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Abstract

Wage volatility, measured as the cross-sectional variance of wage changes, is positively cor-

related with the unemployment rate with a correlation coefficient of 0.61. We decompose this

correlation into three main factors. During a recession, wage volatility increases substantially

among those experiencing spells of unemployment. The cyclical changes in the variance within

this group explain about 55% of the cyclical variation in wage volatility. The variance within

the group not experiencing unemployment explains 18%. Finally, an increase in the fraction

of workers experiencing unemployment explains 25%. We quantify the posterior uncertainty

surrounding this decomposition and show the results are robust.
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1 Introduction

The variance of idiosyncratic shocks to earnings is larger during recessions, a phenomenon com-

monly referred to as countercyclical volatility. This relationship between aggregate and idiosyn-

cratic shocks plays a key role in the analysis of the welfare cost of business cycles in heterogeneous-

agent macro models. While countercyclical volatility has been documented statistically, we know

very little about the micro-foundations that generate it.1 This lack of micro-foundations is impor-

tant because one must take a stand on how idiosyncratic risk will evolve as the aggregate shock

process changes in order to compute the welfare cost of aggregate fluctuations. Developing models

with micro-founded links between aggregate and idiosyncratic risk is, therefore, an important part

of the research agenda that seeks to use heterogeneous-agent macro models to study aggregate

stabilization. The purpose of this paper is to provide a statistical decomposition of cyclical changes

in idiosyncratic risk in order to shed light on the underlying mechanism.

A second motivation for our work comes from search-theoretic models of the labor market.

Recent advances now allow us to solve models that feature both wage dispersion and aggregate

risk.2 Our results, which document changes in wage dynamics over the business cycle, could

be useful to evaluate and extend these new theoretical results. Indeed we view models in this

class as the natural starting point for the development of theoretical links between aggregate and

idiosyncratic risk.

We begin by documenting the extent of countercyclical volatility in the data. To do so, we use

a multilevel statistical model that relates the variance of wage shocks to the unemployment rate.

We estimate this model using data on men’s wages from the PSID and the national unemployment

1See Storesletten et al. (2004) for estimates of countercyclical volatility. There is also a large literature on earnings
instability following Gottschalk et al. (1994) that documents an increase in the variance of transitory earnings shocks
during recessions.

2See Moscarini and Postel-Vinay (2010), Menzio and Shi (2009), and Menzio and Shi (2010).

2



rate reported by the BLS. We find evidence of countercyclical volatility in annual wages as well as

in annual earnings. It is not surprising that there is countercyclical volatility in earnings since the

incidence and variability of unemployment shocks increase during a recession. Therefore, we focus

on wages. Our chief object of interest is the cross-sectional variance of year-to-year changes in log

wages, which we call wage volatility. Specifically, the main result of section 2 is the demonstration

of a strong comovement between wage volatility and the unemployment rate, which we use as a

cyclical indicator.

Our results in section 2 are related to work by Storesletten et al. (2004) who estimate an

income process that allows the variance of shocks to differ between expansions and contractions.

As our methodology differs from theirs, it is worth considering its advantages and disadvantages.

Storesletten et al. point out that if the variance of persistent income shocks increases during a

recession then cohorts who have lived through more recessions will have a larger variance of income

levels. They then use variation in macroeconomic experiences across cohorts to estimate the extent

to which the variance of income shocks increases in a recession. The real genius of their approach

is that they recognize that data on income from 1967 onwards contain information about income

shocks that occurred since 1930. The difficulty of this approach for our purposes is that we only

have covariates, such as data on unemployment spells, since 1967 so we are unable to investigate

the sources of income shocks before the start of our sample. In comparison to Storesletten et al., we

use information on a more limited set of of aggregate fluctuations. Despite the fact that we only

use information between 1967 and 1992, we identify a clear and significant countercyclical pattern

in wage volatility. While the focus of our paper is on wages, we note in section 2.3 that when we

apply our methods to data on incomes the resulting estimates are in line with those of Storesletten

et al.
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After documenting the magnitude of countercyclical wage volatility, the next step in our analysis

is to investigate its sources. To do so, we partition the sample into groups according to whether

an individual has experienced unemployment in the previous two years (i.e. the years over which

we take the the first-difference in wages). We then perform a variance decomposition exercise

that relates the total variance of wage growth (i.e. wage volatility) to the within group variances,

the within group means and the group sizes and we explore how these components vary with the

unemployment rate.

We show that the comovement of wage volatility and the unemployment rate is in part driven

by a composition effect. The composition effect arises because more people experience unemploy-

ment in a recession and unemployment is associated with higher wage volatility in all aggregate

conditions. Therefore, during a recession, the composition of the sample shifts towards the group

with the larger variance. We estimate that this effect explains about 25% of the correlation between

wage volatility and the unemployment rate. The other important factors are the cyclical changes

in the within group variances. In particular, the variance of wage shocks among those experiencing

unemployment increases strongly with the unemployment rate. This effect can explain about 55%

of the cyclical movements in wage volatility. Increasing volatility among those not experiencing

unemployment explains most of the remainder, about 18%.

In order to conduct the variance decomposition calculations we must have estimates of the mean

and variance of wage growth in each unemployment-experience group and our decomposition re-

sults will be affected by the uncertainty surrounding these estimates. To quantify this uncertainty,

we extend our model to estimate the mean and variance of wage growth in each group. We use

a Bayesian estimation approach, which allows us to easily calculate the uncertainty about our de-

composition results by using draws from the posterior distribution of the model. To our knowledge,
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this method of constructing standard errors for a variance decomposition has not previously been

applied in the economics literature. We find that the posterior uncertainty about our results does

not undermine the message of the point estimates reported above. For example, the 90% error

band for the composition effect ranges from 21% to 29%.

Similar variance decomposition techniques have been used to understand secular trends in in-

equality. For example, Lemieux (2006) decomposes the trend in the variance of hourly wages from

the CPS and shows that the shift towards an older, more educated workforce can explain a third

to a half of the increase in residual wage inequality between 1973 and 2003.3 Our approach differs

from previous work because we focus on cyclical fluctuations as opposed to trends.

The paper is organized as follows: section 2 documents the magnitude of cyclical wage volatility,

section 3 presents the variance decomposition methods and results, and section 4 concludes.

2 Wage Volatility and Unemployment

In this section we introduce our multilevel modeling approach and estimate the correlation between

the volatility of wages and the unemployment rate. The data we use are from the Panel Study of

Income Dynamics (PSID) covering income in years 1967 to 1992.4 We measure wages as the ratio

of annual labor income to annual hours worked and deflate to 1967 dollars using the CPI-Research

3The sociology literature has also explored trends in income inequality and recently Western and Bloome (2009)
have shown how to construct standard errors for Lemieux’s decomposition using Bayesian methods.

4Two considerations influence our choice of years to include in our sample. First, our object of interest is the
first-difference of log annual wages for which we need data on wages in consecutive years. Therefore we cannot make
use of PSID data after 1996 (survey year 1997) after which the PSID switches to a biannual frequency. Second,
there is a structural break in PSID wage volatility around 1993, which has also been documented by Heathcote et al.
(2010). The timing of this break coincides with the switch to a computer-based survey methodology although it is
not clear whether this break represents an actual change in the data generating process or if it is an artifact of the
methodological change. In our analysis, we have found that our findings survive if we model this break as a level
shift in the wage volatility process. We choose, however, to end our sample in 1992 for the sake of simplicity and
ease of exposition. Finally, the switch to the new survey methodology began in survey year 1993 and was completed
in survey year 1994 so our 1992 data have some elements of the new methodology. The inclusion of 1992 does not
exert a strong influence on our results.
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price index. We restrict the sample to male heads who were between the ages of 25 and 60 and

worked at least 320 hours per year. Students, business owners, and self-employed individuals are

excluded from the analysis. We focus on the first difference of log wages across years so individuals

must be present for two consecutive years in order to be included in our sample. Appendix A

provides further details about our sample.

2.1 Multilevel Model

Our statistical model consists of three equations. For an individual i in year t, the model specifies

the following distribution for wage growth

dwi,t ∼ N
(
Xi,t� + �t, �

2
t

)
(1)

�t ∼ N (Zt
, v�) (2)

�2t ∼ N (Zt�, v�2) , �2t > 0. (3)

The first line states that the change in an individual’s log wage, dwi,t, is normally distributed.

The mean of this distribution depends on the individual’s demographic characteristics such as

age and education, which are placed in the vector Xi,t. We assume that the coefficients on these

demographic characteristics are common across years. In addition, the mean change in wages varies

over time with the �t term. Finally, we allow the variance of the innovation in wages to vary over

time as captured by the �2t term.

The second and third lines show the multiple levels of our model as we impose structure on

the parameters of the wage growth distribution and assume that they are drawn from their own

distributions.5 The �t terms are drawn from a normal distribution, the mean of which is linearly

5See Gelman et al. (2004) and Gelman and Hill (2007) for a discussion of multilevel models.
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related to aggregate variables, Zt. We use the national unemployment rate as our measure of

aggregate conditions and this, along with a constant, makes up the vector Zt. Similarly, equation

(3) relates the variance of wage growth to aggregate conditions. As in equation (2), the mean of

this distribution is linearly related to the national unemployment. Our main object of interest

is the component of � that is the coefficient on the unemployment rate in equation (3), which

we call �unemp. As the variance must be positive, we draw from a truncated normal distribution.

In practice, however, the mass of the distribution below zero is so small that this truncation is

practically irrelevant.

By estimating all of the parameters of the model jointly, the posterior uncertainty about �unemp

reflects the uncertainty about �2t . By contrast, one can imagine a two-stage estimation procedure

in which one first estimates equation (1) and then computes �2t from the residuals of this first-stage

regression and uses these estimates as “data” in estimating equation (3). The difficulty with this

two-stage approach is that the standard errors in the second-stage regression do not reflect the fact

that �2t is itself an estimate. The multilevel model avoids this difficulty by estimating both stages

at once.

Another advantage of the multilevel model is that it provides sharper estimates of �2t than

one would obtain from the first-stage regression. The reason is that the multilevel model is able

to pool information across years if the data suggest that dwi,t in those years are generated by a

similar process. Consider the meaning of the parameter v�2 . If the unemployment rate were the

same in years t and s and v�2 ≈ 0, then from equation (3) it follows that �2t ≈ �2s , which is to

say that the variance of wage changes in years t and s is the same. If these variances are equal,

we can estimate them more precisely by pooling the data from years t and s to estimate the single

variance that applies to both years. Alternatively, if v�2 is very large, the implication is that even

7



if the unemployment rate is the same in years t and s we have no reason to think that �2t and �2s

should be related. Therefore, we should estimate �2t and �2s separately without pooling the data.

In between these extremes, the model can partially pool the data across years by down-weighting

the data from year s when estimating �2t .

The amount of pooling that actually occurs in estimating �2t depends on the value of v�2 which is

itself estimated at the same time. This is possible because the likelihood depends on the parameters

of both levels of the model. If the data do not call for pooling, low values for v�2 have low likelihood

because the data require (relatively) large errors in equation (3) or require that equation (1) be fit

with similar variances, which is at odds with the data. Conversely, if the data call for pooling, high

values of v�2 have low likelihood because the errors in equation (3) are small so the likelihood can

be raised by reducing v�2 . By following this logic, the multilevel model is able to pool data across

years to the extent called for by the data. In section 3.2.1 we discuss exactly how much sharper

our estimates are as a result of this partial pooling.

By including the unemployment rate in equation (3), we allow the model to attribute some of

the differences in �2t across years to changes in the unemployment rate. If the unemployment rate

explains some of the variation in �2t , then we can tighten our estimate of v�2 . Since equation (3) is

our prior for estimating �2t , a lower value of v�2 implies a sharper prior on �2t . This prior, which is

itself estimated from data across years, is the mechanism through which the model is able to use

information from other years to inform the estimate of �2t . When the prior becomes more precise, it

has a larger effect on the estimate of �2t and more information is pooled across years. So if equation

(3) fits better, v�2 falls and more information is pooled. In effect, the inclusion of predictors, such

as the unemployment rate, in equation (3), allows the model to identify dimensions on which we

expect �2t to differ between years and therefore pool information more effectively.
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2.1.1 Prior Distributions

We need to specify prior distributions for �, 
, �, v� and v�2 . Since the first three are regression

coefficients, it is natural to use the non-informative (reference) priors

p(�) ∝ 1 (4)

p(
) ∝ 1 (5)

p(�) ∝ 1 (6)

There is sufficient sample size at each level of the model to make the posterior distribution proper.

In the context of an ordinary (single-level) linear regression, the usual choice for a non-informative

reference prior for the variance v of the error term is p(v) ∝ v−1. In the context of multilevel models,

however, Gelman (2006) demonstrates that this prior places infinite mass near v = 0, resulting in

an improper posterior distribution. The same author constructs a proper, conditionally-conjugate

prior distribution using the folded-noncentral-t family, but also notes that the improper prior dis-

tribution p(v) ∝ v−1/2 is usually a reasonable choice when there is sufficient data. In the generic

language of multilevel modeling, each set of observations that are drawn from the same distribution

is referred to as a group. As we have 25 years of data, we therefore have 25 groups. Specifically,

Gelman shows that for three or more groups, p(v) ∝ v−1/2 yields a proper posterior, but this prior

will also introduce a unreasonable amount of bias for fewer than six groups. Since we have 25

groups, this is not an issue for our model, and we follow Gelman’s recommendation and use the
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prior distributions

p(v�) ∝ v−1/2� (7)

p(v�2) ∝ v−1/2
�2 . (8)

2.1.2 Estimation

We use a Gibbs sampler to draw from the posterior distribution of the parameters of the model.

We partition the parameter space into blocks corresponding to �, �, 
, v�, �2, �, and v2� and

sample each block in turn. Many of the sampling steps reduce to drawing from an ordinary linear

regression. Appendix B contains details on the estimation methodology.

2.2 Results

mean 5% 25% 50% 75% 95%

�age −0.0014 −0.0016 −0.0015 −0.0014 −0.0012 −0.0011
�edu 0.0029 0.0019 0.0025 0.0029 0.0033 0.0038


constant 0.0668 0.0428 0.0574 0.0666 0.0765 0.0907

unemp −0.6332 −0.9921 −0.7762 −0.6311 −0.4913 −0.2733
v� (×1000) 0.2203 0.1018 0.1544 0.2039 0.2666 0.3970

�constant 0.0499 0.0360 0.0444 0.0500 0.0555 0.0638
�unemp 0.4204 0.2150 0.3365 0.4200 0.5043 0.6319
v�2 (×1000) 0.0850 0.0461 0.0631 0.0791 0.0996 0.1436

Table 1: Posterior means and quantiles for model parameters.

Table 1 shows the posterior means and quantiles of the parameters of our model. The posterior

mean and median of �unemp are both 0.42 and the 90% error band extends from 0.22 to about 0.63.

�unemp can be thought of as the slope of a least squares regression of �2t on the unemployment rate.

As such, a positive coefficient implies a positive correlation.
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Figure 1: The top panel shows the unemployment rate. The bottom panel shows the posterior
median of �2t . The dashed lines show the 5%, 25%, 75%, and 95% quantiles from the posterior.

We now further document the correlation between wage volatility and the unemployment rate.

When we draw from the model’s posterior distribution we also draw �2t and these estimates are

shown in Figure 1 along with the unemployment rate. For every posterior draw, we form the

time-series of �2t and calculate the correlation with the unemployment rate. The median value of

these simulated correlation coefficients is 0.61 and the 90% error band extends from 0.53 to 0.69.

We believe that this is the clearest way of viewing the positive relationship between �2t and the

unemployment rate and it is this quantity that we seek to decompose below.

To highlight the positive correlation between these two series, Figure 2 shows a scatter plot of

the posterior median of the �2t against the unemployment rate. The vertical bars in the figure are

90% error bars for �2t . The figure also shows posterior draws of the regression line from equation

(3). The logic of the multilevel model is that we parameterize the prior distribution on �2t and
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Figure 2: Scatter plot of posterior median of �2t against the unemployment rate in year t. Year
labels are placed at the posterior median of �2t and vertical bars extend from the 25% to 5%
quantiles and from the 75% to the 95% quantiles. The regression lines are draws from the posterior
distribution of �.
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equation (3) represents the parameterization of this prior. The difference between the points in the

scatter plot and the sample of regression lines is that the regression lines show the variation in the

prior on �2t and the scatter plot shows the estimated values of �2t , which are a compromise between

the data and the prior.

We now briefly discuss some other features of our estimation results. 
unemp is estimated to be

negative, which implies that real wage growth is counter-cyclical. In the first-level of the model,

the demographic effects show that wage growth declines with age and increases with education.

2.3 Relation to Previous Work

From the estimated relationship between the unemployment rate and �2t , we can develop a sense

of the changes in wage volatility over the business cycle with the following back of the envelope

calculation. Over the course of a typical business cycle in the United States, the unemployment

rate fluctuates by roughly 3 percentage points. Our estimate of �unemp then implies that �2t will

increase by 0.013 as the economy moves from the peak of the cycle to the trough.

Many readers will compare our results to the work of Storesletten et al. (2004). Those authors

use data on the income of households inclusive of transfers while we use wages of household heads

so our results are not directly comparable to theirs. Bearing these differences in mind, one might

still ask if our results are plausible in comparison to theirs. Their results imply that the variance

of the first-difference in household earnings increases by about 0.041 as the economy moves from

expansion to contraction.6

To facilitate the comparison of our results to theirs, we also estimate the model using the labor

income as data instead of wages. All other features of our analysis remain the same. In this case,

6Appendix C explains how we reach this conclusion from their results.
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the posterior mean of �unemp is 1.14 with a 90% error band extending from 0.76 to 1.54. Performing

the same back of the envelope calculation as above produces a difference in income volatility of

0.034 as the unemployment rate increases by 3 percentage poitns. Given the important differences

between their methodology and data and ours, we do not find it surprising that we obtain somewhat

different results.7 In particular, their analysis incorporates information about the Great Depression,

which is to say that their sample includes larger fluctuations in the unemployment rate than ours

does. In light of this difference, the fact that they find a bigger difference between expansions and

contractions is perhaps in line with our finding.

2.4 Impact of Measurement Error

The PSID data on wages are surely affected by measurement error so it is important to consider

how our results are affected. Suppose we measure dwi,t = d̂wi,t + "i,t where d̂w is the true wage

growth and " is measurement error distributed i.i.d. normal with some mean and variance, ve. Then

it follows from equation (1) that �2t = �̂2t + v", where �̂2t is the variance of d̂wi,t. So measurement

error of this type will shift the intercept in equation (3), but �unemp is not affected. More generally,

if the extent of measurement error varies over time it will affect our result to the extent that it

covaries with the unemployment rate.

2.5 Wage Volatility Over the Business Cycle

One way to assess the role of business cycle fluctuations in driving our finding of a positive correla-

tion between the unemployment rate and wage volatility is to compare years that are close in time

7The difference in methodology is that they look at the cross-sectional dispersion in earnings across cohorts who
have lived through different macroeconomic experiences while we look at the dispersion of the first-differences in
booms and recessions. The difference in data is that they look at total household income inclusive of transfers, while
we look at just the labor income of male heads.
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but differ in aggregate conditions. To do so, we use the NBER business cycle dates to identify peaks

and then choose the years with the lowest and highest unemployment rates between peaks.8 The

pairs of peaks and troughs we identify are (1969, 1971), (1973, 1975), (1979, 1982) and (1989, 1992).

Using posterior draws of �2t , we calculate the difference in �2t for each pair and then compute the

average of these differences across pairs. Table 2 shows the distribution of these average differences

and the mean and median are both 0.0088. We also explore the increase in wage volatility per unit

change in the unemployment rate. For each of the four pairs of years, we compute the ratio of the

change in �2t over the change in the unemployment rate over those years. We then average over

the four business cycles. We calculate the posterior distribution of this measure of the slope of the

wage-volatility-unemployment relationship. The results in Table 3 show that the mean and median

are both 0.31, which is comparable to the estimate of �unemp = 0.42 that we obtained from the

full sample. Thus we believe that there are important changes in wage volatility over the business

cycle.

mean 5% 25% 50% 75% 95%

0.0088 0.0054 0.0074 0.0088 0.0102 0.0122

Table 2: Posterior distribution of difference in �2t between paired high- and low-unemployment
years. Years are selected based on the highest and lowest unemployment rates between NBER
peaks.

mean 5% 25% 50% 75% 95%

0.31 0.19 0.26 0.31 0.36 0.43

Table 3: Posterior distribution of Δ�2t /Δut between paired high- and low-unemployment years.
Years are selected based on the highest and lowest unemployment rates between NBER peaks.

8As we work with annual data, we treat 1980 to 1982 as a single recession.
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3 Decomposition

We now investigate the forces that drive the positive correlation between wage volatility and the

unemployment rate. In section 3.1 we layout our methodology for decomposing the correlation.

The first key step in this decomposition is that we use observed covariates to partition the sample

into groups within each year. We can then decompose the total variance of wage growth in a year

into variances within groups and the variance between groups. Movements in the total variance over

years are then driven by movements in these within- and between-group variances as well as shifts

in the group sizes. The second key step is to model (statistically) the mean and variance of wage

growth within each cell of the partition in each year. Doing so allows us to capture the posterior

uncertainty about the components of the decomposition and therefore assess the uncertainty about

the decomposition results themselves.

3.1 Methods

Suppose that we can partition individuals into J groups within each year based on observed co-

variates. When we apply this methodology below we form two groups according to whether an

individual has experienced any unemployment spells in the preceding two years and so J = 2, but

we choose to keep our discussion in general terms to emphasize the fact that this methodology

could be applied to any partition of the data.

3.1.1 Decomposing the Correlation

We now explain our method for decomposing the correlation between wage volatility and the

unemployment rate. Given our partition of the data, suppose we know the fraction of individuals

in each group and the mean and variance for wage growth in each group. We can then construct
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the total variance of wage growth across all individuals as

�2t =
J∑
j=1

�j,t�
2
j,t +

J∑
j=1

�j,t(dwj,t − dwt)2 ≡Wt +Bt (9)

where

�2j,t =
1

nj,t

∑
i∈Ij,t

(dwi,t − dwj,t)2

denotes the within-group variances, and dwj,t is the within-group mean. In the above, nj,t is the

number of individuals in group j in year t and �j,t = nj,t/
∑

j nj,t is the fraction of individuals in

group j in year t. Ij,t refers to those i in cell j in year t.

As it is customary, we call the two sums in equation (9) within- and between-group variances.

There are two forces that can raise the contribution of the within-group variance. First, the group

fractions, �j,t might shift towards groups with higher within-group variances. Second, the within-

group variances might increase. In order to separate out these two effects, we further decompose

the within-group variance term. We can write Wt as

Wt =
∑
j

�̄j �̄
2
j +

∑
j

�̄jd�
2
j,t +

∑
j

�̄2jd�j,t +
∑
j

d�j,td�
2
j,t︸ ︷︷ ︸

et

(10)

where �̄j and �̄2j are time-series averages for �j,t and �2j,t, respectively, and d�j,t and d�2j,t are

deviations from these. Equation (10) is exact, but we can think of the last term as the second-

order error term of a linear approximation, so we will denote it by et.

Our goal is to understand the correlation between �2t and the unemployment rate, call it ut.

To derive our decomposition, substitute equation (10) into equation (9) and take the covariance of
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both sides with respect to ut to arrive at

Cov(�2t , ut) =
∑
j

Cov
(
�̄jd�

2
j,t, ut

)
+
∑
j

Cov
(
�̄2jd�j,t, ut

)
+ Cov(et, ut) + Cov(Bt, ut). (11)

As we are interested in the correlation of �2t and ut, we can divide both sides of equation (11) by the

time-series standard deviations of �2t and ut. The resulting expression decomposes the correlation

coefficient into a sum of components. We find it useful, however, to normalize both sides by the

correlation coefficient itself to express the decomposition in terms of the fraction of the correlation

explained by each component. Therefore, we divide both sides of (11) by Cov(�2t , ut). In the end

we have

1 =
∑
j

Cov
(
�̄jd�

2
j,t, ut

)
Cov(�2t , ut)︸ ︷︷ ︸

“d�2
j ”

+
∑
j

Cov
(
�̄2jd�j,t, ut

)
Cov(�2t , ut)︸ ︷︷ ︸

“d�j”

+
Cov(et, ut)

Cov(�2t , ut)︸ ︷︷ ︸
error

+
Cov(Bt, ut)

Cov(�2t , ut)︸ ︷︷ ︸
between

. (12)

We use this equation to decompose the correlation of �2t and ut. With this decomposition, we can

study the contribution of each d�2j,t and each d�j,t to the correlation of �2t and ut. However, since

the group fractions are constrained to sum to one, it is not possible to consider changing just one

�j,t in isolation. Therefore we analyze the sum of all the d�j terms to study their total contribution.

Notice that the sum of the d�j terms is exactly the composition effect we mentioned above.

In order to calculate the right-hand side of equation (12), we need �2t . Given our knowledge of

the within-group means and variances and the fraction of individuals in each group, we use equation

(9) to calculate �2t .
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3.1.2 Summarizing Uncertainty

Our decomposition can be applied directly to sample moments computed from the data. Using

sample moments, however, does not give any sense of the uncertainty surrounding the results.

To the extent that we partition the sample into small groups, our uncertainty about the sample

moments can be substantial so it is important to account for this uncertainty.

In order to summarize the uncertainty surrounding the decomposition, we extend our statistical

model to estimate the within-group means and variances. We then draw these means and variances

from the posterior distribution and use these draws to compute the right-hand side of equation (12).

With this procedure we can understand how our posterior uncertainty about the group means and

variances translates into uncertainty about the sources of the correlation between �2t and ut.

In this procedure, we get a new set of estimates for �2t based on the group-level estimates

and equation (9). Since we partition the data, the hyperparameter regressions exert a slighly

different influence on the variances compared to the results in section 2. However, we find that

these differences are inconsequential for the correlation with the unemployment rate. In fact, we

compute the correlation between �2t and then unemployment rate for both models and find the

posterior mean correlation coefficients differ by just 0.0015.

3.1.3 Extending the Model

We now extend our model to the mean and variance of wage growth within each cell of the partition.

For an individual i who is in cell j of the partition in year t, the extended model specifies the
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following distribution for wage growth

dwi,t ∼ N
(
Xi,t� + �j[i,t],t, �

2
j[i,t],t

)
(13)

�j,t ∼ N
(
Zt
j , v�j

)
∀j (14)

�2j,t ∼ N
(
Zt�j , v�2

j

)
, �2j,t > 0 ∀j. (15)

Equation (13) states that the change in an individual’s log wage, dwi,t is normally distributed.

As before, the mean of this distribution depends on the individual’s demographic characteristics

and the coefficients on these demographic characteristics are assumed to be common across groups

and across years. In addition, the mean change in wages varies over time and across groups with

the �j[i,t],t term. The notation j[i, t] refers to the group index for the group that individual i is a

member of at time t. We also allow the variance of the innovation in wages to vary over time and

across groups as captured by the �2j[i,t],t term. Equations 14 and 15 model the within group means

and variances, respectively. Again, these components are related to aggregate conditions captured

by Zt. Priors are independent for each group, and otherwise have the same form as in section 2.1.1.

3.2 Decomposing by Unemployment Experience

We apply our decomposition method to the PSID data partitioned by unemployment experience.

In particular for an individual i at time t, dwi,t refers to wage growth between years t − 1 and t.

We assign an individual to the “no unemployment” group if this individual reports zero hours of

unemployment for both years t− 1 and t. Those reporting positive hours of unemployment in year

t− 1 or year t are assigned to the “unemployment” group.

As mentioned above, one advantage of the multilevel model is that it is able to partially pool
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information across years to produce sharper estimates than would be obtained without pooling.

The role of equations (14) and (15) is to identify those years for which we expect the �’s and �’s to

be similar. In section 2 we allowed the model to capture comovement between the �’s and �’s and

the unemployment rate. In this context, however, we noticed that there is evidence of an upward

trend in the variance within the unemployment group. Therefore we include a linear time trend in

the vector of aggregate conditions, Zt, for both groups.

3.2.1 Decomposition Results

Table 4 shows the results of our decomposition. The first row of the table shows the posterior

mean for the fraction of the correlation explained by each component. Here, one can see that

countercyclical fluctuations in the within group variances contribute 73% of the correlation with the

unemployment group contributing the bulk of this (55%). Most of the remaining correlation comes

from the composition effect that arises because the unemployment group has a larger variance at

all times and the size of this group increases during a recession. This composition effect contributes

25% of the total. Finally, the error in the decomposition and the between variance contribute next

to nothing. The table also shows quantiles for these fractions and one can see that the posterior

uncertainty does not change the overall message.

d�2no unemp d�2unemp composition error between

mean 0.1809 0.5518 0.2466 0.0026 0.0181
5% 0.0842 0.4739 0.2086 −0.0178 0.0047
25% 0.1438 0.5201 0.2284 −0.0052 0.0114
50% 0.1836 0.5508 0.2437 0.0027 0.0170
75% 0.2199 0.5837 0.2620 0.0108 0.0236
95% 0.2711 0.6318 0.2946 0.0220 0.0351

Table 4: Decomposition of correlation between wage volatility and the unemployment rate into
components generated by within-group variances, between-group variances, the composition effect
as group sizes change and a residual.
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We view the results in Table 4 as our main results and we now present additional findings from

the extended model to explain the forces that drive our results. Figure 3 plots our estimates of �2j,t

for both groups. The top panels show �2j,t plotted against the unemployment rate and displayed on

a common scale. From these plots, one can see that the comovement with the unemployment rate

is much stronger in the unemployment group. While the covariance is low in the no unemployment

group, this group is about four times the size of the no unemployment group and so this covariance

is scaled up by a factor of about 0.8 when the term d�2j,t is multiplied by �̄j in equation (12) vs 0.2

for the unemployment group.

Figure 3 also shows that the variance �2j,t is generally larger in the the unemployment group

regardless of aggregate conditions. As the size of this group grows during a recession, the total

variance, �2t , increases. This is the source of the composition effect.

One way of understanding the benefit of using the multilevel model is to compare the posterior

variance of the �’s to the posterior variance that would result without any pooling (e.g. from a

model with a single level — we specify the details of this model in appendix B.3). This comparison

shows how much posterior uncertainty is eliminated by partially pooling information across years.

Figure 4 compares these variances year by year. For both groups, the multilevel model tightens

our estimates of the �j,t. The fact that there is a larger benefit of pooling in the no unemployment

group reflects the fact that there are fewer observations in this group and so information contained

in the prior has a larger impact on the posterior.

4 Conclusion

Our results show that wage volatility increases with the unemployment rate and we have docu-

mented the role of unemployment episodes in generating this comovement. This analysis points to
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Figure 3: Posterior medians of �2j,t for no unemployment group (left panels) and unemployment
groups (right panels) against the unemployment rate (top panels) and year (bottom panels). The
vertical bars extend from the 25% to 5% quantiles and from the 75% to the 95% quantiles.
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Figure 4: Posterior variance of �j,t by year for no unemployment group (top panel) and unemploy-
ment group (bottom panel). Each panel has two lines with the dashed line showing the posterior
variance without pooling and the solid line showing the posterior variance from the multilevel
model.
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cyclical changes in the volatility of wages among those experiencing unemployment as an important

source of countercyclical wage volatility.

The methods we have used in this paper can be applied to different partitions of the data to

decompose this variance further, which may help us understand the economic mechanisms behind

these findings. While our ability to partition the data is limited by the number of observations

within cells, using multilevel modeling techniques to appropriately pool information across cells

and switching to larger datasets will allow us and other researchers to study finer partitions of the

data.

The persistence of wage shocks is an important determinant of the ability of households to self

insure against these shocks. In this paper, we have assumed that wages are a random walk. To

investigate the persistence of these shocks and how the persistence of shocks might change over

the business cycle, our methods would have to be extended to include a richer time-series model of

wage dynamics.

Finally, search-theoretic models of the labor market provide a set of predictions for wage distri-

butions and the impact of unemployment spells on wages and these models have now been extended

to incorporate aggregate fluctuations. Reconciling our findings with these predictions would bring

us closer to understanding the theoretical links between aggregate and idiosyncratic risk.
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Appendix

A Data Appendix

From the PSID, we use data on the annual labor income of male heads and annual hours of work

to construct annual wages. In addition, we use data on age and education as covariates. We only

include those heads that are between 25 and 60 years of age in both years over which the change

in wages is calculated. We drop those with allocated labor income, students, business owners,

self-employed individuals, and those with zero hours or income. We trim the top 1% of the income

distribution in each year to remove the effect of changes in top-codes across years. Finally, we drop

those with wages less than half of the federal minimum wage in that year and we drop those who

work fewer than 320 hours in a given year. Our results on income changes in section 2.3 are based

on the same sample, but we use annual labor income without dividing by annual hours.

To construct the unemployment-experience partition, we use data on annual hours of unem-

ployment. Let HU
t be the hours of unemployment in year t. The unemployment group at time t

includes those individuals who report HU
t > 0 or HU

t−1 > 0. The no-unemployment group is those

individuals for whom HU is equal to zero for both years.

For aggregate data, we use the national unemployment rate reported by the BLS and take the

average value of the monthly series within each year.

26



B Methodological Appendix

B.1 The Gibbs sampler

Sampling from the posterior of our model is straightforward and follows Markov Chain Monte Carlo

techniques that are commonly used in Bayesian statistics. There are several alternative methods

for sampling from the posterior (see Gelman et al. (2004) for a summary). We found that a block

Gibbs sampler is relatively fast, easy to implement and has good mixing properties (see Section B.2

for a discussion of convergence). A brief summary of the Gibbs sampler we used is given below.

Our model can be summarized by equations (13), (14), and (15). This model collapses to that

in section 2 if one sets J = 1 with j[i, t] = 1 for all i and t. We partition the parameter space into

blocks corresponding to �, �, 
, v�, �2, �, and v2�.

B.1.1 Conditional posterior sampling for �, �, 
, and �

Each of these parameters can be thought of as the coefficient � in a linear regression

b ∼ N(A�,Φ) (16)

with a known variance matrix Φ = diag(�) and a given prior � ∼ N(Π). Table 5 shows the mapping

between (16) and the model parameters. The conditional posterior distribution is normal, and can

be constructed and sampled from in a straightforward manner (Gelman et al., 2004, Sections 14.6

and 14.8).
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� b A � Π

�
[
dwi,t − �j[i,t],t

]
i,t

[
Xi,t

]
i,t

[
�2j[i,t],t

]
i,t

flat

�j
[
dwi,t −Xi,t�

]
i,t:j[i,t]=j

1
[
�2j[i,t],t

]
i,t:j[i,t]=j

v�


j � Z v�,j flat
�j �2 Z v�2,j flat

Table 5: Conditional posterior sampling for �, �, 
, and �

B.1.2 Conditional posterior sampling for the group-level variances v� and v�2

As is well known, if ℎk ∼ N(0, v) (iid, k = 1, . . . ,K), then the likelihood is

p(v ∣ ℎ) ∝ v−K/2 exp

(
−
∑K

k=1 ℎ
2
k

2v

)

As discussed above (see Section 2.1.1), our prior for hyperparameter variances is p(v) ∝ v−1/2.

Then we sample from the conditional posterior using

v ∼ Inverse-Gamma

(
K − 1

2
,

∑K
k=1 ℎ

2
k

2

)
(17)

Table 6 shows the correspondences between (17) and the model parameters.

ℎ v

�j,⋅ − Z
j v�,j
�2j,⋅ − Z�j v�2,j

Table 6: Conditional posterior sampling for v�, v2�
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B.1.3 Conditional posterior sampling for �2

Let us fix j and t, and only consider the observations in Ij,t = {(i′, t′) : t′ = t, j[i′, t′] = j}. Given (8)

and (15), the conditional posterior for �2j,t is

p(�2j,t ∣ r, �j,t, Zt, �j) ∝
(
�2j,t
)− ∣Ij,t∣

2 exp

(
−
∑

(i,t)∈Ij,t(dwi,t −Xi,t� − �j,t)2

2�2j,t

)

exp

(
−

(�2j,t − Zt�j)2

2v�2,j

)
1�2

j,t≥0
(18)

This does not correspond to any commonly used family of probability distributions, so we can only

sample from it using general tools. After experimenting with rejection methods and obtaining poor

acceptance rates, we settled on the slice sampling algorithm of Neal (2003) with excellent results.9

B.2 Convergence of the posterior sampler

We monitor the convergence of the Gibbs sampler by calculating the univariate potential scale

reduction factor (PSRF) for each parameter value (Gelman and Rubin, 1992; Brooks and Gelman,

1998; Gelman et al., 2004). The PSRF uses variances within and between the parallel chains to

estimate the factor by which the scale of the current posterior distribution for a given parameter

might be reduced if we were to obtain a sample of infinite size. In practice, values below 1.1 are

acceptable, unless very high precision is required.

Calculating the PSRF as the chain evolves for the second half of the chain is also a good way

to monitor mixing. Figure 5 shows the evolution of the PSRF, which suggests that the mixing is

excellent. We found that the mixing was greatly enhanced by subtracting the column means from

X.

9In particular, we used the “stepping out” variant of the algorithm from Neal (2003, Figures 3 and 5).
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B.3 The non-hierarchical model

We estimate a version of the model without hierarchical regressions for comparison.

dwi,t ∼ N
(
Xi,t� + �j[i,t],t, �

2
j[i,t],t

)
p(�) ∝ 1

p(�j,t) ∝ 1 ∀j, t

p(�2j,t) ∝ (�2j,t)
−1 ∀j, t

It is very straightforward to sample from the posterior of this model: first we sample � ∣ �, �2, X (see

Section B.1.1), then sample from �j,t, �
2
j,t ∣ �,X by sampling from the posterior of the regression

of dwi,t − �j[i,t],t on 1 with unknown variance and a reference prior for each j, t.

C Comparison to Storesletten et al. (2004)

The purpose of this appendix is to express Storesletten et al.’s results in the same terms as ours

to show that the two are not vastly at odds with one another. Throughout, we take their results

reported in their Table 2, Panel E because these results are calculated on the assumption that

business cycles are defined by the unemployment rate as opposed to GNP growth or NBER cycles

and thus closest to our work.

Storesletten et al. specify the following process for the residual of log earnings of individual i

uit = �i + zit + "it

zit = �zi,t−1 + �it,

31



where �i ∼ Niid(0, �2�), "it ∼ Niid(0, �2"), and �it ∼ Niid(0, �2E) in an expansion and �it ∼

Niid(0, �2C) in a contraction. In this notation, our interest is in computing the variance of Δuit,

which is

Var [Δuit] = (�− 1)2 Var [zi,t−1] + Var [�it] + Var [Δ"it]

Clearly, as � → 1, the first term on the right-hand side goes to zero. This is relevant because

Storesletten et al. estimate � to be close to 1. For now, suppose � = 1, but we return to the issue

below. Since " is distributed identically over time, the Var [Δ"it] term is a constant. Thus, the

difference in Var [Δuit] between an expansion and a contraction is just the difference in Var [�it] or

�2C − �2E . Using Storesletten et al.’s estimates, this difference is 0.2462 − 0.1382 = 0.041. In our

back of the envelope calculation in section 2.3 we found a difference of 0.013 for wages and 0.034

for earnings.

In the calculation above we ignored the term (�− 1)2 Var [zi,t−1], which will be countercyclical

as the variance of z is countercyclical. As argued above, this term is small. To see this, consider

two extreme economies, one that is always in an expansion and one that is always in a contraction.

The unconditional variance of z in the expanding economy is then �2E/(1−�2) and one can similarly

calculate the unconditional variance of z in the contracting economy. The difference between these

two variances is an upper bound on the cyclical fluctuations in Var(z). Using this upper bound,

we conclude that the contribution of the term (�− 1)2 Var [zi,t−1] is at most 0.0013 or 3% of the

0.041 figure we found above.
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