 of Table 14 is smaller
than that in line 1 of Table 14 but still larger than that in line
1 of Table 13. Not all deviations of the mean of a dummy
D as regressor from 0.5 induce the described standard error
effects. A random variation of D̄ is necessary. An example,
where this is not the case, is matching—see Sect. 2.2 and
the application in Sect. 3. D̄ increases due to the system-
atic elimination of those observations with D = 0 that are
dissimilar to those of D = 1 in other characteristics.

2.1.5 Outliers and influential observations

Outliers may have strong effects on the estimates of the co-
efficients, of the dependent variable and on standard errors
and therefore on significance. In the literature we find some
suggestions to measure outliers that are due to large or small
values of the dependent variable or on the independent vari-
ables. Belsley et al. (1980) use the main diagonal elements
cii of the hat matrix C = X(X′X)−1X′ to determine the ef-
fects of a single observation on the coefficient estimator β̂ ,
on the estimated endogenous variable ŷi and on the variance
V̂ (ŷ). The higher cii , the higher is the difference between
the estimated dependent variable with and without the ith
observation. A rule of thumb orients on the relation

cii >
2K

n
.

An observation i is called an influential observation with a
strong leverage if this inequality is fulfilled. The effects of
the ith observation on β̂ , ŷ and V̂ (β̂) and the rules of thumb
can be expressed by

∣∣β̂k − β̂k(i)
∣∣ >

2√
n

∣∣∣∣
ŷi − ŷi(i)

s(i)
√

cii

∣∣∣∣ > 2

√
K

n

∣∣∣∣
det(s2(i)(X′(i)X(i))−1

det(s2(X′X)−1)

∣∣∣∣ >
3K

n
.

If the inequalities are fulfilled, this indicates a strong influ-
ence of observation i where (i) means that observation i

is not considered in the estimates. The determination of an
outlier is based on externally studentized residuals

û∗
i = ûi

s(i)
√

1 − cii

∼ tn−K−1.

Observations which fulfill the inequality |û∗
i | > t1−α/2;n−K−1

are called outliers. Alternatively, a mean shift outlier model
can be formulated

y = Xβ + Ajδ + ε,

where

Aj =
{

1 if i = j

0 otherwise.

Observation j has a statistical effect on y if δ is significantly
different from zero. The estimated t-value is the same as û∗

j .
This procedure does not separate whether the outlier j is due
to unusual y- or unusual x-values.

Hadi (1992) proposes an outlier detection with respect
to all regressors. The decision whether the design matrix X

contains outliers is based on an elliptical distance

di(c,W) = √
(xi − c)′W(xi − c),

where intuitively the classical choices of c and W are the
arithmetic mean (x̄) and the inverse of the sample covariance
matrix (S−1) of the estimation function of β , respectively, so
that the Mahalanobis distance follows. If

di

(
x̄, S−1)2

> χ2
K,

observation i is identified as an outlier. As x̄ and S react
sensitive to outliers it is necessary to estimate an outlier-
free mean and sample covariance matrix. For this purpose,
only outlier-free observations are considered to determine
x̄ and S. Another way to avoid the sensitivity problem is
to use more robust estimators of the location and covari-
ance matrix, e.g. the median but not the mean is robust to
outliers. Finally, an outlier vector MOD (multiple outlier
dummy) instead of A is incorporated in the model in order
to test whether the identified outlier observations have a sig-
nificant effect on the dependent variable. A second problem
is whether we should eliminate all outliers or only some of
them or no outlier. The situation is obvious if an outlier is
induced by measurement errors. Then we should eliminate
this observation if we have no information to correct the er-
ror. Typically, however, we cannot be sure that an anomalous
value is due to measurement errors. Insofar, the correct es-
timation is based between the two extremes: all outliers are
considered or all outliers are eliminated. A solution is pre-
sented in the next subsection.
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2.1.6 Partially identified parameters

Assume that some observations are unknown or not exactly
measured. Consequence is that a parameter cannot exactly
be determined but only within a range. The outlier situation
leads to such a partial identification problem. There exist
many other similar constellations.

Example The share of unemployed persons is 8 % but 5 %
have not answered to the question of the employment status.
Therefore, the unemployment rate can only be calculated
within certain limits, namely between the two extremes:

• all persons who have not answered are employed
• all persons who have not answered are unemployed.

In the first case the unemployment rate is 7.6 % and in the
second case 12.6 %.

The main methodological focus of partially identified pa-
rameters is the search for the best statistical inference. Cher-
nozhukov et al. (2007), Imbens and Manski (2004), Romano
and Shaikh (2010), Stoye (2009) and Woutersen (2009) have
discussed solutions.

If Θ0 = [θl, θu] describes the lower and the upper bound
based on the two extreme situations Stoye (2009) develops
the following confidence interval

CIα =
[
θ̂l − cασ̂l√

n
, θ̂u − cασ̂l√

n

]
,

where σ̂l is the standard error of the estimation function θ̂l .
cα is chosen by

Φ

(
cα +

√
n̂

σ̂l

)
− Φ(−cα) = 1 − α,

where  = θu − θl . As  is unknown, the interval has to be
estimated (̂).

2.2 Treatment evaluation

The objective of treatment evaluation is the determination of
causal effects of economic measures. The simplest form to
measure the effect is to estimate α in the linear model

y = Xβ + αD + u,

where D is the intervention variable and measured by a
dummy: 1 if an individual or an establishment is assigned
to treatment; 0 otherwise. Typically, this is not the causal
effect. An important reason for this failure are unobserved
variables that influence y and D, when D and u correlate.

In the last 20 years a wide range of methods was de-
veloped to determine the “correct” causal effect. Which ap-
proach should be preferred depends on the data, the behavior

of the economic agents and the assumptions of the model.
The major difficulty is that we have to compare an observed
situation with an unobserved situation. Depending on the
available information the latter is estimated. We have to ask
what would occur if not D = 1 but D = 0 (treatment on the
treated) would take place. This counterfactual is unknown
and has to be estimated. Inversely, if D = 0 is observable
we can search for the potential result under D = 1 (treat-
ment on the untreated). A further problem is the fixing of
the control group. What is the meaning of “otherwise” in
the definition of D? Or in other words: What is the causal
effect of an unobserved situation? Should we determine the
average causal effect or only that of a subgroup?

Neither a before-after comparison (ȳ1|D = 1)− (ȳ0|D =
1) nor a comparison of (ȳt |D = 1) and (ȳt |D = 0) in cross-
section is usually appropriate. Difference-in-differences esti-
mators (DiD), a combination of these two methods, are very
popular in applications

̄1 − ̄0 = [
(ȳ1|D = 1) − (ȳ1|D = 0)

]

− [
(ȳ0|D = 1) − (ȳ0|D = 0)

]
.

The effect can be determined in the following unconditional
model

y = a1 + b1T + b2D + b3T D + u,

where T = 1 means a period that follows the period of the
measure (D = 1). T = 0 is a period before the measure takes
place. In this approach b̂3 = ̄1 − ̄0 is the causal effect.
The equation can be extended by further regressors X. This
is called a conditional DiD estimator. Nearly all DiD in-
vestigations neglect a potential bias in standard error esti-
mates induced by serial correlation. A further problem re-
sults under endogenous intervention variables. Then an in-
strumental variables estimator should be employed avoiding
the endogeneity bias. This procedure will be considered in
the quantile regression analysis. If the dependent variable
is a dummy a nonlinear estimator has to be applied. Sug-
gestions are presented by Ai and Norton (2003) and Puhani
(2012).

Matching procedures were developed with the objective
to find a control group that is very similar to the treat-
ment group. Parametric and non-parametric procedures can
be employed to determine the control group. Kernel, in-
verse probability, radius matching, local linear regression,
spline smoothing or trimming estimators are possible. Ma-
halanobis metric matching with or without propensity scores
and nearest neighbor matching with or without caliper are
typical procedures—see e.g. Guo and Fraser (2010). The
Mahalanobis distance is defined by

(u − v)′S−1(u − v),
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where u (v) is a vector that incorporates the values of match-
ing variables of participants (non-participants) and S is the
empirical covariance matrix from the full set of non-treated
participants.

An observed or artificial statistical twin can be de-
termined to each participant. The probability of all non-
participants to participate on the measure is calculated based
on probit estimates (propensity score). The statistical twin j

of a participant i is that who has a propensity score (psj )
nearest to that of the participant. The absolute distance be-
tween i and j may not exceed a given value ε

|psi − psj | < ε,

where ε is a predetermined tolerance (caliper). A quarter
of a standard deviation of the sample estimated propensity
scores is suggested as the caliper size (Rosenbaum and Ru-
bin 1985). If the control group is identified the causal effect
can be estimated using the reduced sample (treatment obser-
vations and matched observations). In applications α from
the model y = Xβ + αD + u or b3 from the DiD approach
is determined as causal effect. Both estimators implicitly as-
sume that the causal effect is the same for all subgroups of
individuals or firms and that no unobserved variables exist
that are correlated with observed variables. Insofar match-
ing procedures suffer from the same problem as OLS esti-
mators.

If the interest is to detect whether and in which amount
the effects of intervention variables differ between the per-
centiles of the distribution of the objective variable y a quan-
tile regression analysis is an appropriate instrument. The ob-
jective is to determine quantile treatment effects (QTE). The
distribution effect of a measure can be estimated by the dif-
ference  of the dependent variable with (y1) and without
(y0) treatment (D = 1; D = 0) separate for specific quan-
tiles Qτ where 0 < τ < 1

τ = Qτ
y1 − Qτ

y0 .

The empirical distribution function of an observed situation
and that of the counterfactual is identified. From the view
of modeling four major cases are developed in the literature
that differ in the assumptions. The measure is assumed ex-
ogenous or endogenous and the effect on y is unconditional
or conditional analogously to DiD.

Unconditional Conditional

Exogenous (1) Firpo (2007) (2) Koenker
and Bassett (1978)

Endogenous (3) Frölich
and Melly (2012)

(4) Abadie et al. (2002)

In case (1) the quantile treatment effect Qτ
y1 − Qτ

y0 is esti-
mated by

Qτ
yj = arg min

α0;α1
E

[
ρτ (y − qj )(W |D = j)

]
,

where j = 0;1, qj = α0 + α1(D|D = j), ρτ = a(τ − 1(a ≤
0)) is a check function; a is a real number. The weights are

W = D

p(X)
+ 1 − D

1 − p(X)
.

The estimation is characterized by two stages. First, the
propensity score is determined by a large number of regres-
sors X via a nonparametric method—p̂(X). Second, in Qτ

yj

the probability p(X) is substituted by p̂(X).
Case (2) follows Koenker and Bassett (1978).

n1∑

(i|yi≥x′
iβ)=1

τ · ∣∣yi − α(Di |Di = j) − x′
iβ

∣∣

+
n∑

(i|yi<xiβ)=n1+1

(1 − τ) · ∣∣yi − α(Di |Di = j) − x′
iβ

∣∣

has to be minimized with respect to α and β , where τ is
given. In other words,

Qτ
yj = arg min

α;β
E

[
ρτ (y − qj )(W |D = j)

]
,

where j = 0;1, qj = α(D|D = j) + x′β .

The method of case (3) is developed by Frölich and Melly
(2012). Due to the endogeneity of the intervention variable
D, an instrumental variables estimator is used with only one
instrument Z and this is a dummy. The quantiles follow from

Qτ
yj |c = arg min

α0;α1
E

[
ρτ (y − qj ) · (W |D = j)

]
,

where j = 0;1, qj = α0 + α1(D|D = j), c means complier.
The weights are

W = Z − p(X)

p(X)(1 − p(X))
(2D − 1).

Abadie et al. (2002) investigate case (4) and suggest a
weighted linear quantile regression. The estimator is

Qτ
yj = arg min

α,β
E

[
ρτ

(
y − αD − x′β

)
(W |D = j)

]
,

where the weights are

W = 1 − D(1 − Z)

1 − p(Z = 1|X)
− (1 − D)Z

p(Z = 1|X)
.

Regression discontinuity (RD) design allows to deter-
mine treatment effects in a special situation. This approach
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uses information on institutional and legal regulations that
are responsible that changes occur in the effects of economic
measures. Thresholds are estimated indicating discontinuity
of the effects. Two forms are distinguished: sharp and fuzzy
RD. Either the change of the status is exactly effective at a
fixed point or it is assumed that the probability of a treatment
change or the mean of a treatment change is discontinuous.

In the case of sharp RD individuals or establishments
(i = 1, . . . , n) are assigned to the treatment or the control
group on the base of the observed variable S. The latter is
a continuous or an ordered categorial variable with many
parameter values. If variable Si is not smaller than a fixed
bound S̄ then i belongs to the treatment group (D = 1)

Di = 1[Si ≥ S̄].
The following graph based on artificial data with n = 40
demonstrates the design. Assuming we know that an insti-
tutional rule changes the conditions if S > S̄ = 2.5 and we
want to determine the causal effect induced by the adoption
of the new rule. This can be measured by the difference of
the two estimated regressions at S̄.

In a simple regression model y = β0 + β1D + u the
OLS estimator of β1 would be inconsistent when D and u

correlate. If, however, the conditional mean E(u|S,D) =
E(u|S) = f (S) is additionally incorporated in the out-
come equation (y = β0 + β1D + f (S) + ε, where ε =
y − E(y|S,D)), the OLS estimator of β1 is consistent. As-
sume f (S) = β2S, the estimator of β1 corresponds to the
difference of the two estimated intercepts of the parallel re-
gressions

ŷ0 = Ê(y|D = 0) = β̂0 + β̂2S

ŷ1 = Ê(y|D = 1) = β̂0 + β̂1 + β̂2S.

The sharp RD approach identifies the causal effect by dis-
tinguishing between the nonlinear function due to the dis-
continuous character and the smoothed linear function. If,
however, a nonlinear function of the general type f (S) is
given, modifications have to be regarded.

Assume, the true function f (S) is a polynomial of pth
order

yi = β0 + β1Di + β21Si + β22S
2
i + · · · + β2pS

p
i + ui

but two linear models are estimated, then the difference be-
tween the two intercepts, interpreted as the causal effect, is
biased. What looks like a jump is in reality a neglected non-
linear effect.

Another strategy is to determine the treatment effect ex-
actly at the fixed discontinuity point S̄ assuming a local lin-
ear regression. Two linear regressions are considered

y0 − E(y0|S = S̄) = δ0(S − S̄) + u0

y1 − E(y1|S = S̄) = δ1(S − S̄) + u1,

where yj = E(y|D = j) and j = 0;1. In combination with

y = (1 − D)y0 + Dy1

follows

y = (1 − D)
(
E(y0|S = S̄) + δ0(S − S̄) + u0

)

+ D
(
E(y1|S = S̄) + δ1(S − S̄) + u1

)
.

The linear regression

y = γ0 + γ1D + γ2(S − S̄) + γ3D(S − S̄) + ũ

can be estimated, where ũ = u0 + D(u1 − u0). This looks
like the DiD estimator but now γ1 = E(y1|S = S̄) −
E(y0|S = S̄) and not γ3 is of interest. The estimated co-
efficient γ̂1 is a global but not a localized average treatment
effect.

The localized average follows if a small interval around S̄

is modeled, i.e. S̄ −S < Si < S̄ +S. The treatment effect
corresponds to the difference of the two former determined
intercepts, restricted to S̄ < Si < S̄ + S on the one hand
and to S̄ − S < Si < S̄ on the other hand.

A combination of the latter linear RD model with the DiD
approach leads to an extended interaction model. Again, two
linear regressions are considered

y0 = γ00 + γ10D + γ20(S − S̄) + γ30D(S − S̄) + ũ0

y1 = γ01 + γ11D + γ21(S − S̄) + γ31D(S − S̄) + ũ1,

where the first index of γjt with j = 0;1 refers to the treat-
ment and the second index with t = 0;1 refers to the period.
In contrast to the pure RD model, where yj and j = 0;1 is
considered, now the index of y is a time index, i.e. yT and
T = 0;1. Using

y = (1 − T )y0 + Ty1
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follows

y = γ00 + γ10D + γ20(S − S̄) + γ30D(S − S̄)

+ (γ01 − γ00)T + (γ11 − γ10)DT

+ (γ21 − γ20)(S − S̄)T

+ (γ31 − γ30)D(S − S̄)T + (
ũ0 + (ũ1 − ũ0)T

)

=: β0 + β1T + β2D + β3(S − S̄) + β4D(S − S̄)

+ β5DT + β6(S − S̄)T + β7D(S − S̄)T + ũ.

Now, it is possible to determine whether the treatment effect
varies between T = 1 and T = 0. The difference follows by
a DiD approach
[
(y1|D = 1) − (y1|D = 0)

] − [
(y0|D = 1) − (y0|D = 0)

]

= (γ11 − γ10) + (γ31 − γ30)(S − S̄)

= β5 + β7(S − S̄)

under the assumption that the disturbance term does not
change between the periods. The hypothesis of a time-
invariant break cannot be rejected if DT and D(S − S̄)T

have no statistical influence on y.
The fuzzy RD assumes that the propensity score function

of treatment P(D = 1|S) is discontinuous with a jump in S̄

P (Di = 1|Si) =
{

g1(Si) if Si ≥ S̄

g0(Si) if Si < S̄,

where it is assumed that g1(S̄) > g0(S̄). Therefore, treat-
ment in Si ≥ S̄ is more likely. In principle, the functions
g1(Si) and g0(Si) are arbitrary, e.g. a polynomial of pth or-
der can be assumed but the values have to be within the in-
terval [0;1] and different values in S̄ are necessary.

The conditional mean of D that depends on S is

E(Di |Si) = P(Di = 1|Si)

= g0(Si) + (
g1(Si) − g0(Si)

)
Ti,

where Ti = 1(Si ≥ S̄) is a dummy indicating the point where
the mean is discontinuous. If a polynomial of pth order is as-
sumed the interaction variables SiTi, S

2
i Ti · · ·Sp

i Ti and the
dummy Ti are instruments of Di . The simplest case is to use
only Ti as an instrument if g1(Si) and g0(Si) are discrim-
inable constants.

We can determine the treatment effect around S̄

lim
→0

E(yi |S̄ < Si < S̄ + ) − E(yi |S̄ −  < Si < S̄)

E(Di |S̄ < Si < S̄ + ) − E(Di |S̄ −  < Si < S̄)
.

The empirical analogon is the Wald (1940) estimator that
was first developed for the case of measurement errors

(ȳ|S̄ < Si < S̄ + ) − (ȳ|S̄ −  < Si < S̄)

(D̄|S̄ < Si < S̄ + ) − (D̄|S̄ −  < Si < S̄)
.

QTE and RD analysis allow the determination of variable
causal effects with a different intention. A further possibility
is a separate estimation for subgroups, e.g. for industries or
regions.

3 Applications: Some New Estimates of Cobb-Douglas
Production Functions

This section presents some estimates of production func-
tions, where IAB establishment panel data are used. The em-
pirical analysis is restricted to the period 2006–2010. The
decision to start with 2006 is the following: in this year
information on company level-pacts (CLPs) were collected
in the IAB establishment panel for the first time and many
of the following applications deal with CLPs. Methods of
Sect. 2 are applied. The intention of Sect. 3 is to illustrate
that the discussed methods work with implemented STATA
programmes. It is not discussed whether the applied meth-
ods are best for the given data set and the substantial prob-
lems. From a didactical perspective the paper is always con-
cerned with only one issue and different suggestions to solve
the problem are compared. The results can be found in Ta-
bles 1–10.

Table 1 focus on alternative estimates of standard errors—
see Sects. 2.1.1–2.1.3—of Cobb-Douglas production func-
tions (CDF) in the logarithm representation with the input
factors lnL and lnK . The estimation of conventional stan-
dard errors can be found for comparing in Table 3, column
1. The small standard deviations and therefore the large t-
values are remarkable. Though the cluster-robust standard
errors in Table 1, column 5 are larger, they are still by far
too low. This is due to unobserved heterogeneity. Fixed ef-
fects estimates can partially solve this problem as can be
seen in the Appendix, Table 15.

The estimated coefficients in column 1–3 and 5 of Ta-
ble 1 are identical. Estimates with hc2 and hc4—not pre-
sented in the tables—deviate only slightly from those with
hc1. This could mean that it is not necessary to distinguish
between hc1 to hc4. However, one could guess that stronger
differences are observed if the sample is small. Empirical
investigations, where only 10, 1 and 0.1 percent of the orig-
inal sample size is used, do not support this presumption.
The jackknife estimates of standard errors and t-values are
also not so far away from the heteroskedasticity-consistent
estimates with hc1 and hc3. The nearness to estimates with
hc3 is plausible because the latter is only a slightly sim-
plified version of what one gets by employing the jackknife
technique. Furthermore, Table 1 demonstrates that bootstrap
and cluster-robust estimates of the t-values differ strongest
of the input factor labor (lnL), measured by the number
of employees in the firm. Capital (lnK), approximated by
the sum of investments of the last four years, has evidently
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Table 1 Estimates of Cobb-Douglas production functions under alternative determination of standard errors using hc1, hc3, bootstrap, jackknife
and cluster-robust estimates

hc1 hc3 bootstrap jackknife cluster (idnum)

lnL 0.9472 0.9472 0.9472 0.9582 0.9472

(184.02) (183.99) (227.40) (184.49) (126.29)

lnK 0.2225 0.2225 0.2225 0.2178 0.2225

(60.80) (60.79) (60.40) (59.58) (43.04)

const 9.0810 9.0810 9.0810 9.0908 9.0810

(307.86) (307.81) (271.82) (308.83) (215.20)

Note: n = 34,308; R2 = 0.843; t -ratios in parentheses; idnum—identification number of the firm

Table 2 OLS estimates of an
extended CDF with Bernoulli
distributed regressors

Note: n = 20,332; R2 = 0.846.
The regressors CLP
(company-level pact), WOCO
(works council), CB (collective
industry-wide bargaining), P1
(profits last year: very good) and
P2 (profits last year: good) are
dummies

Mean Coef. Std.err. t

lnL 0.8808 0.0061 144.33

lnK 0.2049 0.0041 49.55

CLP 0.0871 0.0307 0.0236 1.30

WOCO 0.3035 0.3915 0.0184 21.19

CB 0.3819 0.1385 0.0133 10.36

P1 0.0834 0.2462 0.0231 10.65

P2 0.3695 0.1032 0.0132 7.78

const 9.2905 0.0367 253.03

Table 3 OLS estimates of
CDFs with and without outliers,
t -values in parentheses;
dependent variable: logarithm of
sales—lnY

With
outliers

Without
outliers

Without
strong leverages

With
Hadi-MOD

lnL 0.9472 0.9415 1.0409 0.9412

(222.12) (240.28) (169.10) (240.10)

lnK 0.2225 0.2242 0.1724 0.2243

(70.11) (77.04) (36.33) (77.08)

MOD 1.8810

(2.33)

const 9.0811 9.0498 9.3445 9.0490

(333.20) (362.66) (238.53) (362.62)

n 34,308 33,851 27,262 34,308

R2 0.866 0.866 0.805 0.843

larger cluster-robust estimates of standard errors than that
from the other methods.

An extended version of the Cobb-Douglas function in
Table 1 is presented in Table 2. The latter estimates show
smaller coefficients and smaller t-values of the input fac-
tors labor and capital. The major intention of Table 2 is
to demonstrate that also in this example there is—as main-
tained in Sect. 2.1.4—a clear relationship between D̄, the
mean of a dummy as independent variable, and the estimated
standard errors. The nearer D̄ to 0.5 the smaller is the stan-
dard error. The results in Table 2 cannot be generalized in
contrast to that in Table 11 because the standard error of a

dummy is not only determined by the mean. Each regressor
has a specific influence on the dependent variable indepen-
dent of the regressor’s variance.

Outliers—see Sect. 2.1.5—may have strong effects on
coefficient and standard error estimates. However, estimates
do not react sensitively to all outliers. This can be demon-
strated if the results with and without outliers are compared.
Table 3 presents an example for simple Cobb-Douglas func-
tions in column 1 and 2. An observation in column 2 is de-
fined as an outlier if |û∗| > 3. The coefficients in column 1
and 2 are very similar while the differences of the standard
errors become more evident. The differences are enlarged
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Table 4 Confidence intervals (CI) of output elasticities of labor and
capital based on a Cobb-Douglas production function, estimated with
and without outliers, Stoye’s confidence interval at partially identified
parameters; dependent variable: logarithm of sales—lnY

CI with
outliers

CI without
outliers

Stoye
CI

β̂lnL;u 0.9555 0.9492 0.9511

β̂lnL;l 0.9388 0.9339 0.9376

β̂lnK;u 0.2287 0.2299 0.2282

β̂lnK;l 0.2162 0.2185 0.2184

β̂lnL 0.0167 0.0153 0.0135

β̂lnK 0.0125 0.0114 0.0098

under a wider definition of an outlier, e.g. if 3 is substituted
by 2. The picture becomes also clearer if observations with
high leverage are eliminated—see column 3. Coefficients
and standard errors in column 1 and 3 reveal a clear dispar-
ity for both input factors. This result is not unexpected but
the consequence is ambiguous. Is column 1 or 3 preferable?
If all observations with strong leverages are due to measure-
ment errors the decision speaks in favor of the estimates in
column 3. As no information is available to this question
both estimates may be useful.

Column 4 extends the consideration to outliers follow-
ing Hadi (1992).The squared difference between individual
regressor values and the mean for all regressors—here lnL

and lnK—is determined for each observation weighted by
the estimated covariance matrix—see Sect. 2.1.5. The deci-
sion whether establishment i is an outlier is now based on
the Mahalanobis distance. MOD, the vector of multiple out-
lier dummies (MODi = 1 if i is an outlier; =0 otherwise), is
incorporated as an additional regressor. The estimates show
that outliers have a significant effect on the output variable
lnY . The coefficients and the t-values in column 2 and 4
are very similar. This is a hint that the outliers defined via
û∗ are mainly determined by large deviations of the regres-
sor values. From û∗ it is unclear whether the values of the
dependent variable or the independent variables are respon-
sible for the fact that an observation is an outlier.

As it is not obvious whether the outliers are due to mea-
surement errors that should be eliminated or whether these
are unusual but systematically induced observations that
should be accounted for, parameters can only partially be
identified. Therefore, in Table 4 confidence intervals are not
only presented for the two extreme cases (column 1: all
outliers are induced by specific events; column 2: all out-
liers are due to random measurement errors). Additionally,
in column 3 the confidence interval (CI) based on Stoye’s
method is displayed. The results show that the lower and
upper coefficient estimates of lnL by Stoye lies within the
estimated coefficients in column 1 and 2. The upper coeffi-
cient is nearer to that of column 2 and the lower is nearer

Table 5 Unconditional and conditional DiD estimates with com-
pany-level pact (CLP) effects; dependent variable: logarithm of
sales—lnY

Unconditional Conditional

lnL 0.9423

(166.03)

lnK 0.2211

(53.37)

CLP 3.1152 0.0951

(35.91) (2.36)

D2009 0.0597 0.0216

(2.25) (1.54)

CLP ∗ D2009 −0.3029 0.0400

(−2.90) (0.84)

n 31,985 20,490

R2 0.101 0.841

Note: t -values in parentheses

to column 1. We do not find the same pattern for input fac-
tor lnK . In this case Stoye’s β̂lnK;u deviates more from that
in column 2 than in column 1. And for β̂lnK;l we find the
opposite result. Stoye’s intervals (β̂lnL = β̂lnL;u − β̂lnL;l ;
β̂lnK = β̂lnK;u − β̂lnK;l) are shorter than that with or with-
out outliers. In other words, the estimates are more precise.

The next tables present estimates of alternative methods
in order to determine causal effects. First, the difference-
in-differences (DiD) approach is estimated. Results can be
found in Table 5. The coefficient of the interaction variable
CLP ∗ D2009 in column 1 is significantly different from
zero. This means that sales between firms with a company-
level pact (CLP), adopted in 2009, and those without such a
pact differ between 2009 and the years before (2006–2008).
The adoption of a CLP in the year of the Great Recession is
combined with lower sales than in the years before if an un-
conditional DiD specification is used. In column 2 the sign
changes and the effect of the interaction variable is insignif-
icant if an extended CDF is estimated. This approach is pre-
ferred because in the former the influence of the input factors
is partially added to the causal effect. Now, no influence of
the adoption of a CLP on sales in 2009 can be detected. One
could argue that the estimates in column 1 lead more than
that in column 2 to significant results because the sample
in the former is larger. This argument is not compelling. If
we draw a random sample of 63.83 percent so that in col-
umn 1 the sample size is n = 20,489 the interaction effect
is −0.2939 and the significance is preserved (t = −2.26).
If CLPs change labor and capital productivity we should
not incorporate lnL and lnK in a conditional DiD. In other
words, in this case we should not control for these variables
before treatment.
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Table 6 Estimates of CDFs with CLP effects using matching proce-
dures; dependent variable: logarithm of sales—lnY

No matching MM NNM

lnL 0.9420 0.9362 0.9533

(166.03) (47.75) (63.32)

lnK 0.2212 0.1938 0.2007

(53.42) (15.12) (19.70)

CLP 0.1231 0.1928 0.0496

(5.22) (1.31) (1.46)

n 20,490 1,806 3,346

R2 0.840 0.838 0.849

Note: MM—Mahalanobis metric matching, NNM—nearest neighbor
matching, t -values in parentheses. Matching variables are profit situ-
ation, year in which the establishment was founded, introduction of
new products, further training, average working time, working time
accounts, opening clause

Alternative methods to determine causal effects are
matching procedures. These are suggested when there does
not exist control over the assignment of treatment condi-
tions, when in the basic equation y = Xβ + αD + u the di-
chotomous treatment variable D and the disturbance term u

correlate, when the ignorable treatment assignment assump-
tion is violated. In the example of the CDF it is questioned
that this condition is fulfilled for CLPs. As an alternative
the Mahalanobis metric matching (MM) without propen-
sity score and the nearest neighbor matching (NNM) with
caliper are applied, presented in Table 6, column 2 and 3,
respectively. In the latter method non-replacement is used.
That is, once a treated case is matched to a non-treated case,
both cases are removed from the pool. The former method
allows that one control case can be used as a match for sev-
eral treated cases. Therefore, the total number of observa-
tions in the nearest neighbor is larger than that in column 2.
We find that the CLP effect on sales is insignificant in both
cases but the CLP coefficient of MM estimates exceeds by
far that of NNM. The estimates of the partial elasticities of
production are very similar in the three estimates in Table 6.
The insignificance of the CLP effect confirms the result of
column 2 of Table 5. If the DiD estimator of column 2 in
Table 5 is applied after matching the causal effect is—not
unexpected—also insignificant. The probvalue is 0.182 if
the MM procedure is used and 0.999 under the NNM proce-
dure.

The previous estimates have demonstrated that company-
level pacts (CLP) have no statistically significant influence
on output. We cannot be sure that this result is also true for
subgroups of firms. One way to test this is to conduct quan-
tile estimates. As presented in Sect. 2.2 four methods can
be applied to determine quantile treatment effects (QTE).
The CLP effects on sales can be found in Table 7 where
the results of five quantiles (q = 0.1,0.3,0.5,0.7,0.9) are

presented. In contrast to the previous estimations most CLP
effects are significant in the columns 1–4 of Table 7. Firpo
considers the simplest case without control variables under
the assumption that the adoption of a company-level pact
is exogenous. The estimated coefficients in column 1 (F )
seem oversized. The same follows from the Frölich-Melly
approach, where CLP is instrumented by a short work time
dummy (column 3—F-M). Other available instruments like
opening clauses, collective bargaining, works councils or re-
search and development within the firm do not evidently
change the results. One reason for the overestimated coef-
ficients can be neglected determinants of the output that cor-
relate with CLP. Estimates of column 2 (K-B) and 4 (A-A-I)
support this hypothesis.

From the view of expected CLP coefficients the con-
ventional quantile estimator, the Koenker-Bassett approach,
with lnL and lnK as regressors seems best. However, the
ranking of the size of the coefficients within column 2 seems
unexpected. The smaller the quantile the larger is the es-
timated coefficient. This could mean that CLPs are advan-
tageous for small firms. However, it is possible that small
firms with advantages in productivity due to CLPs have rela-
tive high costs to adopt a CLP. In this case the higher propen-
sity of large firms to introduce a CLP is consistent with
higher productivity of small firms.

The coefficients of the Abadie-Angrist-Imbens approach,
a combination of Frölich-Melly’s and Koenker-Bassett’s
model, are also large but not so large as in column 1 and 3.

Possibly, all estimates in column 1–4 of Table 7 are bi-
ased and inconsistent. This is the case when CLP and non-
CLP firms fundamentally differ due to unobserved variables.
To avoid this problem the QTE and the matching approaches
are combined. Based on the matching of Table 6 the QTE
analogously to column 1–4 in Table 7 can be estimated.
In column 5 and 6 only two combinations are presented,
namely MM+K-B and MM+A-A-I. We find that the rank-
ing and the size of the coefficients are plausible in column 5.
The sizes of the coefficients in column 6 are smaller than
in column 4 but the identified causal effects seems still too
high. The most important result is the following: the CLP
effects are significant for higher quantiles, i.e. for q = 0.9 in
column 5 and for q = 0.7 and q = 0.9 in column 6. How-
ever, the median estimators (q = 0.5) of CLP effects in col-
umn 5 and 6 that can be compared with the estimates of
column 2 in Table 6 are insignificant. Quantile estimators
highlight information that cannot be revealed by other treat-
ment methods, i.e. in Tables 5 and 6. The estimations of the
other six combinations (MM + F, MM + F-M, NNM + F,
NNM + K-B, NNM + F-M, NNM + A-A-I)—not presented
in the tables—are less plausible. The ranking of the size
of coefficients is inconsistent in the light of theoretical and
practical experience.
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Table 7 Quantile estimates of CLP effects; dependent variable: logarithm of sales—lnY

Quantile F K-B F-M A-A-I MM + K-B MM + A-A-I

q = 0.1 2.9957 0.2236 5.3012 1.2092 −0.1064 0.9776

(38.94) (6.76) (20.42) (3.10) (−0.87) (1.06)

q = 0.3 3.3242 0.1836 5.8227 1.1615 0.0715 0.7140

(54.67) (7.15) (23.67) (3.11) (0.46) (0.62)

q = 0.5 3.1325 0.1526 6.3549 1.2000 0.1793 0.6736

(54.19) (6.31) (24.58) (2.57) (1.09) (1.37)

q = 0.7 2.9312 0.1036 6.8703 1.2479 0.2270 0.8072

(56.91) (4.07) (26.14) (2.09) (1.54) (2.18)

q = 0.9 2.3203 −0.0176 7.8119 1.6549 0.4523 1.4242

(34.18) (−0.37) (20.12) (1.36) (3.36) (2.92)

n 31,985 20,490 20,909 13,496 1,806 1,206

Note: F—Firpo; K-B—Koenker/Bassett; F-M—Frölich/Melly; A-A-I—Abadie/Angrist/Imbens, MM—Mahalanobis metric matching, control
variables are lnL and lnK , t -values in parentheses

Fig. 1 Regression discontinuity of CLP probability

The final discussed treatment method in Sect. 2.2 is the
regression discontinuity (RD) design. This approach ex-
ploits information of the rules determining treatment. The
probability of receiving a treatment is a discontinuous func-
tion of one or more variables where treatment is triggered
by an administrative definition or an organizational rule.

In a first example using a sharp RD design it is analyzed
whether at an estimated probability of 0.5 that a company-
level pact (CLP) exists a structural break on logarithm of
output (lnY ) is evident. For this purpose a probit model is
estimated with profit situation, working-time account, total
wages per year and works council as determinants of CLP.
All coefficients are significantly different from zero—not in
the tables. The estimated probability Pr(CLP) is then plotted
against lnY based on a fractional polynomial model over the
entire range (0 < Pr(CLP) < 1) and on two linear models
split into Pr(CLP) <= 0.5 and Pr(CLP) > 0.5. The graphs
are presented in Fig. 1.

A structural break seems evident. Two problems have to
be checked: First, is the break due to a nonlinear shape, and
second, is the break significant? The answer to the first ques-
tion is yes, because the shape over the range 0 < Pr(CLP) <

1 is obviously nonlinear when a fractional polynomial is
assumed. The answer to the second question is given by a
t-test—cf. Sect. 2.2—based on

y = γ0 + γ1D_Pr(CLP) + γ2
(
Pr(CLP) − Pr(CLP)

)

+ γ3D_Pr(CLP) · (Pr(CLP) − Pr(CLP)
) + u

=: γ0 + γ1D_Pr(CLP) + γ2cPr(CLP)

+ γ3D_Pr(CLP) · cPr(CLP) + u,

where

D_Pr(CLP) =
{

1 if Pr(CLP) ≤ 0.5
0 otherwise.

The null that there is no break has to be rejected (γ̂1 =
−3.96; t = −6.87; probvalue = 0.000) as can be seen in Ta-
ble 8.

The estimates in Table 8 cannot tell us whether the out-
put jump in Pr(CLP) = 0.5 is a general phenomenon or
whether the Great Recession in 2008/09 is responsible. To
test this the combined method of RD and DiD—derived
in Sect. 2.2—is employed and the results are presented in
Table 9. The estimates show that the output jump does
not significantly change between 2006/2007 and 2008/2010.
The influence of D_Pr(CLP) · T and that of D_Pr(CLP) ·
cPr(CLP) · T on lnY is insignificant. Therefore, we con-
clude that the break is of general nature.

Two further examples are presented in Fig. 2 and 3.
The Institut für Mittelstandsforschung defines small firms
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Table 8 Testing for structural
break of CLP effects between
Pr(CLP) ≤ 0.5 and
Pr(CLP) > 0.5

Coef. Std.err. t P > |t |

D_Pr(CLP) −3.9608 0.5765 −6.87 0.000

cPr(CLP) 4.3413 0.8390 5.17 0.000

D_Pr(CLP) · cPr(CLP) 11.3838 0.8437 13.49 0.000

const 18.4375 0.5764 31.99 0.000

Table 9 Testing for differences
in structural break of CLP
effects between Pr(CLP) ≤ 0.5
and Pr(CLP) > 0.5 in 2006/07
and 2008/10

Coef. Std.err. t P > |t |

T 0.0130 1.3118 0.01 0.992

D_Pr(CLP) −4.1045 1.1191 −3.67 0.000

cPr(CLP) 3.9314 1.6795 2.34 0.019

D_Pr(CLP) · cPr(CLP) 11.6383 1.6884 6.89 0.000

D_Pr(CLP) · T 0.0392 1.3119 0.03 0.976

cPr(CLP) · T 0.2801 1.9520 0.14 0.886

D_CLP · cPr(CLP) · T −0.0662 1.9623 −0.03 0.973

const 18.5422 1.1190 16.57 0.000

Fig. 2 Regression discontinuity of small firms

as such that have less than 10 employees and until 1 mil-
lion Euro sales per year. The analogous definition of middle-
size firms is less than 500 employees and until 50 million
Euro sales per year. A sharp regression discontinuity de-
sign is applied to test whether the first and the second part
of the definition are consistent. In other words, based on a
Cobb-Douglas production function with only one input fac-
tor, the number of employees, it is tested whether there exists
a structural break for small firms between 9 and 10 employ-
ees at a 1 million sales border. We find for small firms in
Fig. 2 that there seems to be a sales break around 1 million
Euro per year.

The t-test analogously to the first example yields weak
significance (γ̂1 = −13.8667; t = −1.61; probvalue =
0.107). The same procedure for middle-size firms—see
Fig. 3—leads to following results.

Fig. 3 Regression discontinuity of middle-size firms

Apparently, there exists a break. However, the first part
of the definition of middle-size firms from the Institut für
Mittelstandsforschung is not compatible with the second
part. The break of sales at 500 employees is not 50 million
Euro per year but around 150 million Euro. Furthermore,
the visual result might be due to a nonlinear relationship as
the fractional polynomial estimation over the entire range
suggests. The t-test does not reject the null (γ̂1 = −8977;
t = −0.54; probvalue = 0.588). The conclusion from Fig. 2
and 3 is that the graphical representation without the poly-
nomial shape as comparison course and without testing for
a structural break can lead to a misinterpretation.

The final example uses a fuzzy regression discontinuity
design. It is analyzed whether the CLP effects on the log-
arithm of sales (lnY = ln(sales/10000)) differ between the
East and West German federal states. The graphical repre-
sentation can be found in Figs. 4a and 4b. The former shows
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(a)

(b)

Fig. 4 (a) Regression discontinuity of ln(sales). (b) Regression dis-
continuity of treatment CLP

Table 10 Fuzzy regression discontinuity between East and West Ger-
man federal states (GFS)—Wald test for structural break of compa-
ny-level pact (CLP) effects on sales; jump at GFS > 0; dependent vari-
able: logarithm of sales—lnY

Variable Coef. Std.err. z

lnY jump −0.8749 0.1234 −7.09

CLP jump −0.0571 0.0138 −4.13

Wald estimator 15.3165 3.5703 4.29

Note: GFS = −10 Berlin(West); −9 Schleswig-Holstein; −8 Ham-
burg; −7 Lower Saxony; −6 Bremen; −5 North Rhine-Westphalia;
−4 Hesse; −3 Rhineland-Palatinate; −2 Baden-Württemberg; −1
Bavaria; 0 Saarland; 1 Berlin(Ost); 2 Brandenburg; 3 Mecklenburg-
West Pomerania; 4 Saxony; 5 Saxony-Anhalt; 6 Thuringia

the disparities in the level of sales per year and the latter
those of Pr(CLP)—here measured by the relative frequency
of firms with a CLP to all firms in a German federal state.

Although clear differences are detected for both charac-
teristics (lnY,Pr(CLP)) we cannot be sure that these dis-
parities are significant and whether the CLP effects are

smaller or larger in West Germany. This is checked by a
Wald test in Table 10. We find that the CLP effects on lnY

(−0.8749/−0.0571 = 15.3165) are significantly higher in
the West German federal states (z = 4.29). When the inter-
pretation is focussed on the dummy “East Germany” as an
instrument of a dummy “CLP” we should note that the for-
mer is not a proper instrument because the output lnY differs
between East and West Germany independent of a CLP.

4 Summary

Many reasons like heteroskedasticity, clustering, basic prob-
ability of qualitative regressors, outliers and only partially
identified parameters may be responsible that estimated
standard errors based on classical methods are biased. Ap-
plications show that the estimates under suggested modifi-
cations do not always deviate so much from that of the clas-
sical methods.

The development of new procedures is ongoing. Espe-
cially, the field of treatment methods were extended. It is
not always obvious which method is preferable to determine
the causal effect. As the results evidently differ it is nec-
essary to develop a framework that helps to decide which
method is most appropriated under typically situations. We
observe a tendency away from the estimation of average ef-
fects. The focus is shifted to distribution topics. Quantile
analysis helps to investigate differences between subgroups
of the population. This is important because economic mea-
sures have not the same influence on heterogeneous estab-
lishments and individuals. A combination of quantile re-
gression with matching procedure can improve the determi-
nation of the causal effects. Further combinations of treat-
ment methods seem helpful. Difference-in-differences esti-
mates should be linked with matching procedures and re-
gression discontinuity designs. And also regression discon-
tinuity split to quantiles can lead to new insights.

Executive summary

Empirical economics is governed by econometric methods
since many years. During the last 20 years contents and ma-
jor questions have strongly changed in this field. Therefore
methods were modified and completely new methods were
developed. In comparison to conventional approaches atten-
tion is paid to peculiarities of the data, to the specification of
the estimating approach, to unobserved heterogeneity, to en-
dogeneity and causal effects. Real data are often not compat-
ible with the assumptions of classical methods. If the latter
are used, this can lead to a misinterpretation of the results.
We have to ask, whether the results are correct. Is it really
possible to interpret the estimated effects as causal or are
these only statistical artifacts, which are irrelevant or even
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counterproductive for policy measures? In order to avoid
this, the practitioner has to be familiarwith the wide range of
existing methods for the empirical investigations. The user
has to know the assumptions of the methods and whether
the application allows adequate conclusions at given infor-
mation. It is necessary to check the robustness of the results
by alternative methods and specifications.

This paper presents a selective review of econometric
methods and demonstrates by applications that the meth-
ods work. In the first part, methodological problems to
standard errors and treatment effects are discussed. First,
heteroskedasticity- and cluster-robust estimates are pre-
sented. Second, peculiarities of Bernoulli distributed regres-
sors, outliers and only partially identified parameters are
revealed. Approaches to the improvement of standard error
estimates under heteroskedasticity differ in the weighting of
residuals. Other procedures use the estimated disturbances
in order to create a larger number of artificial samples, to
obtain better estimates. And again others use nonlinear in-
formation. Cluster robust estimates try to solve the Moul-
ton problem. Too low standard errors between observations
within clusters are adjusted. This objective is only partially
successful. We should be cautious if we compare the effects
of dummy variables on an endogenous variable, because the
more the mean of dummies deviates from 0.5 the higher are
the standard errors. Outliers, i.e. unusual observations that
are due to systematic measurement errors or extraordinary
events may have enormous influence on the estimates. The
suggested approaches to detect outliers vary relating to the
measurement concept and do not necessarily demonstrate
whether outliers should be accounted for in the empirical
analysis. New methods for partially identified parameters
may be helpful in this context. Under uncertainty the degree
of precision, whether outliers should be eliminated, can be
increased.

Four principles to estimate causal effects are in the focus:
difference-in-differences (DiD) estimators, matching proce-
dures, quantile treatment effects (QTE) analysis and regres-
sion discontinuity design. The DiD models distinguish be-
tween conditional and unconditional approaches. The range
of the popular matching procedures is wide and the meth-
ods evidently differ. They aim to find statistical twins, to ho-
mogenize the characteristics of observations from the treat-
ment and the control group. Until now, the application of
QTE analysis is relatively rare in practice. Four types of
models are important in this context. The user has to de-
cide whether the treatment variable is exogenous or endoge-
nous and whether additional control variables are incorpo-
rated or not. Regression discontinuity (RD) designs separate
between sharp and fuzzy RD methods. It is distinguished
whether an observation is assigned to the treatment or to the
control group directly by an observable continuous variable
or indirectly via the probability and the mean of treatment,
respectively, conditional on this variable.

In the second part of the paper the different methods are
applied to estimates of Cobb-Douglas production functions
using IAB establishment panel data. Some heteroskedasticity-
consistent estimates show similar results while cluster-
robust estimates differ strongly. Dummy variables as re-
gressors with a mean near 0.5 reveal as expected smaller
variances of the coefficient estimators than others. Not all
outliers have a strong effect on the significance. Methods
of partially identified parameters demonstrate more efficient
estimates than traditional procedures.

The four discussed treatment effects methods are applied
to the question whether company-level pacts have a signif-
icant effect on the production output. Unconditional DiD
estimators and estimates without matching display signif-
icantly positive effects. In contrast to this result we can-
not find the same if conditional DiD or matching estimates
based on the Mahalanobis metric are applied. This outcome
has more precisely formulated under quantile regression.
The higher the quantile the more is the tendency to posi-
tive and significant effects. Sharp regression discontinuity
estimates display a jump at the probability 0.5 that an es-
tablishment has a company-level pact. No specific influence
can be detected during the Great Recession. Fuzzy regres-
sion discontinuity estimates reveal that the output effect of
company-level pacts is significantly lower in East than in
West Germany. A combined application of the four prin-
ciples determining treatment effects lead to some interest-
ing new insights. We determine joint DiD and matching es-
timates as well as that ofthe former together with regres-
sions discontinuity designs. Finally, matching is interrelated
to quantile regression.

Kurzfassung

Empirische Wirtschaftsforschung wird schon seit vielen
Jahren ganz wesentlich von ökonometrischen Methoden ge-
tragen. In den letzten 20 Jahren haben sich Inhalte und Fra-
gestellungen in der empirischen Wirtschaftsforschung stark
verändert. Dies hat dazu geführt, dass viele Methoden mo-
difiziert oder völlig neue entwickelt wurden. Gegenüber tra-
ditionellen Ansätzen wird verstärkt auf die Besonderheiten
der Daten, auf die Spezifikation des zu schätzenden Ansat-
zes, auf unbeobachtete Heterogenität, auf Endogenität und
auf Kausaleffekte geachtet. Reale Daten sind ganz überwie-
gend nicht vereinbar mit den Annahmen klassischer Me-
thoden. Werden letztere trotzdem eingesetzt, so sind da-
mit häufig Fehlinterpretationen der Ergebnisse verbunden.
Zu fragen ist, wie sicher die getroffenen Aussagen sind.
Können die Schätzergebnisse tatsächlich kausal interpretiert
werden oder haben sich lediglich rein statistische Zusam-
menhänge ergeben, die für Handlungsanweisungen irrele-
vant oder gar kontraproduktiv sind? Um dies zu verhindern,
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muss der Praktiker für seine empirischen Untersuchungen
mit dem Spektrum vorhandener Methoden vertraut sein. Er
muss wissen, welche Annahmen den jeweiligen Methoden
zugrunde liegen und ob deren Anwendung bei gegebener In-
formation geeignete Aussagen zulassen. Er sollte durch den
Einsatz vergleichbarer Methoden die Robustheit der Ergeb-
nisse überprüfen.

Einen Überblick über selektiv ausgewählte ökonometri-
sche Methoden zu liefern und anhand von Anwendungen
deren Arbeitsweise aufzuzeigen, ist Anliegen dieses Bei-
trags. Behandelt werden methodische Probleme zu Stan-
dardfehlern und Treatment-Effekten. Zunächst geht es um
heteroskedastie- und cluster-robuste Schätzungen. Es folgt
die Erörterung von Problemen bei bernoulliverteilten Re-
gressoren, Ausreißern und partiell identifizierten Parame-
tern. Vorgeschlagene Ansätze zur Verbesserung der Stan-
dardfehler bei Vorliegen von Heteroskedastie unterscheiden
sich in der Gewichtung der Residuen. Andere Verfahren nut-
zen die geschätzten Störgrößen aus, um künstlich eine grö-
ßere Anzahl von Stichproben zu erzeugen, um auf deren
Basis eine bessere Schätzung der Standardfehler zu erhal-
ten oder machen sich vorhandene Nichtlinearitäten zunutze.
Clusterrobuste Schätzungen zielen darauf ab, das Moulton-
Problem zu lösen. Zu geringe Standardfehler bei Vorliegen
von in Clustern zusammengefassten ähnlichen Beobachtun-
gen werden korrigiert. Dies gelingt in den vorgeschlagenen
Ansätzen nur unvollständig. Ein bisher nicht erörtertes Phä-
nomen, dass Dummy-Variablen als Regressoren zu höheren
Standardfehlern führen, je mehr ihr Mittelwert von 0.5 ent-
fernt ist, mahnt zur Vorsicht beim Vergleich hinsichtlich der
Präzision des Einflusses verschiedener [0;1]-Regressoren.
Ausreißer, d. h. ungewöhnliche Beobachtungen, die vor al-
lem auf systematische Messfehler oder ungewöhnliche Er-
eignisse zurückzuführen sind, können erhebliche Auswir-
kungen auf die Schätzergebnisse haben. Die vorgeschlage-
nen Ansätze zur Aufdeckung von Ausreißern variieren hin-
sichtlich des Messkonzeptes und liefern nicht zwangsläufig
Hinweise darauf, ob diese bei der empirischen Analyse zu
berücksichtigen sind. Neuere Ansätze für nur partiell iden-
tifizierte Parameter können hier hilfreich sein. Erhöhen sie
doch den Präzisionsgrad bei Unsicherheit, ob Ausreißer zu
entfernen sind oder nicht.

Bei den Verfahren zur Bestimmung von Treatment-
Effekten stehen vier Prinzipien im Fokus: Differenz-von-
Differenzen-Schätzer, Matching-Verfahren, Analyse von
Treatment-Effekte bei Quantilsregressionen und Regression-
Discontinuity-Ansätze. Bei den Differenz-von-Differenzen-
Schätzern ist zu unterscheiden, ob zusätzliche Kontrollva-
riablen zu berücksichtigen sind oder nicht. Das Spektrum
der in neuerer Zeit sehr beliebten Matching-Verfahren, die
darauf abzielen Untersuchungsgruppe und Kontrollgruppe
zu homogenisieren, um statistische Zwillinge herauszufil-
tern, ist einerseits recht umfangreich geworden und weist an-
dererseits methodisch bedeutsame Unterschiede auf. Noch

vergleichsweise selten ist bisher der Einsatz von Quantils-
regressionen zur Erfassung heterogener Kausaleffekte. Me-
thodisch zu unterscheiden ist dabei, ob die Treatmentvaria-
ble als exogen oder endogen aufgefasst wird und ob weitere
Kontrollvariablen Berücksichtigung finden oder nicht. Bei
den Regression-Discontinuity-Ansätzen ist zu unterschei-
den, ob die Zuordnung zur Treatment- oder Kontrollgruppe
allein auf Basis einer beobachteten kontinuierlichen Varia-
blen erfolgt oder auch nicht beobachtete Variablen herange-
zogen werden.

Die zunächst rein auf die Methodik abgestellte Diskus-
sion der verschiedenen Verfahren wird im zweiten Teil die-
ses Beitrags um Anwendungen auf Cobb-Douglas-Produk-
tionsfunktionen unter Verwendung von IAB-Betriebspanel-
daten ergänzt. Verschiedene heteroskedastie-konsistente
Schätzverfahren führen zu ähnlichen Resultaten für die
Standardfehler. Cluster-robuste Schätzungen weisen deutli-
chere Abweichungen auf. Dummy-Variable als Regressoren
mit einem Mittelwert in der Nähe von 0.5 führen zu klei-
neren Varianzen der Koeffizientenschätzer als Dummies mit
niedrigeren oder höheren Mittelwerten. Nicht alle Ausrei-
ßer haben einen starken Einfluss auf die Signifikanz. Neuere
Methoden zur Behandlung des Problems nur partiell identi-
fizierter Parameter führen zu effizienteren Schätzungen als
traditionelle Verfahren.

Die vier diskutierten Treatment-Effekt-Verfahren wer-
den angewandt auf die Frage, ob betriebliche Bündnisse
einen signifikanten Effekt auf den Produktionsoutput haben.
Im Gegensatz zu unbedingten Differenz-von-Differenzen-
Schätzern und Schätzern ohne Matching ergeben sich bei
bedingten Differenz-von-Differenzen-Schätzern oder Mat-
ching-Schätzern auf Basis der Mahalanobis-Metrik positive,
aber nur insignifikante Effekte. Das letztere Ergebnis muss
im Rahmen der Quantils-Treatmenteffekt-Analyse spezifi-
ziert werden. Je höher das betrachtete Quantil ist, umso eher
besteht eine Tendenz zu positiv signifikanten Effekten. Ei-
ne einfache Regression-Discontinuity-Analyse zeigt einen
Strukturbruch bei einer Wahrscheinlichkeit von 0.5, dass
ein Betrieb ein betriebliches Bündnis vereinbart hat. Keine
speziellen Effekte lassen sich während der großen Rezes-
sion 2008/09 ausmachen. Fuzzy Regression-Discontinuity-
Schätzungen offenbaren, dass der Outputeffekt betrieblicher
Bündnisse in Ostdeutschland signifikant niedriger liegt als
in Westdeutschland. Eine kombinierte Anwendung der vier
Grundprinzipien zur Ermittlung von Kausaleffekten führt
zu interessanten neuen Erkenntnissen. So werden unter an-
derem Differenz-von-Differenzen Schätzer mit Matching-
Verfahren verknüpft. Erstere werden auch in Verbindung mit
Regressions-Discontinuity erörtert und letztere in Verbin-
dung mit Quantilsregressionen.
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Appendix

Table 11 OLS estimates of Cobb-Douglas functions with artificial dummies (DV.) as regressor; dependent variable: logarithm of sales

β̂lnL Std.err. β̂lnK Std.err. β̂DV. Std.err.

DV 1 = 0.1692 0.9464 0.0043 0.2223 0.0032 0.0470 0.0128
DV 2 = 0.2952 0.9453 0.0043 0.2223 0.0032 0.0808 0.0105
DV 3 = 0.3672 0.9446 0.0043 0.2224 0.0032 0.0923 0.0099
DV 4 = 0.5388 0.9434 0.0043 0.2225 0.0032 0.1334 0.0096
DV 5 = 0.6301 0.9432 0.0043 0.2226 0.0032 0.1285 0.0100
DV 6 = 0.7190 0.9438 0.0043 0.2226 0.0032 0.1124 0.0107
DV 7 = 0.8360 0.9449 0.0043 0.2226 0.0032 0.0979 0.0130
DV 8 = 0.9445 0.9448 0.0043 0.2226 0.0032 0.1599 0.0210
DV 9 = 1.0000 0.9472 0.0043 0.2225 0.0032 0.0000 –

Table 12 OLS estimates of Cobb-Douglas functions with an artificial
dummy (D.) determined from a rectangular distributed random variable
as regressor. Results are average values of 300 estimates; dependent
variable: logarithm of sales

β̂D. Std.err.

D1 = 0.1 −0.0177 0.0182

D2 = 0.2 −0.0040 0.0135

D3 = 0.3 −0.0065 0.0118

D4 = 0.4 −0.0148 0.0110

D5 = 0.5 −0.0105 0.0108

D6 = 0.6 −0.0111 0.0110

D7 = 0.7 −0.0134 0.0118

D8 = 0.8 −0.0073 0.0135

D9 = 0.9 0.0086 0.0180

Note: IAB Establishment Panel 2006–2010; n = 34,308

Table 13 OLS estimates of Cobb-Douglas functions with com-
pany-level pact dummy (CLP) as regressor, decreasing shares of
n(CLP = 1)/n; dependent variable: logarithm of sales

β̂CLP Std.err. t

CLP = 0.0693 0.1231 0.0236 5.22

CLP = 0.0624 0.1209 0.0246 4.92

CLP = 0.0533 0.1299 0.0259 5.02

CLP = 0.0477 0.1131 0.0275 4.11

CLP = 0.0407 0.1006 0.0295 3.41

CLP = 0.0336 0.1005 0.0322 3.12

CLP = 0.0273 0.1429 0.0356 4.01

CLP = 0.0207 0.1446 0.0403 3.39

CLP = 0.0135 0.1357 0.0486 2.79

CLP = 0.0067 0.1887 0.0671 2.80

Note: IAB Establishment Panel 2006–2010; n = 31,985. In the
first line the estimation with the original sample and CLP = 0.0693
is presented. Next, only 90 % of the firms with CLP = 1, where
CLP = 0.0624, are considered. The random selection of the CLP firms
is based on a rectangular distribution of the CLP firms. The determina-
tion of the following lines is analogous to that of the second line

Table 14 OLS estimates of Cobb-Douglas functions with works
council dummy (WOCO) as regressor, decreasing shares of
n(WOCO = 1)/n—randomly determined based on a rectangular dis-
tribution; dependent variable: logarithm of sales

β̂WOCO Std.err. t

WOCO = 0.3045 0.4076 0.0136 29.50

WOCO = 0.2747 0.3573 0.0136 26.32

WOCO = 0.2440 0.3140 0.0136 23.13

WOCO = 0.2132 0.2784 0.0137 20.29

WOCO = 0.1829 0.2418 0.0141 17.11

WOCO = 0.1523 0.2102 0.0148 14.20

WOCO = 0.1221 0.1904 0.0159 11.99

WOCO = 0.0920 0.1842 0.0177 10.43

WOCO = 0.0605 0.1888 0.0208 9.07

WOCO = 0.0305 0.1730 0.0281 6.16

Note: IAB Establishment Panel 2006–2010; n = 34,217

Table 15 Different CDF estimates, t -values in parentheses; dependent
variable: logarithm of sales—lnY

OLS Cluster-robust Fixed effects

lnL 0.9472 0.9472 0.4096

(222.12) (126.29) (35.84)

lnK 0.2225 0.2225 0.0195

(70.11) (43.04) (9.72)

const 9.0811 9.0810 13.2449

(333.20) (215.20) (302.82)

n 34,308 34,308 34,308

R2 0.843 0.843 0.070

Note: IAB Establishment Panel 2006–2010
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