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In this paper, stochastic production frontier models are estimated with IAB establish-
ment data from waves 2002 and 2003 to analyze productivity and inefficiency. The data
suffer from nonresponse in the most important variables (output, capital and labor)
leading to the loss of 25% of the observations and possibly imprecise estimates and
invalid test statistics. Therefore the missing values are multiply imputed. The analysis
of the estimation results shows that, particularly in the inefficiency submodel, working
with multiply imputed data reveals some interesting and plausible results which are
not available when missing observations are ignored.
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1 Introduction

In this paper, stochastic production frontier models
are estimated with German establishment data to
analyze productivity and inefficiency. We are con-
fronted with missing values in our data set, a typical
situation in empirical research. A closer look at the
data reveals 4 % to 15 % of missing values particu-
larly in the most important variables: output, capital
and labor. Ignoring this would considerably reduce
the complete data records available for any multi-
variate analysis. Whereas information from 18,447
observations from the panel waves of 2002 and 2003
is collected in principle, only 13,969 of these obser-
vations can be used when inference is based only on
the complete cases. Ignoring the missing values
would certainly lead to the estimates being less pre-
cise. And the question arises as to whether the re-
maining data are still representative of the popula-
tion of interest. If not, the resulting test statistics are
no longer valid and the resulting estimates may be
biased.

Biases can be expected to occur particularly in the
establishment’s inefficiency estimates of the stochas-
tic production frontier. Because frontier estimates
depend on the extremely efficient establishments in
the sample and because the inefficiency estimates
are derived from the estimation residuals, the latter
are extremely sensitive to any kind of misspecifica-
tion in the model Ð see e.g. Jensen (2005). Stochas-
tic production frontiers are regularly used in empiri-
cal research, e.g. in Schank (2005) or Schank et al.
(2004), but a still typical reaction when confronted
with missing values is simply to ignore them, see
also Addison et al. (2003). However, ignoring miss-
ing values is based on strong assumptions about the
missing data mechanism, which in general do not
hold. This paper therefore aims to explore the dan-
gers of ignoring missing data in an empirical applica-
tion. It tries to show the gains of imputation when a
sophisticated econometric model is estimated, here
a stochastic production frontier with establishment
data.

The article is structured as follows. In the next sec-
tion, the data and the response behavior in the panel
are described. In section 3, the stochastic production
frontier model and the selection steps to the ana-
lyst’s model are presented. In the following section,
a short introduction to multiple imputation is pro-
vided. We describe the imputation process as well as
the preparations and transformations of the varia-
bles to be used in the imputer’s model. In the fifth
section, the estimation results using the imputed
data are given and compared with the results based
only on the complete data. Finally, section 6 summa-
rizes the paper.
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2 Data and nonresponse

2.1 Data and response behavior

Our data are taken from two waves (2002 and 2003)
of the Establishment Panel of the Institute for Em-
ployment Research of the Federal Employment Ser-
vice (Institut für Arbeitsmarkt- und Berufsfor-
schung der Bundesagentur für Arbeit, IAB). The
basis for the panel is the employment statistics regis-
ter of the Federal Employment Service, conducted
within the framework of the 1973 revisions to the
social insurance system. Every year, all employers
are required, under sanction, to report the number
of employees in their establishments who are subject
to compulsory social security contributions and any
changes in these details since the previous report.
The register covers all dependent employment in
the private and public sector and accounts for al-
most 85 % of total employment in Germany. The
survey unit of the register is the establishment or
local production unit, rather than the legal and com-
mercial entity of the company. For more details
about the data set see e.g. Kölling (2000) and Kohl-
mann (2005).

The IAB Establishment Panel draws a stratified ran-
dom sample of units from the register, the selection
probabilities depend on the number of employees
in the respective stratum. The strata comprise some
20 industries and 10 establishment size intervals cov-
ering all sectors and employment levels. The overall
and size-specific response rates including firms that
are interviewed for the first time exceed 60 percent
and for establishments that have been interviewed
more than once they are over 80 percent.

The panel is designed to meet the needs of the Fed-
eral Employment Service. Basically, it focuses on
employment-related matters. Much of the informa-
tion in the panel concerns worker characteristics and
qualifications as well as levels of and changes in es-
tablishment employment. There is also information
on the training of employees and their working time.
Additionally, information on certain establishment
policies, business developments, and investment is
collected on an annual basis. Other information is
collected biennially or triennially. Every year the
panel also addresses a specific topic.

We exclude from the sample all establishments that
do not use turnover as an output measure. This af-
fects non-profit organizations, public offices, banks
and insurance companies. Thus, an unbalanced sam-
ple of 13,969 observations remains without any item
nonresponse on the variables used in this study.
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Multiple imputation provides 18,447 data records
for 2002 and 2003 from 9,462 establishments.

Unfortunately, we do not have exact information
about the reasons for unit nonresponse and drop-
out in the data. It is commonly assumed that besides
the general attitude towards taking part in a survey
there are two main reasons for nonresponse. First,
there are questions that are too difficult to under-
stand or the information wanted is not easily availa-
ble and, second, there are questions that concern
sensitive information. In both cases, the interviewee
is not willing to participate in the panel. A study of
earlier waves of the panel comes to the conclusion
that only a few items have a significant influence on
the willingness of firms to participate (see Hartmann
and Kohaut 2000).

Generally, item nonresponse in the data is found in
only a few variables, particularly those used to con-
struct output, labor and capital. Output is measured
as value added, capital by the replacement invest-
ment and labor by earnings (see section 3.2 and the
data appendix for the correct definitions). Table 1
shows the variables in the questionnaire with the hi-
ghest item nonresponse rates. All the other variables
used in our study are distinctly below the rates
shown here.

2.2 Nonresponse and imputation

First formalized by Rubin (1976), in modern statisti-
cal literature (see Little and Rubin 1987, 2002, p. 12)
missing data mechanisms are commonly distin-
guished according to the probability of response,
yielding the following three cases:

� The missing data are said to be missing com-
pletely at random (MCAR) if the nonresponse
process is independent of both unobserved and
observed data.
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� If, conditional on the observed data, the nonre-
sponse process is independent only of the unob-
served data, then the data are missing at random
(MAR). This is the case, for example, if the prob-
ability of answering the turnover question varies
according to the size of the company, and the size
is observed.

� Finally, data are termed not missing at random
(NMAR), if the nonresponse process depends on
the values of the variables that are actually not
observed. This might be the case for turnover re-
porting, where companies with higher turnover
tend to be less likely to report their turnover.

In the context of likelihood-based inference and
when the parameters describing the measurement
process are functionally independent of the parame-
ter describing the nonresponse process, MCAR and
MAR are said to be ignorable; otherwise we have
non-ignorable missingness, which is the hardest case
to deal with analytically because the missingness
mechanism has to be modeled itself.

As mentioned above, the largest number of missing
values occurs in the most important variables for the
production function estimation: output, capital, and
labor. A further analysis of the amount of data miss-
ing per variable shows that item nonresponse is
higher the smaller the companies are. So the estab-
lishment size in terms of the number of employees
seems to be a good predictor of missingness. There-
fore, we assume that the missing values of the varia-
bles used in the productivity model are missing at
random (MAR). As is often the case, the missing
values are spread throughout the data set. If we esti-
mate our model using any econometric software, we
lose 25 % of the observations which still contain
hard-earned information.

Moreover, basing inference only on the complete
cases in our application implicitly assumes that the
data are missing completely at random (MCAR),
which is obviously not the case. To ensure the MAR
assumption and to make it possible to estimate a
sophisticated econometric model with missing data,
we decided to use a multiple imputation procedure.
Using a single imputation technique such as mean
imputation, hot deck, or regression imputation gen-
erally results in confidence intervals and p-values
that ignore the uncertainty due to the missing data,
because the imputed data are treated as if they were
fixed known values. Thus, basing standard complete
data inference on singly imputed data will typically
lead to standard error estimates that are too small,
p-values that are too significant, and confidence in-
tervals that undercover Ð see e.g. Rässler et al.
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(2003). To correct for these effects using singly im-
puted data, special variance estimation techniques
have to be applied. For a very recent discussion of
the merits and demerits of single and multiple impu-
tation see Groves et al. (2002).

Notice that the ignorability assumption can never
be contradicted by the observed data. However,
Schafer (2001) provides evidence that even the erro-
neous assumption of MAR might have only minor
impact on estimates and standard errors when using
a proper multiple imputation strategy. Only when
NMAR is a serious concern, is it obviously neces-
sary to jointly model the data and the missingness,
although such models are based on other untestable
assumptions. Therefore, a multiple imputation pro-
cedure seems to be the best available alternative in
our situation to account for missingness, to exploit
all valuable information, and to obtain statistically
valid subsequent analyses based on standard com-
plete data inference.

3 Analyst’s model

3.1 Stochastic production frontiers

This subsection summarizes the theory on stochastic
production frontiers which is necessary in the fol-
lowing.

In microeconomic theory, economic production
functions provide the maximum possible output for
given inputs of, say, n firms in the sample. In reality,
inefficient input use may lead to lower outputs for
many firms. That is why frontier functions (lying on
top of the data cloud) were developed for estimating
potential output and inefficiency.

After the seminal work of Aigner and Chu (1968),
Aigner et al. (1977) and Meeusen and van den
Broeck (1977) introduced the stochastic production
frontier

(1) Yi � exp(�0) �
k

j�1
X

�j

ij exp(νi)TEi , i � 1, ..., n

or in logs

(2) yi � �0 � �
k

j�1
�j xij � ei, ei � νi � ui, ui � 0.

Here, yi is actual output (in logs), xij are k inputs
(all in logs) of firm i, and �j are unknown parame-
ters. Then, with TEi = 1 or ui = 0,

(3) y*
i � �0 � �

k

j�1
�j xij � νi
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is the maximum possible output (in logs) for given
inputs. The output ratio

(4) 0 � TEi � exp(�ui) �
Yi

Y*
i

� 1

is interpreted as technical inefficiency of firm i. Fi-
nally, the composed error term ei consists of the one-
sided inefficiency term ui and the symmetric part νi

representing statistical noise. xij, νi and ui are as-
sumed to be independent with the distributional as-
sumptions

(5) νi � N (0,σ2
ν) and ui � trunc0N (μ,σ2

u)

where trunc0N (·, ·) stands for a normal distribution
truncated at u = 0 (see Stevenson 1980).

The log-likelihood function is

(6)

l (�,σ,λ,μ) � �n�ln (σ) � const � ln�Φ��μ

σλ
���

��
n

i�1
�1

2
�ei

σ
�2

� ln�Φ��μ

σλ
�

�ei λ

σ
���

with

(7) λ �
σu

σν

and σ2 � σ2
ν � σ2

u

and the standard normal distribution function Φ (·).
Iterative maximization leads to consistent and as-
ymptotically efficient maximum likelihood (ML) es-
timators �̂, σ̂, λ̂ and μ̂.

How can the inefficiency terms be estimated? Since
in a stochastic frontier model the estimation residu-
als only estimate the composed error e and not u,
the inefficiencies must be estimated indirectly with
the help of the minimum mean-squared error pre-
dictor

(8) E [ui | ei] �
σλ

1 � λ2	 ��ei λ

σ
�

Φ��
ei λ

σ
� �

ei λ

σ 

with the standard normal density function � (·).

Independence of xij and ui may be a hard assump-
tion. That is why Reifschneider and Stevenson
(1991) allow the inefficiency term ui to depend on
some explanatory variables zij (interpreted as sour-
ces of inefficiency) which may be partly identical to
variables xij:
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(9) ui � δ0 � �
l

j�1
δj zij � wi � di � wi, i � 1, ...,n

δj are unknown parameters. The distributional as-
sumptions are

(10) νi � N (0, σ2
ν), ui � trunc0N (di, σ2

u) and
wi � trunc-diN (0, σ2

u)

The ML estimators �̂, σ̂, λ̂ and δ̂ are derived simulta-
neously using iterative ML techniques.

See the given references for the likelihood function
of the full model Ð a slight modification of (6) Ð
and see the surveys in Coelli et al. (1998), Greene
(1997) or Jensen (2001a) for more details on fron-
tiers.

3.2 Analyst’s model selection

This subsection documents the model selection steps
for deriving the specification of the estimated
model.

The first decision for the analyst concerned the func-
tional form for the relation between output, capital
and labor. In order to avoid the well-known hard
restrictions of simpler functions such as Cobb-Doug-
las, we chose the rather general translog production
function.

The second decision concerned the measurement of
output, capital and labor. Output is measured by the
value added (see the appendix on variable construc-
tion for exact definitions). We excluded from the
sample all of the establishments that do not use
turnover as the output measure. This affects non-
profit organizations, public offices, banks and insur-
ance companies. In the imputed data sets, 3 distinct
outliers in the output variable had to be eliminated
because Ð particularly with a frontier function Ð
they would significantly bias the estimates.

A reasonable measure for labor input should take
account of skill and productivity differences be-
tween employees, among other things. For labor, the
data set provides two possible approximations: full-
time equivalents (total number of employees minus
0.5 times total number of part-time employees) or
earnings. The first choice would implicitly assume,
for example, that all employees are equally skilled
and productive whereas the second choice implicitly
assumes, among other things, that earnings are a
good proxy for skills and productivity. We opted for
the latter because this assumption seems to be more
reasonable.
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The capital variable is notorious for the difficulties
that any approximation of the latent value of the
capital stock causes in the estimation. With time se-
ries data, the capital variable approximated by the
perpetual inventory method often shows low varia-
tion and non-stationarity. In this paper, with cross-
section data covering two years, we decided to proxy
capital by the replacement investment in the cur-
rent year. Of course this choice implicitly assumes,
among other things, that capital is replaced uni-
formly and sufficiently. An alternative would be to
approximate capital by the average replacement in-
vestment of several years. But since firms are born
and die, this approximation would lead to even
more missing values or firms.

In section 2.1, we showed that replacement invest-
ment is one of the variables suffering from many
missing values. This problem is alleviated by multi-
ple imputation. But another problem is that many
(7,888 of 18,447) of the values for investment in the
sample are zero. There is some evidence that many
of these firms are simply not able or not willing to
provide exact non-zero investment numbers. Thus,
one important contribution of our paper is the sug-
gestion to multiply impute these zeroes as well. No-
tice that the imputations are all done in one step.
We do not perform a two-step imputation and,
therefore, we can still use the usual pooling formu-
lae to obtain the multiple imputation estimates. Sec-
tion 5 will show the consequences of this additional
imputation of the capital variable.

After these fundamental decisions, the covariates of
labor and capital in the production function and the
inefficiency determinants in submodel (9) had to be
selected from the variables available in the IAB Es-
tablishment Panel and suggested by diverse eco-
nomic theories. Economic theory often gives no
clear advice as to whether a particular variable
should enter the productivity model or the ineffi-
ciency submodel or both. And since the aim of this
paper is to explore possible effects of ignoring miss-
ing data, we did not want to exclude any variable
that might be affected. Therefore, a very detailed
data analysis including a factor analysis to examine
the correlation structure of the regressors was con-
ducted.

It is well known that forward and backward variable
selection procedures can lead to very different re-
sults when the regressors are correlated. Thus, in a
large-scale model selection procedure combining
several forward and backward runs (using both the
imputed data and only the observed data), the final
sets of variables for the production function and the
submodel were fixed. Each variable had several op-
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portunities to enter the production function and the
submodel. A variable is included in all regressions if
it was significant in at least one of the 11 regressions
(5 + 5 auxiliary regressions with imputed data and
one with only the observed data). Of course this
procedure did not lead to the elimination of any var-
iable suggested by any well-known economic theory.
The appendix on variable construction shows the ex-
act definitions of all of the variables and the tables
show the use of the variables.

4 Imputer’s model: data
augmentation

4.1 Introduction to multiple imputation

Multiple imputation (MI), introduced by Rubin
(1978) and discussed in detail in Rubin (1987), is a
Monte Carlo technique that replaces missing values
by m�1 simulated versions, generated according to
a probability distribution or, more generally, any
density function indicating how likely imputed val-
ues are, given the observed data. MI is therefore an
approach that retains the advantages of imputation
while allowing the data analyst to make valid assess-
ments of uncertainty. The concept of multiple impu-
tation reflects uncertainty in the imputation of the
missing values through wider confidence intervals
and larger p-values than under single imputation.
Typically m is small, with m = 3 or m = 5. Each
of the imputed and thus completed data sets is first
analyzed using standard methods. Then the results
are combined or pooled to produce estimates and
confidence intervals that reflect the missing data un-
certainty.

The theoretical motivation for multiple imputation
is Bayesian. Let Yobs denote the observed compo-
nents of any univariate or multivariate variable Y,
and Ymis its missing components. Basically, MI re-
quires independent random draws from the poster-
ior predictive distribution

(11) f (ymis | yobs) ��f (ymis,ψ |yobs)dψ �

��f (ymis, |yobs,ψ) f (ψ |yobs)dψ

of the missing data Ymis given the observed data Yobs

with parameter vector ψ. Since f (ymis |yobs) itself is
often difficult to derive, we may alternatively per-
form

� random draws of the parameters according
to their observed-data posterior distribution
f (ψ |yobs) as well as
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� random draws of the missing data according
to their conditional predictive distribution
f (ymis |yobs,ψ) given the drawn parameter values.

For many models the conditional predictive distribu-
tion f (ymis |yobs,ψ) is quite straightforward due to
the data model used. In contrast, the corresponding
observed-data posterior

(12) f (ψ |yobs) � L (ψ;yobs)
f (ψ)

f (yobs)

(with the likelihood function L(ψ; yobs) = f(yobs |ψ))
is usually difficult to derive, especially when the data
have a multivariate structure and different, non-
monotone missing data patterns. The observed-data
posteriors are often not standard distributions from
which random numbers could easily be generated.
Therefore, simpler methods have been developed to
enable multiple imputation on the basis of Markov
chain Monte Carlo (MCMC) techniques. They are
discussed extensively by Schafer (1997). In MCMC,
the desired distributions f (ψ |yobs) and f (ymis |yobs)
are achieved as stationary distributions of Markov
chains that are based on the complete-data distribu-
tions, which are computed more easily. Creating m
independent draws from such chains can be used as
imputations of Ymis from their posterior predictive
distribution f (ymis |yobs).

Based on these m imputed data sets we calculate m
complete data statistics θ̂(r) and their variance esti-
mates V̂(θ̂(r)), r = 1, ..., m. The complete-case esti-
mates are combined according to Rubin’s rule such
that the MI point estimate θ̂MI for parameter θ is
the average

(13) θ̂MI �
1

m �
m

r�1

θ̂ (r)

Its estimated total variance T is calculated according
to the analysis of variance principle:

(14) ‘between-imputation variance’:

B�
1

m � 1 �
m

r�1

(θ̂ (r) � θ̂MI)2

‘within-imputation variance’:

W �
1

m �
m

r�1

V̂ (θ̂ (r))

‘total variance’:

T � W � (1 �
1

m
)B
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For large sample sizes, tests and two-sided interval
estimates can be based on the Student’s t-distribu-
tion

(15)
θ̂MI � θ

�T
� t (ν) with

ν � (m � 1)�1 �
w

(1 � m�1)B
�2

degrees of freedom. For a comprehensive overview
of MI see Schafer (1999a).

Multiple imputation is generally applicable when
the complete-data estimates are asymptotically nor-
mal or t distributed; e.g. see Rubin and Schenker
(1986), Rubin (1987), Barnard and Rubin (1999), or
Little and Rubin (2002). Notice that the usual maxi-
mum-likelihood estimates and their asymptotic vari-
ances derived from the inverted Fisher information
matrix typically satisfy these assumptions. In this pa-
per we use ML estimation for the analyst’s model.

4.2 Data augmentation using the
normal/Wishart model

For the creation of the multiple imputations we use
the stand alone software NORM which is provided
free of charge by Schafer (1999b).

We assume a k-dimensional normal distribution for
all the k variables in the imputer’s model. Moreover
we assume that we have n independent observations
from this data model; i. e. for every observable varia-
ble Yi of each unit i it holds that Yi � N (μ, Σ), i =
1, ..., n.

As prior distribution f (μ,Σ) for the location and
scale parameters, the common uninformative prior
distribution

(16) f (μ,Σ) 
 f (μ) f (Σ) 
 c |Σ | -(k+1) /2 � |Σ | -(k+1) /2

is chosen; i. e. μ and Σ are assumed to be approxi-
mately independent Ð for details see Schafer (1997).
As long as no identification problems occur, the as-
sumption of a non-informative prior distribution
seems to be the most ‘objective’ choice.

Under this prior distribution (16), the complete-data
posterior distribution f (μ,Σ |y) of the parameters,
given the complete data, is a normal distribution for
μ given Σ and the data and an inverted-Wishart dis-
tribution for Σ, given the data
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(17) Σ |y � W�1 (n � 1, (nS (ȳ))�1)

μ |Σ,y � N (ȳ,Σ /n)

with the sample covariance matrix

(18) S (ȳ) �
1

n �
n

i�1

(yi � ȳ) (yi � ȳ)	, ȳ �
1

n �
n

i�1

yi

and yi = (yi1, ..., yik)	. According to the data model,
the conditional predictive distribution of the missing
data, given the observed data and the parameters, is
a conditional normal distribution

(19) Ymis | yobs, μ,Σ � N (μmis |obs, Σmis |obs).

The data augmentation algorithm proceeds itera-
tively in two steps, the so-called imputation step and
the posterior step.

I-step: For each unit i with missing values, random
draws are performed for the missing data from their
conditional predictive distribution f (ymis | yobs,θ),
see (19), given the observed data and an actual draw
of the parameters μ(t) and Σ(t); i. e. random values
are generated according to

(20) Y (t)
mis | yobs,μ(t),Σ (t) � N (μ(t)

mis |obs,Σ (t)
mis |obs).

P-step: Using the completed data y(t) � (yobs,y(t)
mis),

actual values for the mean vector ȳ(t) and the covari-
ance matrix

(21) S (ȳ(t)) �
1

n �
n

i�1

(y(t)
i � ȳ(t)) (y(t)

i � ȳ(t))	

are calculated. Then new actual values for the pa-
rameters μ(t) and Σ (t) are drawn according to their
complete-data posterior distribution (17)

(22) Σ(t�1) | y(t) � W�1 (n � 1, (nS (ȳ(t)))�1)

μ(t�1) | Σ (t�1),y(t) � N (ȳ(t),Σ (t�1) /n)

Such random draws of μ(t) and Σ (t) are considered
to be the Bayesianly stochastic counterpart of maxi-
mizing the complete-data likelihood being per-
formed in the M-step of the EM algorithm. Analo-
gous to the EM, which uses the complete-data likeli-
hood, data augmentation makes use of the com-
plete-data posterior, which is often more attractive
than the observed-data posterior.

Using some starting values y(0) and Σ (0), the two
steps with (20), (21), and (22) are repeated many
times until independence from the starting values is
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achieved and convergence of the Markov chain
can be assumed. For t5 
, the Markov chain
{(μ(t),Σ (t),Y(t)

mis) | t � 0,1, ...} converges in distribu-
tion to f (ymis,θ | yobs). Thus, Y (t)

mis converges to a
draw from the desired posterior predictive distribu-
tion f (ymis | yobs) given in (11). After assessing con-
vergence, for example, every t � 100, t � 200, ...
value can be used to produce m independent multi-
ple imputations. Data augmentation techniques
have been used in practice and provide quite flexi-
ble tools for creating multiple imputations from par-
ametric models. A very detailed description of this
data augmentation algorithm is given by Schafer
(1997).

4.3 Data preparation

In the normal/Wishart model, we assume a multivar-
iate normal distribution for the data. Clearly, our
survey data are not normally distributed: some are
bounded between zero and one, others are skewed
and some have large proportions of zeroes; the lat-
ter are called semi-continuous variables. One way to
handle non-normality of the data is to apply suitable
transformations to the variables, which is done in
our application. Moreover, if non-normal variables
(such as discrete or binary ones) are observed com-
pletely, then it is quite plausible to still use the multi-
variate normal model because incomplete variables
are modeled as conditional normal, given a linear
function of the complete variables Ð see e.g. Schafer
(1997). The variables and their transformations used
in our models are listed in the appendix.

When a variable is treated as being semi-continuous,
then it has a proportion of responses at the fixed
value of, for example, zero and a continuous distri-
bution among the remaining observations. Accord-
ing to an approach published by Schafer and Olsen
(1999), one may encode each semi-continuous varia-
ble Y to a binary indicator W (with W = 1 if Y � 0
and W = 0 if Y = 0) and a continuous variable V,
which is treated as missing whenever Y = 0. See ta-
ble 2 for an illustration.
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Notice that a relationship between W and V would
have little meaning and could not be estimated by
the observed data. However, we aim to generate
plausible imputations for the original semi-continu-
ous variable Y and are thus only interested in the
marginal distribution for W and the conditional dis-
tribution for V, given W = 1. Data augmentation al-
gorithms have been shown to behave well in this
context with respect to the parameters of interest Ð
see Schafer and Olsen (1999).

When the values of the variables Y (or the remain-
ing V) are bounded between zero and one repre-
senting probabilities, a conventional logit transfor-
mation (see Greene 2003) works quite well:

(23) g (Y) �
Y

1 � Y
for Y � (0,1)

For positively skewed Y , an ordinary log transfor-
mation g (Y) � ln (Y) is often a good choice. An-
other useful transformation is the Box-Cox transfor-
mation

(24) g (Y) �
Y θ �1

θ
for θ � 0.

However, theoretically, we should transform the
data to achieve multivariate normality. In practice,
such transformations are not yet available: the usual
transformations are performed on a univariate scale.
Investigations show that such deviations from nor-
mality (for the variables to be imputed) should not
harm the imputation process too much Ð see
Schafer (1997) or Gelman et al. (1998). A growing
body of evidence supports the idea of using a nor-
mal model to create multiple imputations even when
the observed data are somewhat non-normal. The
focus of the transformations is to achieve a range
for continuous variables to be imputed that theoreti-
cally have support on the whole real line rather than
to achieve normality itself. Even for populations
that are skewed or heavy-tailed, the actual coverage
of multiple imputation interval estimates is reported
to be very close to the nominal coverage. The multi-
ple imputation framework has been shown to be
quite robust against moderate departures from the
data model Ð see Schafer (1997). Caution is re-
quired if the amount of missing information is very
large, i. e. over 50 %, which is not the case in this
paper. Thus we may proceed further with these
transformed data.

With NORM 2.03, the imputations are created very
easily. After a burn-in period of 2000 iterations, the
imputed data sets are stored after every further 200
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iterations. Finally, m = 5 multiply imputed data sets
are used for our analysis. Investigations of time-se-
ries and autocorrelation plots did not suggest any
convergence problems. Notice that in the imputer’s
and the analyst’s model the same set of input data,
i. e. variables and observations, is used in order to
avoid problems of misspecification Ð see Meng
(1995) or Schafer (2001). Some final differences re-
main between the imputer’s model assuming multi-
variate normality and the analyst’s model assuming
truncated normal distributions but they are less criti-
cal than neglecting important variables. This is due
to the fact that draws of the missing data, given the
observed data from their posterior predictive distri-
bution, are averages over the observed data poster-
ior of ψ given Yobs. Thus, ψ and θ may differ.

5 Results

The stochastic production frontier (2) with the inef-
ficiency submodel (9) was estimated with the IAB
German establishment data described in subsec-
tion 2.1. The production function has translog form
in capital and labor and includes further variables
which are listed in the appendix along with the vari-
ables of the inefficiency submodel. Note that al-
though the data set covers 2 years, we estimated (2)
and (9) as a pooled regression model and not as a
panel model with, say, random effects. If a random
effects panel estimator is consistent it is more effi-
cient than the estimator used here. This is due to the
more adequate weighing of the variation between
and within establishments. However, using the data
of only 2 years together with a multivariate normal
model for imputation, we decided to run the pooled
regression model to keep the imputer’s and the ana-
lyst’s models as congenial as possible. Spiess and
Göbel (2005) show how the use of time lagged varia-
bles can lead to efficiency gains. However, in our
imputer’s model each variable is allowed to be cor-
related with each other variable, so our imputation
model seems to be flexible enough.

As described in subsection 3.2, 11 regressions were
run for 3 approaches:

� the MISS approach: one regression with only the
observed data. See tables 3 and 3a for the results.

� the MIC0 approach: m = 5 auxiliary regressions
with the full data set where all missing values
have been filled by multiple imputation (see sec-
tion 4) but where the zeroes in the capital varia-
ble are maintained. Tables 5 and 5a provide the
results of the auxiliary regressions, tables 3 and
3a provide the pooled results.
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� the MIMI approach: m = 5 auxiliary regressions
with the full data set where all missing values and
the zeroes in the capital variable have been filled
by multiple imputation. Tables 4 and 4a provide
the results of the auxiliary regressions, tables 3
and 3a provide the pooled results.

The estimation was performed with LIMDEP 8.0.

5.1 The controversial results

In the following, ‘significance’ means ‘significance at
the 5 % level’ unless stated otherwise. We begin by
comparing the results on the production frontier in
table 3. Here, all 3 approaches perform rather simi-
larly Ð with one important exception. In the MIC0
approach, one labor parameter is insignificant, even
with changing signs in the auxiliary regressions (see
table 5). This is certainly a severe drawback of this
approach.

Apart from that, it is striking that greater export
activity goes in line with higher productivity only
when missing observations remain missing, whereas
after multiple imputation the export parameter be-
comes insignificantly or weakly significantly nega-
tive. This is discussed in the next subsection together
with the relation between export activity and effi-
ciency.

Another interesting difference is the effect of col-
lective agreements on productivity. With multiply
imputed data, there is evidence of reduced produc-
tivity, whereas with missing observations the para-
meter is insignificantly positive. The net effect of
collective bargaining on productivity is an open
question in labor economics (see e.g. Filer et al.
1996, p. 513). Some authors stress the positive influ-
ence of unions on productivity due to workers’
higher motivation and satisfaction leading to greater
effort, lower turnover costs and more investment in
firm-specific human capital. Other authors empha-
size the reduced flexibility and power of managers
leading to lower productivity. Most studies using
German data seem not to have found any effects of
collective bargaining on productivity (see e.g.
Schnabel 1991). But this might be caused by ignor-
ing missing observations and will be discussed in de-
tail in a subsequent paper.

More striking differences between the approaches
are found in the results on the inefficiency submodel
in table 3a. With multiply imputed data,

� labor has a weakly significantly positive effect on
u, i. e. a weakly significantly negative effect on ef-
ficiency Ð see (4) Ð whereas, with missing obser-
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vations, higher wage costs significantly increase
efficiency. It is interesting to see that, with multi-
ply imputed data, the univariate relation between
efficiency and labor is positive. This means that
the covariates are more influential on this rela-
tion in these approaches. The negative effect of
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labor (approximated by total gross wages, i. e. la-
bor costs) on efficiency could be explained by
standard arguments from labor economics,
namely shirking theory (Lazear 1981): larger
firms with many employees have problems moni-
toring their employees’ work effort. The solution
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is higher relative wages and the threat of being
dismissed, a powerful disciplinary threat leading
to higher productivity. But, of course, this might
be inefficient.

� a larger amount of exports significantly coincides
with greater efficiency whereas the relation is
weakly significantly negative with missing obser-
vations. The parameters of the production fron-
tier (2) and the inefficiency submodel (9) are esti-
mated jointly (see subsection 3.1). Thus, substitu-
tion between effects on productivity and effi-
ciency may occur. Whereas the MISS approach
finds a positive relation between exports and pro-
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ductivity (see the previous subsection), the MIC0/
MIMI approaches see a positive relation with ef-
ficiency.

There is extensive literature on the relation be-
tween exports and firm performance (see e.g.
Wagner 2005, for a recent survey). It is often
found that exporters are more productive than
non-exporters, mostly explained by the self-selec-
tion of more productive firms into export mar-
kets. Our results indicate that, when properly im-
puting missing data, the relation between exports
and productivity is shifted to a relation between
exports and efficiency. This shift might be a fruit-
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ful research topic for later studies but is beyond
the scope of this paper.

� collective agreements coincide (weakly) signifi-
cantly with greater efficiency whereas the influ-
ence is insignificantly negative with missing ob-
servations (see above).
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� firms receiving relatively more wage subsidies are
significantly less efficient. Employees receiving
wage subsidies might not work efficiently. This ef-
fect is only weakly significant with missing obser-
vations.
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� firms supporting relatively more cases of on-the-
job-training are less efficient. This can make
sense because the returns to the firm from on-
the-job-training might not be sufficient. This ef-
fect is insignificant with missing observations,
where firms supporting the use of PCs for on-the-
job-training cases are significantly less efficient.

� the variance ratio λ in (7) is distinctly higher than
with missing observations meaning that noise, i. e.
the denominator in (7), constitutes a relatively
larger part of the total variance in the latter case.

� mean technical efficiency Ð see (4) Ð is distinctly
greater (55 %) than with missing observations
(48 %).
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� most of the parameter estimates are drastically
higher than with missing observations.

Since we are working with real data and not with
simulated data, we do not know anything about the
true parameter values. Hence, we are not able to say
which results come closer to the truth. Nevertheless,
particularly in the inefficiency submodel, working
with multiply imputed data seems to reveal some
interesting and plausible results which are not avail-
able with missing observations. Moreover, summa-
rizing the performance of the two multiple imputa-
tion approaches, the MIC0 approach suffers from
the serious drawback of counterintuitively produc-
ing an insignificant labor parameter in the produc-
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tion function. So we have a small but significant
preference for the results obtained with multiple im-
putation where the capital zeroes are imputed as
well.
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5.2 The unanimous results

In this subsection, a larger part of the unanimous
and significant plausible results are interpreted. We
start with the results on the production function.

� Apart from one labor parameter in the MIC0 ap-
proach (see the previous subsection), the capital
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and labor parameters are significant and show
plausible signs.

� OUTPROGP/OUTPROGN: if turnover is ex-
pected to increase (decrease), it seems to be
rather low (high). Thus, an expected increase (de-
crease) goes in line with lower (higher) productiv-
ity.

� DEVELOP: if the technological condition of a
firm is up to date, productivity is higher.

� NEWWORK: firms with a relatively large num-
ber of new hires (with little firm-specific human
capital) are less productive.

� SKSEARCH: firms searching for a relatively
large number of skilled employees as of now are
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producing on the efficient frontier and would like
to expand.

� FLUCT: stronger production fluctuations lead to
lower productivity.

� EAST: enterprises which are by majority in East
German property are less productive, a well-
known result.

� TRAIND/TRAINPC: firms supporting on-the-
job-training (with or without PCs) are more pro-
ductive.

� PROP1: firms offering many jobs for which expe-
rience is important do not seem to operate on the
technological frontier and are thus less produc-
tive.
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Finally, two stable significant plausible results on the
inefficiency submodel are:

� SKILL: firms with a relatively large number of
skilled employees produce more efficiently.

� PROP4: firms offering many jobs for which crea-
tivity is important might be exposed to a rela-
tively large number of production risks leading to
lower efficiency.

6 Conclusions

In this paper we have demonstrated in an empirical
application the gains of properly imputing missing
data when estimating a stochastic production fron-
tier with establishment data. Frontier estimates and
particularly inefficiency estimates of establishments
are known to react extremely sensitively to any kind
of misspecification.

In conventional empirical research concerning econ-
ometric issues, missing data are often simply ignored
and analysis is based on the complete cases only.
Omitting valuable information that is already in the
data is statistically inefficient and often leads to sub-
stantially biased inferences when the data are not
missing completely at random (MCAR), which is
the case in most typical settings. In general, multiple
as well as single imputation techniques can be used
under a less restrictive MAR assumption. However,
with single imputation, it is often not possible to ap-
ply standard complete-case analysis directly, be-
cause it leads to standard errors that are too small,
p-values that are too significant, and confidence in-
tervals that undercover. Especially when inference
is drawn from a multivariate and complex model,
we regard multiple imputation as the most flexible
tool for obtaining valid inference if the data are ex-
posed to non-response.

A further contribution of this paper is the additional
imputation of the capital variable proxied by the re-
placement investment in the current year. Replace-
ment investment suffers from many missing values
and from the fact that many of its values in the sam-
ple are zero. Since there is some evidence that many
of these firms are simply not able or not willing to
provide exact non-zero investment values we have
suggested multiply imputing these zeroes as well.

Having worked with real data, we are not able to
say which results come closer to the truth. But, par-
ticularly in the inefficiency submodel, working with
multiply imputed data seems to reveal some inter-
esting and plausible results which are not available
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with missing observations. And, comparing the per-
formance of the two multiple imputation ap-
proaches, the approach which maintained the zeroes
in the capital variable suffers from counterintui-
tively producing an insignificant labor parameter in
the production function. Thus, we have a small but
distinct preference for the results obtained with mul-
tiple imputation where the capital zeroes are im-
puted as well.

Missing values are a typical problem in empirical
research. We hope that our study helps to raise the
probability that proper multiple imputation tools
will become more widespread in standard econo-
metric software as soon as possible.
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Appendix: Data preparation, variable
construction

Variables in the questionnaire
(to be transformed)

SALE turnover in EUR
INPUT input of materials, goods and servi-

ces as % of turnover
INVEST investment in EUR
ADDINV investment to enlarge capital as %

of investment
EMP total number of employees
NOVERTIM total number of employees with paid

overtime in previous year
EXPORT export in EUR
NSKILL total number of highly skilled em-

ployees
NONEWHIR dummy: NONEWHIR = 1 if no new

hires in first half-year
WOULD dummy: WOULD = 1 if employer

wanted to hire new employees
NNEWHIR total number of new hires in first

half-year
QUIT total number of quits in first half-

year
NTERMIN total number of terminations by em-

ployees in first half-year
NSKSEARC total number of skilled employees

sought as of now
NSUBSIDL total number of employees sup-

ported by wage subsidies in previous
year

NSHORT total number of short-time workers
in first half-year

NTRAINP total number of employees in on-
the-job-training in first half-year

NTRAINC total number of on-the-job-training
cases in first half-year

Variables in the regressions

Y output: SALE * (1 Ð INPUT/100)
C capital: INVEST * (1 Ð ADDINV/

100), C = 1 if no investment
L labor: total gross monthly wages in

June
YEAR dummy: YEAR = 1 if observation in

2003
OVERTIM NOVERTIM/EMP
OUTPROGP dummy: OUTPROGP = 1 if turn-

over is expected to increase
OUTPROGN dummy: OUTPROGN = 1 if turn-

over is expected to decrease
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EXP EXPORT/SALE
DEVELOP ordinal: rating of technological con-

dition of enterprise
(0 = completely out of date, 4 = up
to date)

COLLECT dummy: COLLECT = 1 for collec-
tive agreements

SKILL NSKILL/EMP
NOLABSUP dummy: NOLABSUP = NONE-

WHIR * WOULD
NEWWORK NNEWHIR/EMP
TERMIN NTERMIN/QUIT
SKSEARCH NSKSEARC/EMP
SUBSIDYL NSUBSIDL/EMP
FLUCT dummy: FLUCT = 1 for stronger

production fluctuations in previous
year

EAST dummy: EAST = 1 if enterprise by
majority in East German property

SHORTTIM NSHORT/EMP
TRAIND dummy: TRAIND = 1 if employer

has supported on-the-job-training in
first half-year

TRAINPER NTRAINP/EMP
TRAINCAS NTRAINC/EMP
TRAINPC dummy: TRAINPC = 1 if employer

supports use of PCs for on-the-job-
training

TYPE1 dummy: TYPE1 = 1 for independent
enterprise without any establish-
ments elsewhere

TYPE2 dummy: TYPE2 = 1 for head office
of an enterprise with establishments
elsewhere

TYPE3 dummy: TYPE3 = 1 for branch es-
tablishment of a larger enterprise

TYPE4 dummy: TYPE4 = 1 for intermedi-
ate authority of a larger enterprise

PROP1 dummy: PROP1 = 1 if experience is
important for most jobs in the firm

PROP2 dummy: PROP2 = 1 if physical en-
durance is important for most jobs
in the firm

PROP4 dummy: PROP4 = 1 if creativity is
important for most jobs in the firm

PROP5 dummy: PROP5 = 1 if discipline is
important for most jobs in the firm

PROP6 dummy: PROP6 = 1 if flexibility is
important for most jobs in the firm

PROP8 dummy: PROP8 = 1 if superior
workmanship is important for most
jobs in the firm

PROP9 dummy: PROP9 = 1 if theoretical
knowledge is important for most
jobs in the firm

PROP11 dummy: PROP11 = 1 if loyalty is im-
portant for most jobs in the firm
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PROP12 dummy: PROP12 = 1 if willingness
to learn is important for most jobs
in the firm

Data transformation for MI procedure

Y Box-Cox
C log, dummy*
L Box-Cox
OVERTIM logit
EXP log, dummy*
DEVELOP no transformation
SKILL logit
NEWWORK Box-Cox
TERMIN logit
SKSEARCH Box-Cox
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SUBSIDYL Box-Cox
SHORTTIM Box-Cox
TRAINPER Box-Cox
TRAINCAS Box-Cox

1. Variables marked with an asterisk are treated as
semi-continuous, i. e. the majority of the observa-
tions are at the minimum or the maximum of values.
Therefore, we defined dummy variables that indi-
cate whether an observation is at the respective min-
imum or maximum. The transformation procedure
is performed only for the continuous part of the var-
iable (see subsection 4.3).

2. All variables not mentioned in this list are dum-
mies which remain untransformed (see subsec-
tion 4.3).






