

REALLOCATION EFFECTS OF THE MINIMUM WAGE

EALE | SOLE | AASLE World Conference June 25, 2020

Christian Dustmann (UCL) Attila Lindner (UCL) Uta Schönberg (UCL, IAB) **Matthias Umkehrer (IAB)** Philipp vom Berge (IAB)

MOTIVATION: INCREASING INEQUALITY

- Historically, strong safety net and high collective bargaining coverage in Germany (Dustmann et al., 2014)
- Collective bargaining agreements served as implicit wage floors
- Coverage declined from 82% in 1996 to about 55% in 2015
- Dramatic increase in wage inequality from the mid '90s (Dustmann et al., 2009; Antonczyk et al., 2010; Kügler et al., 2019)
 - the 90th percentile increased by nearly 20%
 - median wages rose by only 8%
 - the 10th percentile stagnated
- In response, Germany introduced hourly minimum wage (MW) of €8.50 in January 2015

MACROECONOMIC CONDITIONS

- Impact of the <u>introduction</u> of MW on **employment** and **wages**
- First analysis of **reallocation effects of MW**:
 - \rightarrow Do 'bad' firms exit the market?
 - \rightarrow Do workers reallocate to 'better' firms?

EMPIRICAL STRATEGY: VARIOUS DID ESTIMATIONS

Main strategy (Individual level)

- Similarly to Currie/Fallick (1996), we follow workers who earned wages below the MW prior to the introduction
- However, rather than using survey data we use employer-employee administrative data
- We carefully deal with differential labor market trajectories along the wage distribution by using pre-MW introduction years

Complementary strategy (Local labor market level)

 Similarly to e.g. Card (1992), we exploit the variation in the bite of MW across local labor markets

MAIN FINDINGS

- Positive and significant effect on wages, no indication for significant disemployment effects
- MW leads to reallocation of workers to
 - firms paying higher wages and with higher AKM fixed firm effects
 - firms with higher full-time share/lower marginal employment share
 - larger firms
 - firms with higher share of skilled worker
 - firms with lower turnover
 - firms with more productive workforce
- At highly exposed locations, MW leads to
 - a decrease in the number of firms
 - an increase in average firm size
 - an increase in average AKM firm FEs and in average productivity of firms

MAIN FINDINGS

- Positive and significant effect on wages, no indication for significant disemployment effects
- MW leads to **reallocation of workers** to
 - firms paying higher wages and with higher AKM fixed firm effects
 - firms with higher full-time share/lower marginal employment share
 - larger firms
 - firms with higher share of skilled worker
 - firms with lower turnover
 - firms with more productive workforce
- At highly exposed locations, MW leads to
 - a decrease in the number of firms
 - an increase in average firm size
 - an increase in average AKM firm FEs and in average productivity of firms

MAIN FINDINGS

- Positive and significant effect on wages, no indication for significant disemployment effects
- MW leads to **reallocation of workers** to
 - firms paying higher wages and with higher AKM fixed firm effects
 - firms with higher full-time share/lower marginal employment share
 - larger firms
 - firms with higher share of skilled worker
 - firms with lower turnover
 - firms with more productive workforce
- At highly exposed locations, MW leads to
 - a decrease in the number of firms
 - an increase in average firm size
 - an increase in average AKM firm FEs and in average productivity of firms

- IAB employer-employee history administrative data
 - information on individual gross earnings and hours worked
 - working hours reported to German accident insurances separately for each single employment relationship (available between 2011-2014)
- Covers 2011-2016
- Sample restrictions, we exclude:
 - those younger than 18 and apprentices; not affected by the MW introduction
 - those older than 59; as their labor force participation is mainly driven by retirement incentives

INDIVIDUAL APPROACH: IMPACT ACROSS THE WAGE DISTRIBUTION

- Effect of the minimum wage by previous wage (Abowd et al. 2000; Currie/Fallick 1996; Clemens/Wither 2019)
- We assign workers to a EUR wage bin w based on hourly wage in t-2

$$\Delta^2 \mathbf{y}_{it} = \sum_{w} \gamma_{wt} D_{w_{i(t-2)}} + \beta X_{i,t-2} + e_{it}$$

- $D_{W_{i(t-2)}}$ equal to 1 if worker *i* falls into wage bin *w*
- X_{it-2} : age, gender, full-time status, industry, education, ...
- $\Delta^2 y_{it} = \log(wage)_{it} \log(wage)_{it-2} \text{ or } \Delta^2 y_{it} = Emp_{it} Emp_{it-2}$

INDIVIDUAL APPROACH: EFFECTS RELATIVE TO 2013 VS 2011

• Estimated Regression:

$$\Delta^2 y_{it} = \sum_{w} \delta_{wt} D_{w_{i(t-2)}} \times YEAR_t + \sum_{w} \gamma_{w2013} D_{w_{i(2011)}} + \beta X_{i,t-2} + e_{it}$$

- δ_{wt} corresponds to: $\gamma_{wt} \gamma_{w2013}$
- For *t* = 2015, 2016: effects of the minimum wage policy
- For t = 2014: placebo period \rightarrow coefficients should be close to zero

INDIVIDUAL APPROACH: WAGE EFFECTS RELATIVE TO 2013 VS 2011

INDIVIDUAL APPROACH: WAGE EFFECTS RELATIVE TO 2013 VS 2011

GENERALIZED DIFFERENCE-IN-DIFFERENCES

	(1)	(2)
Wage bin in t-2	Bottom vs Top	Middle vs Top
Panel (a): (Proxied) Hourly Wages		
2016 vs 2014	0.061	0.016
	(0.0019)	(0.0005)
2014 vs 2012 (Placebo)	0.010	0.003
	(0.0007)	(0.0004)
Panel (b): Employment (1 if emplo	yed)	
2016 vs 2014	0.007	0.001
	(0.0005)	(0.0003)
2014 vs 2012 (Placebo)	0.002	-0.001
	(0.0004)	(0.0003)

- Changes relative to
 - 2013 vs 2011

- Тор

- **Bottom**: less than 8.50 Euro per hour (treatment group)
- **Middle**: between 8.50 Euro and 12.50 Euro per hour (partially treated group)
- **Top**: more than 12.50 Euro per hour (control group)

INDIVIDUAL APPROACH: EMPLOYMENT

INDIVIDUAL APPROACH: EMPLOYMENT EFFECTS RELATIVE TO 2013 VS 2011

GENERALIZED DIFFERENCE-IN-DIFFERENCES

	(1)	(2)			
Wage bin in t-2	Bottom vs Top	Middle vs Top			
Panel (a): (Proxied) Hourly Wages					
2016 vs 2014	0.061	0.016			
	(0.0019)	(0.0005)			
2014 vs 2012 (Placebo)	0.010	0.003			
	(0.0007)	(0.0004)			
Panel (b): Employment (1 if employed)					
2016 vs 2014	0.007	0.001			
	(0.0005)	(0.0003)			
2014 vs 2012 (Placebo)	0.002	-0.001			
	(0.0004)	(0.0003)			

- Changes relative to
 - 2013 vs 2011

- Тор

- **Bottom**: less than 8.50 Euro per hour (treatment group)
- **Middle**: between 8.50 Euro and 12.50 Euro per hour (partially treated group)
- **Top**: more than 12.50 Euro per hour (control group)

WORKER REALLOCATION

• We measure change in firm quality:

$$\Delta^2 \mathbf{y}_{it} = q_{j(i,t),i}^{t-2} - q_{j(i,t-2),i}^{t-2}$$

• where $q_{j(i,t),i}^{t-2}$ is the time t-2 characteristics of firm j where worker i is employed in year t

\rightarrow Any changes in firm quality induced by the minimum wage reflect compositional changes only

- For firm stayers: $q_{j(i,t),i}^{t-2} q_{j(i,t-2),i}^{t-2} = 0$
- Estimated Regression:

$$q_{j(i,t),i}^{t-2} - q_{j(i,t-2),i}^{t-2} = \sum_{w} \delta_{wt} D_{w_{i(t-2)}} \times YEAR_t + \sum_{w} \gamma_{w2013} D_{w_{i(2011)}} + \beta X_{i,t-2} + e_{it}$$

MOVEMENT TO FIRMS WITH HIGHER DAILY WAGE

MOVEMENT TO FIRMS PAYING A HIGHER WAGE PREMIUM

MOVEMENT TO FIRMS WITH A MORE SKILLED WORKFORCE

MOVEMENT TO FIRMS WITH MORE FULL-TIME

LESS MARGINAL WORKERS

AND

MOVEMENT TO FIRMS WITH LOWER WORKER TURNOVER

MOVEMENT TO LARGER FIRMS

MOVEMENT TO FIRMS WITH HIGHER AKM FIXED FIRM EFFECTS

MOVEMENT TO FIRMS WITH MORE PRODUCTIVE WORKERS

COMPLEMENTARY EVIDENCE ON REALLOCATION AT **REGIONAL LEVEL**

Reallocation and the Minimum Wage // Seite 31

• Exposure to the minimum wage at time *t* at location g: $GAP_{gt} = \frac{\sum_{i \in g} h_{it} \min\{0, MW - w_{it}\}}{\sum_{i \in g} h_{it} w_{it}}$

→ calculates the percentage increase in wages that is needed to comply with the minimum wage law for an average worker

• Average over 3 pre-introduction years:

$$\overline{GAP_g} = \frac{1}{3} \sum_{t=2011}^{2013} GAP_{gt}$$

REGIONAL VARIATION IN EXPOSURE TO MW

REGIONAL APPROACH: DIFFERENCE-IN-DIFFERENCES EVENT STUDY

• We estimate the following equation:

$$Y_{rt} = \alpha_r + \zeta_t + \sum_{\tau=2011, \tau\neq 2014}^{2016} \gamma_\tau \,\overline{GAP_r} \times YEAR_\tau + \epsilon_{rt}$$

REGIONAL APPROACH: DISTRICTS' AVERAGES WAGES

REGIONAL APPROACH: DISTRICTS' AVERAGES WAGES – DETRENDED

REGIONAL APPROACH: DISTRICTS' EMPLOYMENT – DETRENDED

REGIONAL APPROACH: FIRM SIZE – DETRENDED

REGIONAL APPROACH: NUMBER OF SMALL FIRMS – DETRENDED

REGIONAL APPROACH: NUMBER OF SMALL FIRMS EXITING – DETRENDED

REGIONAL APPROACH: AKM FIXED FIRM EFFECT – DETRENDED

Reallocation and the Minimum Wage // Seite 41

REGIONAL APPROACH: PRODUCTIVITY OF FIRMS – DETRENDED

Reallocation and the Minimum Wage // Seite 42

Introduction of minimum wage:

- increased wages (at the bottom)
- did not lead to dis-employment effects
- lead to a reallocation of workers to better firms
- improved firm composition

THANK YOU

matthias.umkehrer@iab.de

APPENDIX

Reallocation and the Minimum Wage // Seite 46

BITE OF THE MINIMUM WAGE

• Germany:

Fraction earning less than 8.50 EUR/hour

	Project	VSE	SOEP
All	12.2	11.3	13.4
West	10.6	9.3	11.7
East	19.3	20.7	17.8

• International Comparison of the Ratio of MW to Median Wage (OECD)

	German	Spain	France	UK	USA
2015	0.48	0.37	0.61	0.49	0.36

MAGNITUDE OF THE REALLOCATION EFFECTS

- Effect of the MW on daily wages is 10.7%
- Average daily wage increased by 2.5%
- The firm's daily wage can increase:
 - Moving to firms which offer better jobs (full-time instead of marginal)
 - Moving to firms that increase hourly wages
- Effect of the MW on hourly wages is 6.1%
- Wage premium increases by 0.5%

25% of the daily wage increase can be attributed to reallocation

8.2% of the hourly wage increase can be attributed to reallocation

MAGNITUDE OF THE REALLOCATION EFFECTS

- Effect of the MW on daily wages is 10.7%
- Average daily wage increased by 2.5%
- The firm's daily wage can increase:
 - Moving to firms which offer better jobs (full-time instead of marginal)
 - Moving to firms which pay higher wage per hour
- Effect of the MW on hourly wages is 6.1%
- Wage premium increases by 0.5%

8.2% of the hourly wage increase can be attributed to reallocation

25% of the daily wage increase can be attributed to reallocation

- → common feature of models that deviate from competitive benchmark
- 1) Search frictions: e.g. Acemoglu (2001)
- 2) Monopsony power: Manning (2003); Bhaskar et al. (2002); more recently: Berger et al. (2019)
- 3) Product market frictions: consumers switch like in Luca/Luca (2018) and in Mayneris et al. (2014)
- 4) Friction to access technology: Williamson's (1968) 'Wage Rates as Barriers to Entry Model'

Search frictions

- Acemoglu (2001): low paying ('bad' jobs) and high paying ('good' jobs) can coexist in DMP search model
- MW will destroy 'bad' jobs and create 'good' (capital intensive) ones
- Test this by proxying **capital intensity** with:
 - AKM FEs
 - the share of high-skilled workers
- MW leads to reallocation in terms of both measures

Monopsony power

- Monopsonistic/Oligopsonistic competition models also predict reallocation
- Card et al. (2018) argue that monopsony power emerges if workers have idiosyncratic, non-pecuniary preferences to work at a particular firm
 → Leading candidate: commuting time from home
- We find evidence for an increase in **commuting distance**

Product market frictions

• Friction on the output market can also lead to reallocation (Luca/Luca, 2018; Mayneris et al., 2014)

Labor cost $\uparrow \rightarrow$ least efficient firms exit \rightarrow consumers reallocate \rightarrow \rightarrow labor demand also reallocates given increasing demand for goods at given firm

- Consumer driven reallocation is likely to be stronger in the non-tradable sector
- We find that **reallocation is larger in the non-tradable sector**

ADJUSTMENT OF WORKING HOURS

	2011		2014	
	unadjusted	adjusted	unadjusted	adjusted
All	26,7	30,3	26,5	30,1
Full-time	34,8	39,8	34,8	39,7
Part-time	22	24,9	21,8	24,6
Marginally employed	8,4	9,2	8,3	9,1

WORKING HOURS - COMPARISON WITH SES

	_	All		
		BEH,	CEC	
		adjusted	363	
Full-time	_			
	All	38,8	39,1	
	Men	38,9	39,1	
	Women	38,5	39	
Part-time				
	All	24,3	23,9	
	Men	25,2	23,8	
	Women	24	23,9	
Marginally employed				
	All	8,7	8,2	
	Men	8,6	8	
	Women	8,7	8,2	