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Abstract
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the US, where it was shown that errors might indeed play a non-negligible role. Second, we
aim to provide the academic and policy community with estimates of the accuracy of com-
monly used types of data on educational attainment: administrative files, self-reported
information close to the date of completion of the qualification and recall information ten
years after completion. Third, by using the unique nature of our data, we assess how the
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1 Introduction

This paper considers the identification and estimation of the returns to educational qualifi-

cations when educational attainment is potentially misreported, with an application to UK

data.

The measurement of the return to education, that is of the individual wage gain from

investing in more education, has become probably the most explored and prolific area in labour

economics. Policymakers too have shown increasing interest, with estimated returns feeding

into debates on national economic performance, educational policies, or the public funding of

education. Reliable measures of the impact of education on individual earnings are in fact

needed to establish whether it is worthwhile for individuals to invest in more education (and in

which type), to compare private and social returns to education, or to assess the relative value

that different educational qualifications fetch on the labour market. For an extensive discussion

of the policy interest of the individual wage return from education, see Blundell, Dearden and

Sianesi (2004).

As to the measurement of education, a first issue is whether we can summarize it in the

single, homogeneous measure of years of schooling. Although particularly convenient, this ‘one-

factor’ model is a priori quite restrictive, in that it assumes that the returns increase linearly

with each additional year, irrespective of the level and type of educational qualifications the

years refer to. When interested in a wide range of education levels with potentially very

different returns, a more adequate framework is the ‘multiple-factor’ model, in which different

educational levels are allowed to have separate effects on earnings. An interesting sub-case is

the single-treatment specification, which focuses on the return to a specific educational level,

such as undertaking higher education compared to not doing so.1

In the schooling system in the US, grades generally follow years, and it has long been argued

that the returns to an additional year are reasonably homogeneous (see for example Card,

1999). In the UK and other European countries, however, there are alternative nationally-based

routes leading to quite different educational qualifications, and the importance of distinguishing

between different types of qualifications is widely accepted. Blundell, Dearden and Sianesi

1Another limitation of using years of schooling as a measure of educational attainment is that whilst in the
UK and the US students have increasingly been studying part-time, most surveys do not provide information on
the mode of study, and only ask about years of full-time study or the age a person first left full-time education.
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(2005) highlight the potential shortcoming of the ‘one-factor’ model when applied to the UK’s

educational system, in which individuals with the same number of years of schooling have quite

different educational outcomes. Not only would this obfuscate the interpretation of the return

to one additional year, but imposing equality of yearly returns across educational stages was

found to be overly restrictive.

A second important issue as to the measurement of education – and the one object of

this paper – is the possibility of errors in recorded education and its consequences on the

estimated returns. Misrecorded education could arise from data transcript errors, as well as

from misreporting: survey respondents may either lie, not know if the schooling they have had

counts as a qualification or simply not remember.

With the continuous years-of-schooling measure of education, standard results based on

classical measurement error show that OLS estimates are downward biased and that appropriate

IV methods applied to the linear regression model provide consistent estimates. Indeed, the

trade-off between attenuation bias due to measurement error and upward bias due to omitted

variables correlated with both schooling and wages (the so-called ‘ability bias’) has been at the

heart of the early studies on returns to years of schooling. The received wisdom has traditionally

been that ability bias and measurement error bias largely cancel each other out (for a review

see in particular Griliches, 1977, and Card, 1999; for a recent UK study see Bonjour et al.,

2003).

With the categorical qualification-based measure of education, however, any measurement

error in educational qualifications will vary with the true level of education. Individuals in

the lowest category can never under-report their education level and individuals in the top

category cannot over-report, so that the assumption of classical measurement error cannot

hold (see, for example, Aigner, 1973). In the presence of such non-classical measurement error,

OLS estimates are not necessarily downward biased, so that the cancelling out of the ability and

measurement error biases cannot be expected to hold in general. Moreover, the IV methodology

cannot provide consistent estimates of the returns to qualifications (see, for example, Bound,

Brown and Mathiowetz, 2001). The implications of this problem, although of longstanding

concern amongst researchers, were recently discussed by Kane, Rouse and Staiger (1999) for

the estimation of returns to education in the US.

Two approaches have been developed to overcome the bias induced by misreported educa-
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tional qualifications. A first possibility is to derive bounds on the returns by making a priori

assumptions on the misclassification probabilities (see e.g. Manski, 1990, and Molinari, 2004).

In most instances, such restrictions on the nature of reporting errors can be obtained by look-

ing at results from previous research and/or behavioural theories that seem reasonable for the

phenomenon under investigation. This approach only allows partial identification of the para-

meters of interest, and the qualitative information this would provide for a study on returns to

qualifications would need to be established on a case-by-case basis.

The alternative approach is more demanding in terms of data requirements but, if feasible,

it allows point identification of the returns. An additional appealing feature is that it provides

direct estimates of the measurement error in the educational measures, which may often be

of independent interest. What is needed is (at least) two categorical reports of educational

qualifications for the same individuals, both potentially affected by reporting error but inde-

pendent of each other. Kane, Rouse and Staiger (1999) and Black, Berger and Scott (2000)

have developed a procedure to simultaneously estimate the returns to qualifications and the

distribution of reporting error in each educational measure. Repeated measurements on educa-

tional qualifications are typically obtained by matching complementary datasets, for example

exploiting administrative records and information self-reported by individuals.

To date, empirical evidence on the importance of these issues is restricted to the US, where

it was in fact shown that measurement error might play a non-negligible role, as we review in

the section below. For the UK there are no estimates of the returns to educational qualifications

that adequately correct for measurement error. This is of great concern, in view of the stronger

emphasis on returns to discrete levels of educational qualifications in the UK and given the

widespread belief amongst UK researchers and policymakers that ability and measurement

error biases still cancel out (Dearden, 1999b, Dearden et al., 2002, and McIntosh, 2004).

This paper provides a number of new contributions of considerable policy and practical

relevance, as well as of methodological interest.

First, we provide reliable estimates of the returns to educational qualifications in the UK that

allow for the possibility of misreported attainment. To this end we use an extremely rich dataset

- the National Child Development Survey (NCDS) - which allows us both to directly control for

ability and family background influences and to exploit a number of repeated measurements of

individual educational attainment.
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Second, we identify the extent of measurement error in three different types of data sources

on educational qualifications: administrative school files, self-reported information very close

to the dates of completion of the qualifications and self-reported recall information ten years

later. We thus provide the academic and policy community with estimates of the relative

reliability of commonly used types of data. This represents a new piece of evidence for the UK,

which will allow one to check the robustness of current estimates of returns to the presence of

misreported qualifications. Knowing the extent of misreporting also has obvious implications

for the interpretation of other studies that use educational attainment as an outcome variable

or for descriptive purposes.

Our third contribution is to explore how the biases from measurement error and from

omitted variables interact in the estimation of returns to educational qualifications in the UK.

The aim is to produce some simple calibration rules to allow policy makers to use nationally

representative data sets such as the Labour Force Survey to estimate returns to qualifications.

These data totally rely on recall about the qualifications individuals have and do not contain

any information on individual ability and family background.

Throughout we explore a unified general framework for the study of the impact of misre-

ported treatment status on evaluation methods widely used in the literature. Mahajan (2004),

Lewbel (2004) and Molinari (2004) are the only examples we are aware of (see also Battistin

and Chesher, 2004).

The evaluation problem, that is the measurement of the causal impact of a generic ‘treat-

ment’ on an outcome of interest, can be fruitfully framed within the potential outcome frame-

work (for a review see Heckman, LaLonde and Smith, 1999). This set-up is both non-parametric

as well as of extremely general scope, and in particular it allows for arbitrarily heterogeneous

individual returns. Our discussion of the methods used to address measurement error in educa-

tional qualifications is thus of far wider interest, since the same issues arise in any application

looking at the effects of a binary or categorical variable. Examples include: the returns to

work-related training, where the occurrence of training is typically self-reported by individuals

who are asked to recall whether they have undertaken any course for work purposes; the effects

of programmes (or policy schemes) in which participation (or eligibility) is not recorded in

administrative data and the treatment status is obtained from survey respondents, who have

been typically shown to have rather poor recall or awareness of the kind of schemes they are
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in; the effects of government schemes where the researcher cannot directly observe or measure

actual take-up and has to ‘impute’ the treatment status; or a medical study of the effectiveness

of a new drug when patients may fail to take it or else may follow alternative treatments.

In order to focus fully on the potential biases arising from measurement error, in this paper

we use the uniquely rich data from the 1958 British NCDS cohort to avoid issues related to

omitted variables bias. In particular, in this work we only consider evaluation methods based

on the selection on observables (or conditional independence) assumption, and rely on Blundell,

Dearden and Sianesi (2005) who could not find any strong evidence of remaining selection bias

given the information available in that data.

The remainder of the paper is organized as follows. First, in Section 2 we start by reviewing

the evidence on measurement error and returns to educational qualifications. Section 3 sets out

the general evaluation framework, while Section 4 allows for the possibility of misclassification

in the treatment status. In Section 5 we show the consequences that such reporting errors

might have for the estimation of returns. The estimation strategies that we exploit to correct

for this bias are described in Section 6. Section 7 discusses how information in the NCDS will

allow us to implement this strategy under fairly weak assumptions on the nature of the data

collected. Estimates of the returns to educational qualifications in the UK that allow for the

possibility of misreported attainment are presented in Section 8, while Section 9 concludes.

2 The evidence so far

Whilst use of years of completed education has a long history in the US, for the UK most

authors prefer qualification-based measures of educational attainment. Recent examples include

Robinson (1997), Dearden (1999a,b), Blundell et al. (2000), Gosling, Machin and Meghir

(2000), Conlon (2001), Blanden et al. (2002), Dearden et al. (2002), Galindo-Rueda and

Vignoles (2003), McIntosh (2004) and Blundell, Dearden and Sianesi (2005).2

However despite the importance of schooling both as an outcome and as an explanatory

variable in applied research3, hardly any effort has been devoted to assessing either the accu-

racy of widely used survey reports of educational attainment in the UK, or the impact that

2For a review and summary of some recent work on returns to qualifications, see Sianesi (2003).
3Note, however, that the effect of misreporting when educational qualifications enter the right-hand-side or

the left-hand-side of a regression equation can be considerably different (see, amongst others, Hausman et al.,
1998). As we are interested in the estimation of returns, in what follows we will focus on the former case.
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misreporting might have on estimated returns to education.4 To date, the only work in the

latter direction is Dearden (1999b) and Dearden et al. (2000 and 2002), who however ignore

the non-classical nature of measurement error caused by misreporting of discrete qualifications

and conclude that measurement error bias and omitted ability bias largely cancel out in the

estimation of returns. Indeed, some recent work based on the UK Labour Force Survey (e.g.

McIntosh, 2004) at times appeals to this result.

As a starting point and a benchmark it is thus worth considering the evidence on categorical

education measures available for the US, most of which being provided by the study by Kane,

Rouse and Staiger (1999) (see also the work referred to by Card, 1999). Overall, misreporting

was found to be more likely to happen for low levels of qualification, with over-reporting being

more likely than under-reporting (see also Black, Sanders and Taylor, 2003) and events such

as degree completion being more accurately reported than completed years of college. Inter-

estingly, transcript measures were often found to be subject to at least as much – and at times

even more! – measurement error as self-reported survey measures.

With regard to their more specific findings, extensive measurement error was found in self-

reported measures for those completing less than 12 years of schooling (i.e. the high-school drop-

outs). As to bachelor’s degree attainment, they found that 95% of those with a degree reported

so accurately and less than 1% of those without a degree misreported having one, with self-

reported information being actually more accurate than information from administrative data.

As to years of college completed, however, both measures were found to be often inaccurate.

In particular, 6% of those with no completed years of college misreported to have completed

some, and 6% of those who had completed some college misreported to have completed none.

Estimates of returns that ignore such misclassification were found to be severly biased, either

upwards or downwards depending on the educational level of interest. Similarly, the application

in Lewbel (2004) points to seriously inaccurate transcript information as to degree attainment

and finds that allowing for misclassification has a considerable impact on estimated returns to

college, leading to around a 5-fold increase in the return to a degree.

4Ives (1984) only offers a descriptive study of the mismatch between self-reported and administrative infor-
mation on qualifications in the NCDS, finding serious discrepancies particularly for the lower-level academic
qualifications.
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3 The evaluation set-up

3.1 Potential outcomes framework

The measurement of the causal impact of a generic ‘treatment’ can be fruitfully framed within

the potential outcome framework.5 In the next section we extend such a framework to study the

consequences for the identification of causal effects of allowing measurement error in recorded

treatment status.

The specific evaluation problem we have in mind is the measurement of the returns to

educational qualifications – that is of the causal effects of qualifications on individual (log)

wages in the population of interest – when measurement error affects the reporting of education.

To ease the exposition, throughout this paper we consider the single treatment setting

with treatments defined by two different educational qualifications, denoted by D∗ = 1 and

D∗ = 0, so that the treatment status is binary. The generalization to the multiple-treatment

case proceeds along the same lines, but it is notationally more demanding. We thus study the

identification of the wage return of obtaining a qualification of interest (D∗ = 1 say for college),

relative to another qualification, where D∗ = 0 can denote a specific alternative (e.g. high-

school) or just the non-attainment of the qualification of interest (non-college in this example).

To ease the comparison with the general evaluation literature, we will often refer to individuals

with D∗ = 1 as the group of ‘participants’ (in the educational qualification of interest) and to

those with D∗ = 0 as the group of ‘non-participants’.

Letting Y1 be the wage if the individual achieved the qualification of interest and Y0 the wage

if the individual were not to achieve the qualification, the individual causal effect (or return)

of achieving the qualification is defined as the difference between the two potential outcomes,

β ≡ Y1− Y0. The realised individual wage can then be writtten as Y = Y0 + D∗β, with Y = Y1

if the individual is a participant and Y = Y0 if the individual is a non-participant. This set-up

is extremely general, in particular it does not assume that the returns to a given qualification

are homogeneous across individuals.6

Since no individual can be in two different educational states at the same time, either Y1

5For reviews of the evaluation problem see Heckman, LaLonde and Smith (1999) and Imbens (2004). For
the potential outcome framework, the main references are Fisher (1935), Neyman (1935), Roy (1951), Quandt
(1972) and Rubin (1974).

6Note however that for this representation to be meaningful, the stable unit-treatment value assumption
needs to be satisfied (Rubin, 1980), requiring that an individual’s potential outcomes as well as the chosen
education level are independent from the schooling choices of other individuals in the population.
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or Y0 is missing, which makes it impossible to ever observe the individual return β. Our more

modest though still challenging aim is to identify the average return in some population of

interest. A group which has traditionally received most attention in the evaluation literature

is the group of treated. In our case, the average effect of treatment on the treated (ATT)

represents the average return to education for those individuals who have chosen to undertake

the educational qualification of interest:

∆∗ ≡ E(β|D∗ = 1) = E(Y1 − Y0|D∗ = 1) = E(Y1|D∗ = 1)− E(Y0|D∗ = 1). (1)

This is the parameter of interest when the ‘treatment’ is voluntary, and is the one needed for a

cost-benefit analysis. Given that achievement of educational qualifications is voluntary, in this

paper we shall focus on the ATT, capturing the average payoff to individuals’ own educational

choices.7

3.2 Identification in the absence of misclassification

As to the identification of the ATT, the first term in (1) is observed, since E(Y1|D∗ = 1) =

E(Y |D∗ = 1) for individuals acquiring the qualification. The average unobserved counterfactual

E(Y0|D∗ = 1) needs however to be somehow constructed on the basis of some usually untestable

identifying assumptions.

As we aim to characterize the impact of measurement error in the reporting of D∗, in what

follows we will assume that the outcome-relevant differences in the composition of participants

and non-participants can purely be attributed to observable characteristics (selection on ob-

servables or conditional independence assumption), or, in other words, that D∗ is exogenous

given X:

Assumption 1 (Conditional Independence Assumption) Conditional on a set of observ-

able variables X, the educational choice D∗ is mean independent of the no-education outcome

Y0:

E(Y0|D∗, X) = E(Y0|X).

7An additional reason to focus on this parameter relates to the relative ease of its identification in the
available data. Identification of the average effect of treatment on the non-treated, or of the average treatment
effect requires in fact more restrictive assumptions and was found to be too demanding on the data we use (see
Blundell, Dearden and Sianesi, 2005).
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This assumption thus requires the evaluator to observe all those characteristics that jointly

affect the decision to acquire the qualification of interest and potential wages in the absence

of that educational investment. Its plausibility for our empirical application, and in particular

the issue of ‘ability bias’, will be addressed in the data section. As discussed by Blundell,

Dearden and Sianesi (2005), the set of regressors available from the NCDS data seems rich

enough to assume that the selection problem can be dealt with by conditioning on observable

characteristics.

In the absence of measurement error, the true participation status D∗ is observed. Under

Assumption 1, one could always define a correspondence which identifies parameters of interest

as functionals of the joint distribution (Y, D∗, X). Let FY D∗X denote this distribution. The

parameter ∆∗ is identified by a correspondence ∆∗ ¾ H(FY D∗X), and H is termed an identify-

ing functional. Matching, and other estimators employed in practice, are analogue estimators

obtained by applying the identifying functional to an estimate of the distribution of observable

outcomes and covariates, that is ∆̂∗ ≡ H(F̂Y D∗X).

To give empirical content to Assumption 1, we also require the following condition on the

support of the X variables:

Assumption 2 (Common Support) For all values X, there are both participants and non-

participants, that is

0 < e∗(x) ≡ Pr(D∗ = 1|X = x) < 1, ∀x

where e∗(x) is the propensity score.

Under Assumptions 1 and 2, the causal effect of education for those who participated in

education – that is the ATT parameter (1) – is identified as:

∆∗ =

∫
∆∗(x)f(x|D∗ = 1)dx, (2)

where

∆∗(x) ≡ E(Y |D∗ = 1, x)− E(Y |D∗ = 0, x)

is the conditional treatment effect, that is the average treatment effect (or average return) for

individuals with characteristics X = x. Note that, because of Assumption 2, the conditional

effect is well defined for all values X. This effect is integrated with respect to the distribution

of X for participants.
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In its bare essentials, estimation proceeds by considering the empirical analogues of the

quantities on the right-hand-side of (2). In particular, without invoking any functional form

assumption one can perform any type of non-parametric estimation of the conditional expec-

tation function in the non-participation group, E(Y |D∗ = 0, x), and then average it over the

distribution of X in the participants’ group (within the common support).

One way of implementing this non-parametric regression is via matching, whereby partici-

pants are matched with respect to their observable characteristics X to non-participants and

the difference in the average outcomes of the two matched groups is then taken as an estimate

of the ATT. More generally, the outcomes of non-participants are appropriately re-weighted so

as to realign their distribution of X to the one of the group of participants (see Imbens, 2004,

for a review).8

4 Misclassified treatment status

4.1 General formulation of the problem

Either because individuals are left to self-report their qualifications or because of transript

errors, the treatment status D which is recorded in the data may differ from the actual status

D∗. By analogy to the definition of D∗, let D = 1 be the group of individuals who self-report

to have attained the educational qualification of interest, and D = 0 the group of individuals

reporting not to have attained it.9

In the absence of measurement error, data are informative about (Y, D∗, X); as seen above,

estimators based on Assumptions 1 and 2 establish a correspondence between this triple and

the parameter of interest in (1). By contrast when qualifications are misreported, data are

informative about the distribution of measurement-error contaminated variables. If measure-

ment error is ignored, or not perceived, causal effects will thus be inferred using realizations of

(Y, D,X) as if they were realizations of (Y,D∗, X).

8Note that although both matching and simple OLS regression rely on Assumption 1, matching is not subject
to several potential misspecification biases for the ATT compared with standard parametric methods like OLS.
In particular, OLS may suffer from misspecification bias for the non-education outcome equation; it may use
this imposed functional form to extrapolate outside the common support, if need be; and in the presence of
heterogeneous effects it does not in general identify the ATT (see Angrist, 1998, and Blundell, Dearden and
Sianesi, 2005).

9Note that the extension to the multiple treatments setup is rather simple, as (2) and (3) could be thought
as one of the possible pairwise comparisons for treatments D∗ = i and D∗ = j under a suitably extended
Assumption 1.
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In particular, the object that can be computed from the observed data is therefore:
∫

S
∆(x)f(x|D = 1)dx ≡ ∆, (3)

where:

∆(x) ≡ E(Y |D = 1, x)− E(Y |D = 0, x),

S ≡ {x : 0 < e(x) ≡ Pr(D = 1|X = x) < 1}.

Notice that the expression above is simply the analogue of ∆∗ when D∗ is replaced by D. In

particular S is the observed (common) support for the self-reported participants in education

and e(x) is the propensity score calculated from the mismeasured qualification D. It is worth

noting that, as we will discuss in the next section, although Assumption 2 implies that the true

score e∗(x) is strictly between zero and one, misclassification can cause the observed score e(x)

to take on values at the boundaries.

Since some individuals with D∗ = 0 will erroneously be misclassified as participants on the

basis of the error-affected indicator D and only part of those individuals reporting D = 1 have

actually got the qualification of interest, the estimation of causal effects based on (Y,D,X) will

in general be biased for treatment effects, with the magnitude of this bias depending on the

extent of misclassification. This is shown in Section 5.3, where we derive the difference between

the causal parameter of interest that would consistently be estimated if we observed the correct

triple (Y, D∗, X) – equation (2) – and the parameter that would instead be estimated from the

observable triple (Y, D,X) – equation (3).

4.2 The misclassification probabilities

In what follows we build on Molinari (2004) to introduce the notation required to study this

problem, as well as the assumption on the classification errors we will maintain throughout

(Assumption 3).

We start by defining the (mis)classification probabilities as

λji(x) ≡ Pr(D∗ = j|D = i, x), i, j ∈ {0, 1},

which may in general depend on X. In the binary case, there are two types of misclassification:

λ10(x), the proportion of true participants amongst those reporting D = 0; and λ01(x), the

proportion of true non-participants amongst those with D = 1.
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Of recurrent use will be the probabilities of exact classification, that is one minus the

probability of misclassification (or for the case of multiple treatments, one minus the sum of

the misclassification probabilities):

λ00(x) ≡ λ0(x) = Pr(D∗ = 0|D = 0, x),

λ11(x) ≡ λ1(x) = Pr(D∗ = 1|D = 0, x),

where for ease of notation only one subscript is retained.10 It is convenient to collect the

(mis)classification probabilities into the matrix of (mis)classification probabilities :

Π(x) =

[
λ0(x) 1− λ0(x)

1− λ1(x) λ1(x)

]
.

Throughout our discussion, we will assume that the classification error is non-differential,

as this can help us write down relatively detailed but still manageable models (see Bound,

Brown and Mathiowetz, 2001). Accordingly, we will maintain the assumption that, conditional

on a person’s actual qualification and on other covariates, reporting errors are independent of

earnings.11

Assumption 3 (Non-Differential Misclassification given X) Any variable D which

proxies D∗ does not contain information to predict the outcome of interest Y conditional on D∗

and X:

E(Y |D∗, D,X) = E(Y |D∗, X),

namely the following two conditions are verified

(a) E(Y0|D∗ = 0, D = 1, X) = E(Y0|D∗ = 0, D = 0, X),

(b) E(Y1|D∗ = 1, D = 1, X) = E(Y1|D∗ = 1, D = 0, X).

These two conditions highlight how this assumption would not hold if an individual’s propen-

sity to misreport treatment status is related to outcomes. In particular, note that (b) is implied

by:

E(Y0|D∗ = 1, D = 1, X) = E(Y0|D∗ = 1, D = 0, X)

10The (mis)classification probabilities are often defined conditional on the true treatment status: γ1 = Pr(D =
1|D∗ = 1) and γ0 = Pr(D = 0|D∗ = 0). These γ’s are linked to our λ’s via Bayes’ Theorem.

11It is worth noting that the set of covariates X considered in Assumption 3 below coincides with (or is
included in) the set of covariates already considered in Assumption 1. Our discussion could be extended to deal
with the potentially interesting case in which some observables are known to affect only the (mis)classification
probabilities and not to enter the strong ignorability assumption.
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and

E(β|D∗ = 1, D = 1, X) = E(β|D∗ = 1, D = 0, X).

Thus Assumption 3 would be violated if those graduates (D∗ = 1) who experience a very low Y1

- either because they have received a negative productivity shock to their no-education earnings

Y0 and/or because they have reaped a very low return from the degree β - are more inclined to

deny possessing the qualification (this violation would be even more likely if respondents are

asked by the interviewer about their education and earnings at the same time!).

Under Assumption 3, we have that

E(Y |D = 1, x) = λ1(x)E(Y |D∗ = 1, x) + [1− λ1(x)]E(Y |D∗ = 0, x),

E(Y |D = 0, x) = [1− λ0(x)]E(Y |D∗ = 1, x) + λ0(x)E(Y |D∗ = 0, x).

It can be seen from the last two expressions that individuals for whom we observe D = d are

in fact a mixture of participants (D∗ = 1) and non participants (D∗ = 0), with mixing weights

given by the (mis)classification probabilities. This system of equations can be written more

compactly in matrix algebra notation as

[
E(Y |D = 0, x)
E(Y |D = 1, x)

]
= Π(x)

[
E(Y |D∗ = 0, x)
E(Y |D∗ = 1, x)

]
,

from which we have that

Π−1(x)

[
E(Y |D = 0, x)
E(Y |D = 1, x)

]
=

[
E(Y |D∗ = 0, x)
E(Y |D∗ = 1, x)

]
. (4)

provided that det[Π(x)] = λ0(x) + λ1(x)− 1 6= 0:

Assumption 4 (Informative Recorded Treatment Status) Misclassification is such that

λ1(x) + λ0(x)− 1 6= 0,

namely

Pr(D∗ = 1|D = 1, X) 6= Pr(D∗ = 1|D = 0, X)

for all values X.

Assumption 4 appears reasonable. It requires that conditional on X, the proportion of true

graduates among those who self-report having a degree to be different from the proportion of
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true graduates among those who self-report not having a degree; or in other words, that the

marginal effect of recorded status D on true status D∗ conditional on X is non-zero. Assumption

4 only requires inequality; it is however convenient to spell out here the two possible cases:

4-(a) λ1(x) + λ0(x) > 1 ⇔ Pr(D∗ = 1|D = 1, X) > Pr(D∗ = 1|D = 0, X),

4-(b) λ1(x) + λ0(x) < 1 ⇔ Pr(D∗ = 1|D = 1, X) < Pr(D∗ = 1|D = 0, X).

Case 4-(a) is a situation of limited misclassification in the sense that, given X, the proportion

of true graduates among those reporting to have a degree is higher than the proportion of true

graduates among those reporting not to have a degree. By contrast, 4-(b) represents a case of

such extensive misclassification for it to be more likely to randomly draw a true graduate from

the group reporting no degree than from the group reporting a degree.

Another way to look at this is to note that Cov(D, D∗|x) = (λ1(x) + λ0(x)− 1)V ar(D|x);

so that the sign of λ1(x) + λ0(x)− 1 determines the sign of the correlation between D and D∗.

Case 4-(a) can then be seen as preventing measurement error to be so severe as to reverse the

(positive) correlation between the observed and the true treatment measures.

5 The bias introduced by misclassification

5.1 Bias on the conditional treatment effect

In deriving how the parameter that can be recovered from the observed data (3) compares

to the causal parameter of interest (2), we start by considering the bias introduced in the

estimation of the causal treatment effect conditional on X, that is on ∆∗(x). This bias can be

straightforwardly characterized using (4). The result in (5) coincides with the result in Lewbel

(2004; see Proof of Theorem 1), and more in general follows from Aigner (1973). The proof is

reported in the Appendix.

Proposition 1 (Bias on Treatment Effects given X) If Assumptions 1 to 4 are satisfied,

it follows that

∆∗(x) =
∆(x)

λ0(x) + λ1(x)− 1
. (5)

Accordingly, the estimates of ∆∗(x) based on the triple (Y,D, X) are always biased towards

zero, but possibly with the opposite sign if the measurement error is very strong (the denomi-
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nator being negative in case 4-(b)). In terms of the conditional treatment effect, therefore, the

classical attenuation bias result still holds.

An interesting implication of (5) is that ∆(x) = 0 ⇔ ∆∗(x) = 0, so that the raw difference

in observed outcomes given X being zero actually implies that the true conditional treatment

effect is zero. Finally, if there is no misclassification (that is, λ0(x) = λ1(x) = 1), then of course

∆(x) = ∆∗(x); and if there is complete reversal in the classification (that is, λ0(x) = λ1(x) = 0),

then ∆(x) = −∆∗(x).

5.2 Support condition

We have thus far defined the bias for the treatment effect conditional on a given value of

the vector X. In order to characterize the bias for the ATT, we have to integrate over the

distribution of X in the treated group, which brings us to discuss support issues. As we

pointed out earlier in this paper, although Assumption 2 ensures that at each point in the

support of the X distribution both individuals with D∗ = 1 and individuals with D∗ = 0 are

observed, the extent of misclassification can be such that the same condition does not hold for

individuals with D = 1 and D = 0.

To see this, we use the law of iterated expectations to write e∗(x) in terms of e(x):

e∗(x) = [1− λ0(x)] + e(x)[λ0(x) + λ1(x)− 1],

so that, solving for e(x) and using Assumption 4:

e(x) =
e∗(x)− [1− λ0(x)]

λ0(x) + λ1(x)− 1
.

from which we see that e(x) will take on values at the boundaries according to:

e(x) = 0 ⇔ λ0(x) = 1− e∗(x),

e(x) = 1 ⇔ λ1(x) = e∗(x).

It follows that the parameter (3) estimated from the triple (Y, D, X) – that is the ATT for

observed participants in the observed common support S – could in general refer to a different

population than the one implied by (Y,D∗, X).12

To avoid this, we ensure that e(x) is strictly between 0 and 1 for all values of X by assuming:

12Note incidentally that without any specific assumptions, the fact that e(x) ∈ [0, 1] implies the following
additional restrictions on the extent of misclassification under case 4-(a) (the inequality signs being reversed
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Assumption 5 (Restriction on the extent of misclassification) Misclassification is

such that at each value X, at least one holds among

λ0(x) 6= 1− e∗(x)

λ1(x) 6= e∗(x)

(the other one holding automatically given Assumption 4).

We make this assumption for formal convenience, in that it allows us to treat the common

support in the presence of measurement error as the true common support. If this were not the

case, the integrals in the following would be defined over a different subset of the truly treated

than the full one. More specifically, if Assumption 5 does not hold and we imposed common

support based on e(x), true participants not belonging to the observed S may be discarded so

that the ATT estimated from (Y,D, X) would refer to a different population of participants

than the population of participants the true ATT refers to.

5.3 Bias on the treatment effect on the treated

If one is interested, as is Lewbel (2004), in the average treatment effect (ATE) – the average

return for an individual irrespective of whether the qualification of interest has been acquired

or not:

E(β) ≡ E(Y1 − Y0) =

∫
∆∗(x)f(x)dx,

the discussion can stop here.13 In particular, one would only need to integrate the conditional

average treatment effect ∆∗(x) over the distribution of X in the population, the latter being

observed in the data.

Note also that the attenuation-bias result from Proposition 1 keeps holding unconditional on

X, in other words, ignoring measurement error in treatment status leads to a downward-biased

estimate of the ATE. The correspondence between a zero raw average effect and a zero true

under case 4-(b)):

λ0(x) ≥ 1− e∗(x),
λ1(x) ≥ e∗(x),

for all values X = x. Note further that if one were willing to assume that the misclassification error did not
depend on X, the restrictions above would become λ0 ≥ 1−minx{e∗(x)} and λ1 ≥ maxx{e∗(x)}.

13Note that identification of ATE requires a strengthened Assumption 1, implying in particular homogeneous
returns (given X) or the absence of selection into education based on unobserved returns β.
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average effect, however, no longer holds, unless the misclassification probabilities are assumed

not to depend on X.

By contrast, if interest lies in recovering the ATT – the average return to education for

those who invested in that qualification – the next step is not straightforward, since, as shown

in equation (2), the conditional effect ∆∗(x) needs to be integrated over the distribution of X

in the (truly) treated group, f(x|D∗ = 1), which is not observed.

The following proposition provides a characterization of the bias introduced by measurement

error for the estimation of (1), that is the relationship between ∆∗ and ∆. The proof is reported

in the Appendix.14

Proposition 2 (Bias on Treatment Effects) If Assumptions 1 to 5 are satisfied, the effect

estimated from raw data can be written as follows

∆∗ =
Pr(D = 1)

Pr(D∗ = 1)
∆ +

1

Pr(D∗ = 1)

∫
1− λ0(x)

λ0(x) + λ1(x)− 1
∆(x)f(x)dx, (6)

where

Pr(D∗ = 1) =

∫
[1− λ0(x)]f(x)dx +

∫
[λ0(x) + λ1(x)− 1]e(x)f(x)dx.

Apparently, misclassification is such that the effect ∆∗ can be over- or under-estimated

depending on the unknown probabilities λ1(x) and λ0(x). Furthermore, ∆ being zero no longer

implies the absence of a treatment effect, as was the case when conditioning on X.

Note that we could solve for ∆ in the last expression if these probabilities were known. This

implies that the causal effect of education can always be expressed as a known functional of

the triple (Y, D, X) and λ1(x) and λ0(x), that is

∆∗ = ∆∗[Y,D, X, λ0(X), λ1(X)], (7)

14To the best of our knowledge, this has not been considered in the literature on treatment effects although
it mimics well known results from the linear regression theory. In a linear regression setting, treatment effects
can be inferred from the following regression

y = βd + γx + ε

if Assumption 1 is satisfied. It is well known that, if the variable D is affected by classical measurement error,
the coefficient β is biased toward zero. However, since the treatment status is binary, the measurement error is
negatively correlated with D∗, so that the sign of the bias is not determined in general (see Aigner, 1973, and
Bound, Brown and Mathiowetz, 2001).
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but cannot be identified without the knowledge of the misclassification probabilities. If both

probabilities are one, then we get standard identification of treatment effects. Note that these

probabilities may depend on X in general.15

To conclude this section, we show that any estimator of the ATT based on the observed

propensity score e(x) (e.g. propensity score matching or re-weighting)

∫
∆[e(x)]f [e(x)|D = 1]de

is equivalent to the estimator defined by (3). Since we have that

E[Y |D, e(x)] =

∫
E[Y |D, e(x), x]f [x|D, e(x)]dx,

=

∫
E[Y |D, x]f [x|D = 1, e(x)]dx,

where the last equality follows from x being finer than e(x) and by the balancing property of

the propensity score (see Rosenbaum and Rubin, 1983), we also have

∆[e(x)] =

∫
∆[x]f [x|D = 1, e(x)]dx.

Therefore

∫
∆[e(x)]f [e(x)|D = 1]de =

∫ ∫
∆[x]f [x, e(x)|D = 1]dxde,

=

∫
∆[x]f [x|D = 1]dx ≡ ∆,

which is enough to conclude that the bias induced by misclassification when the estimation is

carried out with respect to the observed propensity score is equivalent to the bias derived in

Proposition 2.

5.4 Special cases

CASE I: Limited Misclassification

Misclassification is such that 4-(a) applies, that is:

λ1(x) + λ0(x) > 1

15The extension to the multiple treatments setting proceeds along the same lines, but requires more work.
For example, for the case of three treatments, the matrix of misclassification probabilities has dimension 3× 3,
and therefore the expressions in (5) and (6) become less tractable although conceptually identical to the ones
derived for the 2 × 2 case. As expected, the analytical tractability of the problem worsens as the number of
treatments increases. Further assumptions on the misclassification probabilities can help simplify the resulting
expressions (as we discuss below).
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for all values X.

As discussed above, this represents the most likely case, and is also implied by the assump-

tion that observations on D are more accurate than pure guesses once X is corrected for (see

for example Bollinger, 1996), that is:

λ1(x) > 0.5, λ0(x) > 0.5.

An implication of this assumption which is worth stressing again is that ∆(x) – though biased

toward zero – is always right signed for all values of X. This can be seen from (5) by noting

that the scaling factor defined by the misclassification probabilities is always between zero and

one.

CASE II: Only over-reporting of qualifications

The misclassification probabilities are such that only over-reporting can happen:

λ0(x) = 1

for all values X.

To see why this condition represents a situation where only over-reporting of qualifications

can occur, note that it corresponds to P (D∗ = 1|D = 0) = 0, which rules out that true

graduates may be found among those reporting not to have a degree, in other words, ruling out

under-reporting. As in this case we have that:

∆∗(x) =
∆(x)

λ1(x)
,

the conditional treatment effect is always right-signed for all X, but biased towards zero.

Furthermore, setting λ0(x) equal to 1 in Proposition 2 yields

∆∗ =
Pr(D = 1)∫

λ1(x)e(x)f(x)dx
∆ =

∫
e(x)f(x)dx∫

λ1(x)e(x)f(x)dx
∆

where the factor multiplying ∆ is greater than 1 since λ1(x) < 1. It thus follows that the

estimated effect ∆ is always biased towards zero for ∆∗, and with the right sign.16

16As already pointed out for the case of multiple treatments, the restrictions imposed on the misclassification
probabilities can simplify the relationship between moments involving D∗ and moments involving D, and there-
fore the analytical tractability of the problem. For example, by assuming that the misclassification problem
only arises because of over-reporting of qualifications, for the 3× 3 case we have

Π(x) =




λ0(x) 0 0
λ01(x) λ1(x) 0
λ02(x) λ12(x) λ2(x)


 ,

which is function of four unknown probabilities.
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CASE III: Misclassification independent of X

A last interesting special case where a tractable expression for (7) can be derived is when the

percentage of correct classification is assumed to be independent of the characteristics X of

respondents:

λ1(x) = λ1,

λ0(x) = λ0,

for all values X.

Although this assumption is clearly only made here for convenience, it could be weakened

by assuming constant probabilities within cells defined by X.17 By using Proposition 2 we have

∆∗ =
1

Pr(D∗ = 1)

(
Pr(D = 1)∆− λ0 − 1

λ0 + λ1 − 1

∫
∆(x)f(x)dx

)

and

Pr(D∗ = 1) = 1− λ0 + [λ0 + λ1 − 1]Pr(D = 1).

Using (3) it follows that

∆∗ =

∫
∆(x)

[
1− 1

Pr(D=1)
f(x)

f(x|D=1)
λ0−1

λ0+λ1−1

]
f(x|D = 1)dx

1−λ0

Pr(D=1)
+ (λ0 + λ1 − 1)

,

=

∫
∆(x)

[
1− 1

e(x)
λ0−1

λ0+λ1−1

]
f(x|D = 1)dx

1−λ0

Pr(D=1)
+ (λ0 + λ1 − 1)

,

where the last expression is derived using the definition of e(x) and Bayes theorem. It follows

that

∆∗ =

∫
ω(x)∆(x)f(x|D = 1)dx, (8)

where

ω(x) =
1 + 1

e(x)
1−λ0

λ0+λ1−1

1−λ0

Pr(D=1)
+ (λ0 + λ1 − 1)

.

This last expression, which represents the exact calculation of (7) for this particular example,

shows that if the two λ’s were known, the ATT could be estimated by appropriately re-

weighting the conditional differences in outcomes based on recorded treatment data, ∆(x),

17As we will show in Section 6.2, this can be tested against real data if additional measurements of D∗ become
available. To a certain extent, this is possible using NCDS data.

22



with weights defined by ω(x). Note that, as it should be, ω(x) = 1 for all individuals if there is

no measurement error. If there is only over-reporting (λ0 = 1), we have that ω(x) = 1
λ1
≥ 1 for

all x. In fact, if all the weights are larger than 1, the ‘raw’ effect ∆ will provide a lower bound

on the true treatment effect, so that the classical attenuation-bias result applies.

Under the likely scenario of limited misclassification (assumption (4)-a), all the weights are

positive and a first-order approximation to ω(x) around (λ0 = 1, λ1 = 1) yields

ω(x) ' 1 + (1− λ0) + (1− λ1)[
1

e(x)
− 1− Pr(D = 1)

Pr(D = 1)
],

from which it can be seen that a sufficient (but not necessary) and testable condition for

ω(x) to be larger than 1 is that the propensity score at x be smaller than the odds ratio, i.e.

e(x) ≤ Pr(D=1)
1−Pr(D=1)

. From a study of ω(x) as a function of the λ’s, it can be shown that only for

values of the parameter P (D = 1) smaller than 0.3 is there the possibility that, depending on

the value of e(x), the corresponding weight at x is positive but smaller than 1. However we

found that even in this case the distribution of weights is skewed towards values (often much)

larger than 1, so that in most empirical applications the ‘raw’ estimate is most likely to be a

lower bound.

6 Identification in the presence of misclassification

6.1 Partial identification of causal effects

Because of (7), bounds can be derived by looking at the maximum and the minimum value of

the estimate of ∆∗ when the probabilities λ0(x) and λ1(x) vary over the unit interval, or on

a suitably chosen subset of [0, 1] × [0, 1]. Thus, without additional information, only partial

identification of treatment effects can be achieved.

Note however that misclassification probabilities left to vary between zero and one are

likely to imply unreasonably high misclassification rates. One possibility often exploited in the

literature is to use a priori restrictions on these probabilities, most of the times derived from

previous studies or from knowledge of the economic context under investigation. For example,

results from validation studies and behavioral theories developed in the social sciences often

suggest restrictions on misclassification. Some fairly general restrictions that can be applied to

the study of returns to education include the three cases considered above.18

18The assumptions below are spelled out only for the case of binary treatments, but can be generalized to
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• CASE I: Limited misclassification: λ1(x) + λ0(x) > 1 for all values X.

• CASE II: Only over-reporting of qualifications: λ0(x) = 1 for all values X. This

assumption that individuals never under-report qualifications they have obtained can

be weakened by assuming that over-reporting is just more likely than under-reporting.

This case of monotone misclassification imposes λ1(x) < λ0(x) for all values X,

or, in a more intuitive form, P (D∗ = 0|D = 1) > P (D∗ = 1|D = 0). Monotone

misclassification reflects the idea supported by cognitive studies that when respondents

are asked questions about socially and personally sensitive topics, they tend to under-

report undesirable behaviours and attitudes, and over-report desirable ones.

• CASE III: Misclassification independent of X. As a specific illustration on how to

obtain bounds for the ATT parameter, let us go back to a situation where misclassification

is independent of respondents’ characteristics. This simplifying assumption allowed us to

obtain the exact expression (8) for ∆∗. For given values of the two misclassification

probabilities λ0 and λ1, this expression can be estimated to get ‘base case’ bounds by

calculating the empirical analogues of the quantities involved: recorded participants and

non-participants can be matched according to their characteristics X and the resulting

conditional raw differences in outcomes ∆(x) averaged with weights ω(x). Varying the

two λ’s over their support defines different weights ω(x). Choosing the maximum and the

minimum from the resulting range of estimates for ∆∗ finally provides lower and upper

bounds for the ATT. Tighter bounds on the returns to educational qualifications can then

be obtained by restricting further the values the two λ’s can take. In particular, one can

exploit the limited-misclassification condition λ1+λ0 > 1 for different values of the sum of

misclassification probabilities, or tighten the bounds even further by assuming monotone

misclassification (λ1 < λ0) or that misclassification arises only because of over-reporting

(λ0 = 1).

the case of multiple treatments. See Molinari (2004) for a discussion of additional restrictions that could be
imposed on the matrix of misclassification probabilities.
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6.2 Point identification of causal effects

6.2.1 General idea

Throughout this section, we will assume than an additional measurement of D∗ becomes avail-

able, so that we observe two measurements of educational qualifications. To fix ideas, in line

with our application to returns to education, let us call the two measures DS (Self-reported by

the respondent, previously simply denoted by D) and DT (from Transcript files).19 Multiple

reports of D∗ can solve for misclassification, provided that errors are independent across reports

(see Kane et al., 1999, and Black et al., 2000, Lewbel, 2004, in particular Proposition 2 and

Proposition 3). In our discussion we will maintain the following assumption.

Assumption 6 (Multiple Independent Reports) The qualification measures DS and DT

are conditionally independent given D∗ and X, that is

DS⊥DT |D∗, X.

Moreover, in what follows we extend the non-differential error assumption 3 to hold for both

measures separately:

E(Y |D∗, DS, X) = E(Y |D∗, X),

E(Y |D∗, DT , X) = E(Y |D∗, X). (9)

Alternatively, one could let the non-differential error Assumption 3 hold jointly:

E(Y |D∗, DS, DT , X) = E(Y |D∗, X),

which together with Assumption 6 implies (9).

Under these assumptions, Kane et al. (1999), Black et al. (2000) and Lewbel (2004) show

that information on the number of individuals classified differently by DS and DT can be

combined with information on the difference of their earnings to estimate the distribution of

reporting errors (i.e. the misclassification probabilities) in both measures. It follows from the

discussion above that error corrected estimates of the returns to qualifications can be obtained.20

19The extension to the case of multiple treatments / multiple measurements is notationally more demanding
but proceeds along the same lines (see Lewbel, 2004). Frazis and Loewenstein (2002) extend the analysis to the
case where the second measure is replaced by one or more instruments.

20One might be tempted to use the second measurement DT to instrument the first one, DS . Albeit similar, the
approach suggested in this section is different from IV estimation: actually, it can be shown that instrumenting
one report with the other tend to produce upward biased estimates of treatment effects because of the non-
classical measurement error (see Bound, Brown and Mathiowetz, 2001).
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For the single-treatment case, the intuition behind the identification strategy goes as follows.

To begin with, assume that the relationship stated in Assumption 6 holds without conditioning

on X (or let the following hold given X). We can then compute the four sample means of the

outcome for the four groups defined by DS = 1, DS = 0, DT = 1 and DT = 0:

E(Y |DS = i) = E(Y |D∗ = 0) + ∆∗Pr(D∗ = 1|DS = i), (10)

E(Y |DT = i) = E(Y |D∗ = 0) + ∆∗Pr(D∗ = 1|DT = i)

Accordingly, wages in the four cells for i = 0 and i = 1 are function of six unknowns:

E(Y |D∗ = 0), ∆∗, λS
1 ≡ Pr(D∗ = 1|DS = 1), λS

0 ≡ Pr(D∗ = 0|DS = 0), λT
1 ≡ Pr(D∗ =

1|DT = 1) and λT
0 ≡ Pr(D∗ = 0|DT = 0). On the other hand, the sample proportions of

individuals in each cell provide three usable equations (one equation is lost because of the

adding-up condition), which rearranged yield:

Pr(DS = i,DT = j)

Pr(DS = i)Pr(DT = j)
=

Pr(D∗ = 1|DS = i)Pr(D∗ = 1|DT = j)

E(D∗)

+
(1− Pr(D∗ = 1|DS = i)) (1− Pr(D∗ = 1|DT = j))

1− E(D∗)
(11)

in one additional unknown, E(D∗).

It follows that the expressions in (10) and (11) define a system of seven equations which is

non-linear in seven unknowns. By denoting with θ the vector of the unknown parameters, this

system can be written more compactly as

Ψ(θ) = 0, (12)

with Ψ : A ⊂ Rk → Rh and k = h = 7. In particular, although the estimating equations are

non-linear in the parameter θ, it can be shown that they define a unique (analytical) solution

and thereby identify the misclassification probabilities and the treatment effect (see Kane et

al., 1999, Black et al., 2000 and Lewbel, 2004).21

When additional regressors become available, the set of equations in (10) and (11) can be

defined conditional on X. To fix ideas, if the support of X is discrete (e.g. if X contains

only categorical variables), seven equations are defined for each point of the support and the

number of unknown parameters to be estimated increases with the cardinality of the support.

21The solution to the system can be derived iteratively by replacing Ψ with a linear approximation, and then
solve the linear problem to generate the next guess using Newton’s methods.
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Yet exact identification is obtained, as in (12) the number of equations h equals the number of

unknowns k.

If one is willing to make the assumption that some of the unknown parameters θ do not

depend on X, the system (12) is over-identified as there are more equations than unknowns

(k < h). For example, one could assume that the misclassification probabilities do not depend

on X, as in Case III of Section 5.4, or are constant within cells defined by X. One common way

to define the solution of an over-identified system corresponds to choosing that θ that solves

the following problem

min
θ

Ψ(θ)>ΣΨ(θ),

where Σ is a matrix of weights suitably defined. The solution to the previous problem coincides

with the (non-linear) GMM estimator of the parameter θ, once Σ is chosen to minimize the

variance of estimation (Matyas, 1999).22

7 Data and educational qualifications of interest

In order to put into context the educational qualifications to which we estimate the returns,

this section starts by briefly outlining the educational system in Britain. It then describes the

data we use in the paper and concludes by specifying the qualifications – hence parameters –

of interest.

7.1 The British educational system

Education in the United Kingdom is compulsory for everyone between the ages of 5 and 16.

Those deciding to stay on past the minimum can either continue along an academic route or

else undertake a vocational qualification before entering the labour market.

The former route is based on a series of national public examinations marked by independent

assessors. Until 1986, pupils could take Ordinary Levels (O level) at 16 and then possibly move

on to attain Advanced Levels (A levels) at the end of secondary school at 18.23 A levels still

represent the primary route into higher education.

22It is possible to exploit more than two measures of educational qualifications in the GMM estimation, as
we do in our application.

23Less academically-oriented pupils could go for the lower-level Certificates of Secondary Education (CSE)
option at 16 before they left school. In 1986 the CSEs and O levels exams were replaced by General Certificates
of Secondary Education (GCSEs).
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The vocational path is much more heterogeneous, with a plethora of options ranging from

job-specific, competence-based qualifications often delivered within a work environment to more

generic work-related qualifications. The academic and wide range of vocational qualifications

have been classified into equivalent National Vocational Qualification (NVQ) levels, ranging

from level 1 to level 5.

The British system is thus quite distinct from the one in the US; nevertheless, forcing some

comparisons, one could regard the no-qualifications group as akin to the group of high-school

drop-outs, A levels to High School, Higher Education to College.24

7.2 Data

In this paper we only consider methods relying on Assumption 1, and we thus require very rich

background information capturing all those factors that jointly determine the attainment of

educational qualifications and wages. We use the uniquely rich data from the British National

Child Development Survey (NCDS), a detailed longitudinal cohort study of all children born

in a week in March 1958. There are extensive and commonly administered ability tests at

early ages (mathematics and reading ability at ages 7 and 11), as well as accurately measured

family background (parental education and social class) and school type variables, all ideal

for methods relying on the assumption of selection on observables. In fact, Blundell, Dearden

and Sianesi (2005) could not find evidence of remaining selection bias for the higher education

versus anything less decision once controlling for the same variables we use in this paper. We

thus invoke this conclusion in assuming that there are enough variables to be able to control

directly for selection.

Our outcome is real gross hourly wages at age 33.

Specifically, we use the sweeps from 1958 (at birth), 1965 (aged 7) and 1969 (aged 11) for

family background and individual characteristics, from 1974 (aged 16) and 1981 (aged 23) for

educational attainment and from 1991 (aged 33) for the wage outcome as well as for further

measures of educational attainment. As to the latter, note that cohort members were asked

to report the qualifications they had obtained as of March 1981 not only in 1981, but also in

1991. In other words, we can construct a separate measure of the qualifications the individuals

24In such a comparison the group with O levels as highest qualification is quite atypical, being made up of
individuals who stop at the minimum leaving age with formal qualifications.
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obtained up to 1981 based solely on responses in the 1991 survey.25 Furthermore, the 1991

survey also asked respondents about all the qualifications they had achieved till then.

In addition to the main sweeps, in 1978 the schools cohort members attended when aged

16 provided information on the results of public academic examinations entered up to 1978

(i.e. by age 20). Similar details were collected from other institutions if pupils had taken such

examinations elsewhere.26

For each individual our data thus contains four measurements of educational qualifications;

these are summarised in Table 1 together with the corresponding broad categories we consider.27

Accordingly, returns can be derived by considering any of the pairwise comparisons arising

from these categories once measurement error in the reporting of qualifications is taken into

account.28

Table 4 summarises the criteria according to which our final sample was selected.

7.3 Educational qualifications of interest

For our partial identification analysis we focus on the self-reported measure of educational

qualifications achieved by age 33. Parameters that can be bound thus include the return

to achieving at least O levels or their vocational equivalent compared to remaining without

qualifications; the return to achieving at least A levels or their vocational equivalent compared

to stopping with O levels or with no qualifications; or the return from undertaking some form

of higher education compared to anything less.

25In the 1981 survey itself, respondents were asked whether they had any O or A levels. Furthermore, they
were asked what their highest post-school qualification was, irrespective of whether it was an academic or a
vocational one. In addition to an educational measure of academic qualifications up to A levels, one can thus
only construct their highest educational qualification in terms of NVQ level only, i.e. without being able to
separate out the highest academic and the highest vocational qualification.

26Results were obtained for approximately 95% of those whose secondary school could be identified.
27The ‘None’ category also includes very low-level qualifications at NVQ level 1 or less, in particular the

academic CSE grade 2 to 5 qualifications. (Students at 16 could take the lower-level Certificates of Secondary
Education (CSE) or the more academically demanding O levels. The top grade (grade 1) achieved on a CSE
was considered equivalent to an O level grade C. Most CSE students tended to leave school at 16.) For full
details of the various educational groupings, see the Appendix.

28We might not expect too large an extent of measurement error in such so broadly defined educational
categories. The questionnaires as well as school files are very detailed in their questions, listing all possible
types of individual qualifications. We then aggregate the responses to categories such as ‘any A levels or
vocational equivalent’. Also, we would expect problems especially at the lower end, in discriminating between
no qualifications - or very low CSEs and other NVQ level 1 or less qualifications, and O levels. In fact, returns
to moving from the lowest to the O level group are of particular policy interest. Still, these aggregations have
been and are being used, so confirming the actual extent of their reliability is of value. There would be in any
case surely many more errors in reporting 1 versus 2 or more A levels of in discriminating between good and
bad O levels. Corresponding returns have in fact been shown to vary considerably.
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Table 1: Measurements of highest educational qualifications

Obtained by age 33, self-reported at age 33 (1991 sweep)
(separately identifies highest academic and highest vocational qualifications)

None (level 0-1)
O level or vocational equivalent
A level or vocational equivalent
HE or vocational equivalent

Obtained by age 23, self-reported at age 33 (1991 sweep)
(separately identifies highest academic and highest vocational qualifications)

None (level 0-1)
O level or vocational equivalent
A level or vocational equivalent
HE or vocational equivalent

Obtained by age 23, self-reported at age 23 (1981 sweep)
(identifies academic O and A levels, as well as highest NVQ level)

None academic (level 0-1) NVQ level 0-1
O level NVQ level 2
A level or above NVQ level 3

NVQ level 4-5

Obtained by age 20, administrative information (1978 School Files)
(identifies academic O and A levels)

None academic (level 0-1)
O level
A level or above

All of the preceding examples fall into the ‘single treatment’ framework, and in fact in one

where the specific educational level of interest cuts right through the entire educational spec-

trum. This does not of course rule out interest in ‘multiple treatments’, or in single treatments

for a more narrowly defined educational split, such as the return to higher education vis-à-vis

stopping with A levels, or the return to higher education vis-à-vis dropping out at 16 without

qualifications, or the return to finishing school with O levels vis-à-vis nothing.

The extension of the bounds analysis to such types of treatments – though conceptually

quite straightforward – is however computationally (extremely) complex, since account would

need to be taken of the potential misclassification in the reporting of all educational levels,
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not just in the two being considered. So for instance, even if one only wanted to compare

higher education to A levels, the other categories would still need to be considered, since, first,

individuals reporting no qualifications and individuals reporting O levels might in reality have

higher education or A levels, and, second, individuals reporting higher education or A levels

might in reality have neither of the two qualifications of interest. The price to pay in order

to allay the computational burden is to impose some a priori restrictions on the matrix of

misclassification probabilities.

Such extension, by contrast, is not only conceptually but also computationally straight-

forward in the point identification (GMM) approach. As it has been highlighted before, this

approach is however more demanding, in that it needs an additional, independent measure of

educational attainment. In the NCDS data, such a measure is offered by the School Files, which

however only record academic qualifications (i.e. O and A levels), and only those achieved by

age 20.

Although driven by the availability of an independent school measure for O and A levels

only, focusing on academic qualifications does offer some advantages, and allows one to estimate

highly policy relevant parameters.

First, academic qualifications are well defined and homogenous, with the central government

traditionally determining their content and assessment. By contrast, the provision of vocational

qualifications is much more varied and ill-defined, with a variety of private institutions shaping

their content and assessment. In fact, as mentioned in Section 7.1 there is a wide assortment of

options ranging from job-specific, competence-based qualifications to more generic work-related

qualifications, providing a blend of capabilities and competences in the most disparate fields.

A second advantage of focusing on O and A levels is that they are almost universally taken

through mostly uninterrupted education, whereas vocational qualifications are often taken after

having entered the labour market. It is thus more difficult to control for selection into post-

school (vocational) qualifications, since one would ideally want to control also for the labour

market history preceding the acquisition of the qualification.

Additional interest in O levels arises from the finding that in the UK, reforms raising the

minimum school leaving age have impacted on individuals achieving low academic qualifications,

in particular O levels. Chevalier et al. (2003) show that the main effect of the reform was to

induce individuals to take O levels. Del Bono and Galindo-Rueda (2004) similarly show that
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changes in features of compulsory schooling have been biased towards the path of academic

attainment; the main effect of the policy was not to increase the length of schooling, but rather

to induce individuals to leave school with an academic certification. In such a context it is

of great policy interest to estimate the returns to finishing school with O levels compared

to leaving with no qualifications. Indeed, Blundell, Dearden and Sianesi (2005) found a non-

negligible return of 18% for those who did leave with O levels and of 13% for those who dropped

out at 16 without any qualifications.

Another interesting parameter is the return to acquiring at least O levels compared to

nothing; this parameter captures all the channels in which the attainment of O levels can

impact on wages later on in life, in particular the potential contribution that attaining O levels

may give to the attainment of A levels and then of higher education.

As to A levels, special interest arises from the fact that they were – and still are – the almost

exclusive way to get the chance of a university education. Thus, the return to obtaining at

least A levels compared to stopping at 16 without qualifications again captures the effect that

the attainment of A levels may have on progression to university.29

For academic qualifications there are clearly defined targets and requirements for progression

to the next level. Thus another advantage of focusing on academic qualifications is that one

can look at incremental returns, since those who have an A level or university qualification

also have the preceding lower qualifications (O level or O level and A level, respectively). An

interesting parameter is thus the return from attaining at least A levels compared to stopping

at O levels, capturing the full incremental return to A levels.

It is important to highlight that since we compare O and A level attainment recorded by

the schools by the time the individuals were aged 20 to O and A level attainment self-reported

by individuals by the time they were aged 23, we need to further assume:

Assumption 7 (Age-20 completion) O Level and A Level qualifications are completed by

age 20.

We can however safely consider this assumption to be met, at the very least for our NCDS

cohort. From the school files, we could verify that only a negligible fraction of O levels achieved

by age 20 had in fact been achieved after the typical age of 16 and similarly hardly any of the

A levels achieved by age 20 had been achieved after the typical age of 18.

29We can see how likely A-level or above includes HE, that is P (HE|A+).
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Tables 5-7 present cross tabulations between the various educational measurements de-

scribed in Table 1.30 Before briefly discussing the tables, it is reassuring to note that the

patterns that emerge from them are the same irrespective of the samples selected on the basis

of non-missing educational information ever or non-missing wage information in 1991 (the latter

obviously also restricting attention to those employed in 1991).

If we were to believe the school files, almost 5% of those students who did achieve O-levels

reported to have no academic qualifications at age 23, while only a much smaller proportion

(1.4%) incorrectly denied having taken their A-levels. At age 33, when asked to recall the

qualifications they had attained by age 23, individuals are observed to make more mistakes,

with over 10% of O-level achievers and 5% of A-level achievers ‘forgetting’ their attainment.

Conversely, still taking the school files at face value, it appears that almost one fifth of those

with no formal qualifications over-report their achievement, mostly stating that they have

obtained O levels. A smaller but still sizeable fraction of 13% of those who according to the

school files have only achieved O levels maintain to have in fact A levels. As was the case with

under-reporting, over-reporting behaviour seems to worsen when moving further away from the

time the qualification was achieved. When relying on recall information, almost one fourth of

individuals with no formal qualifications state to have some, while almost 15% of individuals

with O levels as their highest qualification according to the administrative files affirm to have

A levels or even HE. This discussion on over-reporting crucially relies on assumption 7 that O

and A level be completed by age 20. Although there is indirect support for this from the data

and anecdotal evidence, in future research we will explore the sensitivity of our estimates to

violations of this assumption.

8 Results

Based on the assumptions of misreporting being both independent of X and limited (respec-

tively Cases III and I in Section 5.4), Table 2 reports the lower and upper bounds for the return

to higher education and for the return to attaining any qualification that arise from different

values of the sum of the misclassification probabilities. Educational attainment is based on

achievement by age 33 self-reported at age 33.

30Note that our measures are in terms of highest achievement, and are thus not directly comparable to the
ones used by Ives (1984).
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Table 2: Base case bounds on treatment effects
λ0 + λ1 ≥ 1.4 λ0 + λ1 ≥ 1.5 λ0 + λ1 ≥ 1.6
lower upper lower upper lower upper

HE vs less 0.222 0.634 0.222 0.505 0.222 0.416
Any vs None 0.278 0.680 0.278 0.555 0.278 0.463

λ0 + λ1 ≥ 1.7 λ0 + λ1 ≥ 1.8 λ0 + λ1 ≥ 1.9
lower upper lower upper lower upper

HE vs less 0.222 0.349 0.222 0.300 0.222 0.257
Any vs None 0.278 0.396 0.278 0.347 0.278 0.308

In Table 3 we will present some GMM results for the return to achieving any academic

qualification and for the return to achieving at least A levels qualifications. Returns and

misclassification probabilities will be calculated using administrative information on academic

qualifications obtained by age 20 together with academic qualifications obtained by age 23 as

self-reported either at age 23 or, alternatively, at age 33.

9 Conclusions

This paper provides reliable estimates of the returns to educational qualifications in the UK

that allow for the possibility of misreported attainment. We additionally identify the extent of

misreporting in different types of commonly used data sources on educational qualifications and

thus provide estimates of their relative reliability. We also intend to produce some simple rules

as to how to correct returns estimated on data that rely on recall about individual qualifications

and contain limited or no information on individual ability and family background character-

istics (such as the Labour Force Survey). We also plan to explore the advantages of combining

repeated measurements of education reported by the same individuals over time. Finally, we

will consider the impact of misclassification on evaluation methods based on propensity score

matching.
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Table 3: Academic qualifications: point estimates

age 23, self-reported at 23 age 23, self-reported at 33
Any vs None A+ vs Less Any vs None A+ vs Less

Raw and true returns
∆
∆∗

Transcript information: probabilities of exact classification
λT

1

λT
0

γT
1

γT
0

Self-reported information: probabilities of exact classification
λS

1

λS
0

γS
1

γS
0

λj
1 ≡ Pr(D∗ = 1|Dj = 1) and γj

1 ≡ Pr(Dj = 1|D∗ = 1), j = T, S

λj
0 ≡ Pr(D∗ = 0|Dj = 0) and γj

0 ≡ Pr(Dj = 0|D∗ = 0), j = T, S

References

[1] Aigner, D. (1973), Regression with a Binary Independent Variable Subject to Errors of

Observation, Journal of Econometrics, 1, 49-60.

[2] Angrist, J. (1998), Estimating the labour market impact of voluntary military service using

social security data on military applicants, Econometrica, 66, 249–88.

[3] Battistin, E. and Chesher, A. (2004), The Impact of Measurement Error on Evaluation

Methods Based on Strong Ignorability, unpublished manuscript, Institute for Fiscal Studies.

[4] Black, D., M. Berger, and F. Scott (2000), Bounding Parameter Estimates with Non-

Classical Measurement Error, Journal of the American Statistical Association, 95, 451,

739-48.

[5] Black, D., Sanders, S. and Taylor, L. (2003), Measurement of Higher Education in the

Census and Current Population Survey, Journal of the American Statistical Association,

98, 463, 545-554.

35



[6] Blanden, J., Goodman, A., Gregg, P. and Machin, S. (2002), Changes in Intergenerational

Mobility In Britain, Centre for Economics of Education Discussion Paper No. 26.

[7] Blundell, R., Dearden, L., Goodman, A. and Reed, H. (2000), The Returns to Higher

Education in Britain: Evidence from a British Cohort, Economic Journal, 110, F82–F99.

[8] Blundell, R. Dearden, L. Sianesi, B. (2004), Measuring the Returns to Education, chapter

6 in Machin, S. and Vignoles, A. (eds), The Economics of Education in the UK, Princeton

University Press, forthcoming.

[9] Blundell, R. Dearden, L. Sianesi, B. (2005), Evaluating the Impact of Education on Earn-

ings in the UK: Models, Methods and Results from the NCDS, forthcoming, Journal of the

Royal Statistical Society A.

[10] Bollinger, C.R. (1996), Bounding Mean Regressions When a Binary Regressor is Mismea-

sured, Journal of Econometrics, 73, 387-399.

[11] Bonjour, D., Cherkas, L., Haskel, J., Hawkes, D., and Spector, T., (2003), Education and

Earnings: Evidence from UK Twins, American Economic Review, December, 1799-1812.

[12] Bound, J., Brown, C. and Mathiowetz, N. (2001), Measurement error in survey data,

in J.J. Heckman and E. Leamer (eds.), Handbook of Econometrics. Vol. 5, Amsterdam:

North-Holland, 3705-3843.

[13] Card, D. (1999), The Causal Effect of Education on Earnings, Handbook of Labor Eco-

nomics, Volume 3, Ashenfelter, A. and Card, D. (eds.), Amsterdam: Elsevier Science.

[14] Chevalier, A., Harmon, C., Walker, I. and Zhu, Y. (2003), Does education raise productiv-

ity?, University College Dublin Working Paper, ISSC, WP2003/01, Dublin.

[15] Conlon, G. (2001), The Differential in Earnings Premia between Academically and Vo-

cationally Trainined Males in the United Kingdom, Centre for Economics of Education

Discussion Paper No. 11.

[16] Dearden, L. (1999a), The Effects of Families and Ability on Men’s Education and Earnings

in Britain, Labour Economics, 6, 551–67.

36



[17] Dearden, L. (1999b), Qualifications and earnings in Britain: how reliable are conventional

OLS estimates of the returns to education?, IFS working paper W99/7.

[18] Dearden, L., McIntosh, S., Myck, M. and Vignoles, A. (2000), The Returns to Academic

and Vocational Qualifications in Britain, Centre for the Economics of Education Discussion

Paper No. 04.

[19] Dearden, L., McIntosh, S., Myck, M. and Vignoles, A. (2002), The Returns to Academic

and Vocational Qualifications in Britain, Bulletin of Economic Research, 54, 249-274.

[20] Del Bono, E. and Galindo-Rueda, F. (2004), Do a Few Months of Compulsory Schooling

Matter? The Education and Labour Market Impact of School Leaving Rules, IZA Discussion

Paper No. 1233

[21] Fisher, R.A. (1935), The Design of Experiments, Edinburgh: Oliver&Boyd.

[22] Frazis, H. and Loewenstein, M.A. (2002), Estimating Linear Regressions with Mismeasured,

Possibly Endogenous, Binary Explanatory Variables, Working Paper 355, U.S. Bureau of

Labor Statistics.

[23] Galindo-Rueda, F. and Vignoles, A. (2003), Class-Ridden or Meritocratic? An Economic

Analysis of Recent Changes in Britain, Centre for Economics of Education Discussion

Paper No. 32.

[24] Gosling, A., Machin, S. and Meghir, C. (2000), The changing distribution of male wages,

1966–93, Review of Economic Studies, 67, 635-666.

[25] Griliches, Z. (1977), Estimating the returns to schooling: some econometric problems,

Econometrica, 45, 1–22.

[26] Harmon, C. and Walker, I. (1995), Estimates of the Economic Return to Schooling for the

UK, American Economic Review, 85, 1278–86.

[27] Hausman, J.A., Abrevaya, J. and Scott Morton, F. (1998), Misclassification of the depen-

dent variable in a discrete response setting, Journal of Econometrics, 87, 239–269.

37



[28] Heckman, J.J. Lalonde, R. and Smith, J. (1999), The Economics and Econometrics of

Active Labor Market Programs, Handbook of Labor Economics, Volume 3, Ashenfelter, A.

and Card, D. (eds.), Amsterdam: Elsevier Science.

[29] Imbens, G.W. (2004), Semiparametric Estimation of Average Treatment Effects under

Exogeneity: A Review, Review of Economics and Statistics, 86, 4-29.

[30] Ives, R. (1984), School reports and self-reports of examination results, Survey Methods

Newsletter, Winter 1984/85, 4-5.

[31] Kane, T.J., Rouse, C. and Staiger, D. (1999), Estimating Returns to Schooling when School-

ing is Mismeasured, National Bureau of Economic Research Working Paper No. 7235.

[32] Lewbel, A. (2004), Estimation of Average Treatment Effects With Misclassification, un-

published manusctipt, Department of Economics, Boston College.

[33] Mahajan, A. (2003), Misclassified Regressors in Binary Choice Models, mimeo, Depart-

ment of Economics, Stanford University, October

[34] Manski, C. F. (1990), Nonparametric Bounds on Treatment Effects, American Economic

Review Papers and Proceedings, 80, 319-323.

[35] Matyas, L. (ed.) (1999), Generalized Method of Moments Estimation, Cambridge Univer-

sity Press.

[36] McIntosh, S. (2004), Further Analysis of the Returns to Academic and Vocational Qualifi-

cations, Centre for the Economics of Education Discussion Paper No. 35.

[37] Molinari, F. (2004), Partial Identification of Probability Distributions with Misclassified

Data, unpublished manusctipt, Department of Economics, Northwestern University.

[38] Neyman, J. (with co-operation by Iwaszkiewicz, K. and Kolodziejczyk, S.) (1935), Statis-

tical Problems in Agricultural Experimentation, Supplement of the Journal of the Royal

Statistical Society, 2, 107-180.

[39] Quandt, R. (1972), Methods for Estimating Switching Regressions, Journal of the American

Statistical Association, 67, 306-310.

38



[40] Robinson, P. (1997), The Myth of Parity of Esteem: Earnings and Qualifications, London

School of Economics, Centre for Economic Performance, Discussion Paper No. 354.

[41] Roy, A. (1951), Some Thoughts on the Distribution of Earnings, Oxford Economic Papers,

3, 135-146.

[42] Rosenbaum, P.R. and Rubin, D.B. (1983), The Central Role of the Propensity Score in

Observational Studies for Causal Effects, Biometrika, Vol. 70, No. 1, 41-55.

[43] Rubin, D.B. (1974), Estimating Causal Effects of Treatments in Randomised and Non-

randomised Studies, Journal of Educational Psychology, 66, 688-701.

[44] Rubin, D.B. (1980), Discussion of ’Randomisation analysis of experimental data in the

Fisher randomisation test’ by Basu, Journal of the American Statistical Association, 75,

591–3.

[45] Sianesi, B. (2003), Returns to Education: A Non-Technical Summary of CEE Work and

Policy Discussion, mimeo, June.

39



Proof of Proposition 1

By using (4) we have that

∆∗(x) =
[ −1 1

]
Π−1(x)

[
E(Y |D = 0)
E(Y |D = 1)

]
,

=
[ −1 1

] 1

det[Π(x)]

[
λ1(x) λ0(x)− 1

λ1(x)− 1 λ0(x)

] [
E(Y |D = 0)
E(Y |D = 1)

]
,

=
∆(x)

λ0(x) + λ1(x)− 1
.

The same result can be derived by noting that Assumption 3 implies

E(Y |D = 1, x) = E(Y |D∗ = 0, x) + ∆∗(x)λ1(x),

E(Y |D = 0, x) = E(Y |D∗ = 0, x) + ∆∗(x)λ10(x),

so that by taking the difference of the last two expressions

∆(x) = ∆∗(x)[λ1(x)− λ10(x)],

so that the result follows since λ10(x) = 1− λ0(x).

Proof of Proposition 2

Using Bayes theorem we get

f(x|D = 1) =
e(x)f(x)

Pr(D = 1)

f(x|D∗ = 1) =
e∗(x)f(x)

Pr(D∗ = 1)

where e(x) is the propensity score calculated from D. Since by the law of iterated expectations

we have

e∗(x) = [1− λ0(x)] + e(x)[λ0(x) + λ1(x)− 1] (13)

it follows that

f(x|D = 1) = f(x|D∗ = 1)
Pr(D∗ = 1)

[λ0(x) + λ1(x)− 1]Pr(D = 1)

+
[λ0(x)− 1]f(x)

[λ0(x) + λ1(x)− 1]Pr(D = 1)
.
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By combining the results above to (5) we get the first relationship stated in Proposition 2.

Moreover, using (13) and the fact that

Pr(D∗ = 1) =

∫
e∗(x)f(x)dx,

we have

Pr(D∗ = 1)

Pr(D = 1)
=

∫
[1− λ0(x)]f(x)dx∫

e(x)f(x)dx
+

∫
[λ0(x) + λ1(x)− 1]e(x)f(x)dx∫

e(x)f(x)dx
.
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Data appendix

Table 4: Sample selection

sample size
NCDS birth cohort 17,000

Non-missing education
1978 Exam Files 14,331
1981 Survey 12,537
1991 Survey 11,407
None missing 8,504

Males with non-missing wage in 1991 3,639
Non-missing wage in 1991 and education ever 2,713
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Table 5: Academic (and vocational) qualifications

School Files 1981 Survey 1991 Survey
Percent Sample Percent Sample Percent Sample

None 41.2 1,118 35.0 950 23.2 628
O (or eq) 37.1 1,006 38.4 1,042 25.7 698
A (or eq) 21.7 589 26.6 721 18.0 489
HE or eq 33.1 898

Only academic qualifications (below HE) for School files and the 1981 Survey

Table 6: Academic qualifications: conditional probabilities by qualifications in the School files

age 20 age 23, at 23 age 23, at 33 age 33, at 33
None O A None O A HE None O A HE

None 80.6 18.3 1.1 76.1 22.5 1.1 0.3 72.8 24.5 1.3 1.3
O 4.8 82.5 12.7 10.5 74.8 10.1 4.6 6.1 72.9 10.6 10.4

A+ 0.2 1.2 98.6 3.7 1.2 48.2 46.9 1.2 1.0 33.5 64.4

Table 7: Academic qualifications: sample size

age 20 age 23, at 23 age 23, at 33 age 33, at 33
None O A None O A HE None O A HE

None 901 205 12 851 252 12 3 814 274 15 15
O 48 830 128 106 752 102 46 61 733 107 105

A+ 1 7 581 22 7 284 276 7 6 197 379
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