Wage Inequality, Labor Market Participation and Unemployment – Testing the Implications of a Search-Theoretical Model with Regional Data

Joachim Möller Alisher Aldashev

Universität Regensburg www.wiwi.uni-regensburg.de/moeller/

Stand und Perspektiven der Regionalforschung - Regensburg, 08.-11. November, 2004

Participation rates

Unemployment vs. participation (all workers)

(3)

Unemployment vs. participation (female workers)

(4)

Structure

- Search-theoretical model
- Data
- Econometric Approach
- Results
- Conclusions

Search-theoretical model: Basic settings

(8)

Extension of standard search-theoretical approach (McCall, Mortensen, Pissarides)

- job offers as random drawings from a job offer distribution
- dynamic optimization approach
- model in continuous time

Specific characteristics here

- job offer arrival rate influenced by search intensity
- possibility of separations
- exclusion of on-the-job search

Search-theoretical model: Assumptions

- Wage offer distribution is time invariant and known to agents
- Jobs are different with respect to wages only
- Individuals live forever
- Agents are wealth-maximizing (risk neutrality)

(9)

Search-theoretical model: Specifications

W Population *P*, number of job-seekers *S*, number of vacancies *V*;
W Search costs *c* and job arrival rate λ depend on search intensity θ:

$$c = c(\theta) = c_0 + \frac{1}{2}C\theta^2$$

and

$$\lambda = \lambda (\theta) = \theta \frac{V}{S}$$

Choose optimal $\theta \rightarrow \theta^*$

Search-theoretical model: Basic Relations

(i) special case $\sigma = 0 \rightarrow$

W Value of employment: $W(w) = \frac{1}{\delta}(w)$ (present value of an infinite stream of income *w*) (ii) $\sigma > 0 \rightarrow$

W Value of employment: $W(w) = \frac{1}{\delta + \sigma} (w + \sigma \Omega)$,

where $\Omega(\cdot)$ is the value of search:

W Reservation wage r :

$$\frac{r}{\delta} = \Omega \rightarrow r = \delta \Omega$$

Search-theoretical model: Basic Relations

(12)

W Reservation wage:

$$r = \delta \Omega = b - c(\theta^*) + \lambda(\theta^*) \frac{K(r)}{\delta + \sigma}$$
(1)

- δ : discount rate; σ : separation rate;
- *b*: income in case of unemployment
- θ^* : optimal search intensity

$$K(r) := \overline{w} - r + \int_{0}^{r} F(w) dw > 0$$

Comparative static results (1)

W Using FOC of optimal search intensity + substituting functions for search costs and job arrival rate in eq.(1)

$$\left| \rightarrow \Phi(r;\cdot) = b^{U} + \frac{1}{2C} [\varkappa_1 K(r)]^2 - r = 0 \quad (1')$$

with $\varkappa_1 := \frac{V}{S(\delta + \sigma)}; \quad b^U := b - c_0$

Comparative static results (1)

From

$$\Phi(r;\cdot) = b^{U} + \frac{1}{2C} [\kappa_1 K(r)]^2 - r = 0 \qquad (1')$$

and $\Phi_r < 0$ one obtains the comparative static results

$$\frac{\partial r}{\partial (V/S)} > 0, \quad \frac{\partial r}{\partial C} < 0, \quad \frac{\partial r}{\partial \sigma} < 0, \quad \frac{\partial r}{\partial \delta} < 0$$
$$0 < \frac{\partial r}{\partial b^{u}} < 1$$

Introducing a mean-preserving spread (1)

Introducing a mean-preserving spread (2)

(16)

We include a spread parameter in the wage offer

distribution:
$$F(w; s)$$
 with $\frac{\partial}{\partial s} \int_{0}^{x} F(w, s) dw \ge 0 \quad \forall x > 0$

Formal definition of a *mean preserving spread* :

For any pair of s_1 and s_2 with $s_1 < s_2$:

$$\int_{0}^{\infty} w dF(w, s_{1}) = \int_{0}^{\infty} w dF(w, s_{2}); \quad \int_{0}^{X} F(w, s_{1}) dw \leq \int_{0}^{X} F(w, s_{2}) dw$$

Effect on the reservation wage

Result:

Reservation wage increases with spread:

$\frac{\partial r}{\partial s} > 0$

Interpretation:

The spread increases the value of search !

Modelling participation behavior (1)

(i) Introducing heterogeneity:

Individuals differ with respect to the value of leisure 1. (ii) Differentiating between unemployment (U) and non-participation (N) two types of transfers:

W unemployment benefits: t^{U} W social assistance: t^{n} wealth in both cases:

(U) :
$$b_i^U = 1_i + t^U - c_0$$

(N) :
$$b_i^n = 1_i + t^n$$

(19)

Modelling participation behavior (2)

Comparing non-participating and unemployment without searching for a job:

(N) – (U):
$$v := b_i^n - b_i^u = t^n - t^u + c_0$$

Two conditions are required to

prevent corner solutions:

(a) v > 0 for a participation rate $\pi < 1$

(b) $1^{\min} + v < w^{\max}$ for $\pi > 0$.

Modelling participation behavior (3)

A critical value of leisure $\frac{1}{10}$ > 0 exists,

- $1_i < h \to person participates on the labor market$
- $1_i > 1_i \rightarrow 1_i \rightarrow 1_i$ person does not participate
- $1_i = 1^{\circ} \rightarrow \text{ person is indifferent}$

between participating and not.

 \rightarrow Participation indifference condition:

$$P' = r(P) = B' + v$$

(21)

Modelling participation behavior (4)

G(1): distribution function of the value of leisure in the population

$$\rightarrow \pi := G(\dot{P}) \quad \text{with} \quad \frac{\partial \pi}{\partial \dot{P}} > 0$$

 π : participation rate

Comparative static results (1)

The following results can be derived:

 $\frac{\partial \vec{\mathbf{P}}}{\partial \vec{w}} > 0 \rightarrow \text{participation increases with the mean wage}$

$$\frac{\partial \tilde{\mathbf{f}}^{0}}{\partial \delta} < \mathbf{0}; \quad \frac{\partial \tilde{\mathbf{f}}^{0}}{\partial \sigma} < \mathbf{0}; \quad \frac{\partial \tilde{\mathbf{f}}^{0}}{\partial \nu} < \mathbf{0}; \quad \frac{\partial \tilde{\mathbf{f}}^{0}}{\partial C} < \mathbf{0}$$

 $\frac{\partial f'}{\partial s} > 0 \rightarrow$ participation increases with the spread

Extensions: Endogenous S

The number of job seekers is endogenous

 $S := \pi P = G(P)P,$

where *P* is population.

- \rightarrow Sign of comparative static effects
- not affected, but dampening effect.

Extensions: Unemployment (1)

Unemployment hazard rate

$$\varphi_i(r_i, \mathbf{S}) = \lambda \left(\begin{array}{c} \theta_i^* \\ \mathbf{S} \end{array} \right) \times$$

$$\begin{bmatrix} 1 - F(r_i, s) \\ 44 2 4 4 \end{bmatrix}$$

job offer arrival rate probability that offer will exceed the reservation wage

where $\theta_i^* := \theta_i^* (r_i, s)$

Equilibrium unemployment rate for type *i* workers

$$\rightarrow u_i^* = \frac{\sigma}{\varphi_i + \sigma} = \frac{\sigma}{\lambda \left[\theta_i^*(r_i, s)\right] \left[1 - F(r_i, s)\right] + \sigma}$$

Value of leisure/ reservation wage

(25)

Value of leisure/ unemployment

(26)

Reservation wage / unemployment

Results

- The aggregate unemployment rate
- is unaffected by the spread !
- [the unemployment rate does not depend on
- the first and second moment of the
- wage offer distribution]
- However, since participation increases
- with the spread,
- the employment-to-population rate increases
- with a higher spread:

(29)

Inequality and Unemployment (male, West)

Results (2)

One can show:

 $u^* \cong \frac{\sigma}{\delta + \sigma}$

- \rightarrow unemployment rate
- W increases with the separation rate σ
- W falls with the discount rate δ .
- → if δ. is constant across regions, the regional unemployment rate can be used as an indicator of the separation rate

Summary of theoretical model

participation (labor-force-to-population ratio)

increases with

- Wthe wage level
- Whe spread in the wage offer distribution

and decreases with

Wjob insecurity (separation rate) as

measured by the unemployment rate

Data

Sources:

- (i) INKAR: (aggregate) regional data on NUTS 3 level(ii) IAB-REG: 1% random sample of social securitydata with regional information
- Data for 1997
- 439 NUTS 3 regions

(excluding East and West Berlin)

ε_r is an error term

SPREAD1 (2): log differences D5-D2 (D8-D5)

- u_r : unemployment rate
- w_r : average wage level in region r

(allowing for different parameters in EAST and WEST)

+ regional type dummies $+\varepsilon_r$

 $+ \alpha_4 SPREAD2_r$

 $\pi_r = \alpha_0 + \alpha_1 \ln w_r + \alpha_2 u_r + \alpha_3 SPREAD1_r$

Estimated equation:

Empirical model (2)

Estimation with spatial econometrics methods

W testing for spatial lag model (SLM)

 $y = \rho W y + X\beta + \varepsilon$

W and spatial error dependence model (SEM)

$$y = X\beta + \varepsilon$$
 and $\varepsilon = \lambda W\varepsilon + \varepsilon^*$

W is a spatial weight matrix;

data on commuter streams used for W; 2 variants: W row normalzing (ROW)

W normalizing rows and columns (RAS method)

Test statistics

	spati	al lag	spatial error dep.			
	male workers					
	ROW	RAS	ROW	RAS		
spatial correlation	-0.314**	-0.125 ^(*)	0.340**	0.387 **		
parameter	(0.068)	(0.071)	(0.061)	(0.061)		
	test statistics					
	H_0 :	$\varrho = 0$	H_0 : $\lambda = 0$			
Double-length						
artificial regression	20.319 **	3.059 ^(*)	4.266 *	7.463 **		
$\left[\chi^{2}\left(1\right)\right]$						
Likelihood-ratio test	20 770**	2 0 0 4 (*)	0 004**			
$\left[\chi^{2}\left(1\right)\right]$	20.770***	3.084 \``'	9.891	14.776***		
	female workers					
spatial correlation	-0.210**	-0.110 ^(*)	-0.075	-0.086		
parameter	(0.067)	(0.066)	(0.074)	(0.072)		
	test statistics					
	H_0 :	$\varrho = 0$	$H_0: \lambda = 0$			
Double-length						
artificial regression	9.561**	2.739 ^(*)	0.574	0.925		
$\left[\chi^{2}\left(1\right)\right]$						
Likelihood-ratio test	0 675**	0 750 (*)	0 726	4 4 9 4		
$\left[\chi^{2}\left(1\right)\right]$	9.075."	∠. / 38`"'	0.730	1.121		

Participation rates of female workers (West)

(36)

	dependent variable :					
	labor-force-to-population ratio (in percent)					
	OLS	spatial lag		spatial error		
		ROW**	RAS(*)	ROW	RAS	
	West German Regions					
constant	46.522	56.711	51.679	46.545	46.507	
unemployment rate	-0.521	-0.560	-0.527	-0.509	-0.503	
ln wage	0.088	0.098	0.090	0.084	0.085	
ln(D5/D2)	-7.426	-7.219	-7.603	-7.490	-7.626	
ln((D8/D5)	-5.869	-4.447	-5.465	-6.179	-6.068	
KT1	0.974	0.468	0.645	0.909	0.855	
KT2	-4.354	-4.327	-4.400	-4.291	-4.260	
KT3	-3.406	-3.259	-3.427	-3.234	-3.172	
KT4	-1.702	-1.916	-1.872	-1.781	-1.775	
KT5	4.832	4.195	4.478	4.461	4.536	
KT6	-0.654	-0.534	-0.598	-0.587	-0.522	
KT7	-0.543	-0.479	-0.511	-0.507	-0.444	
KT8	0.860	1.028	0.939	0.872	0.909	
N	327					

Participation rates of female workers (East)

	East German Regions					
constant	61.506	74.249	68.189	61.516	61.551	
unemployment rate	-0.345	-0.321	-0.336	-0.339	-0.342	
ln wage	0.161	0.162	0.162	0.157	0.157	
$\ln(D5/D2)$	0.508	0.983	0.642	0.639	0.400	
ln((D8/D5)	1.948	2.523	2.661	1.836	1.990	
KT1	0.751	0.293	0.570	0.563	0.563	
KT2	-0.003	0.275	-0.004	-0.094	-0.073	
KT3	-0.740	-0.374	-0.754	-0.801	-0.765	
KT4	-5.148	-5.115	-5.182	-5.210	-5.215	
KT5	2.980	2.525	2.792	2.690	2.691	
KT6	0.037	0.154	0.057	-0.014	0.011	
KT7	-1.089	-0.936	-1.055	-1.114	-1.117	
KT8	-1.745	-2.422	-2.037	-1.807	-1.816	
Ν	111					
s.e.	6.171	5.984	6.141	6.047	5.983	
In Likelihood	-1349.166	-1344.329	-1347.790	-1348.798	-1348.606	

Conclusions

Participation behavior across regions can be reasonably explained by the model

Evidence for spatial correlation

- Strong persistence effects are present in the behavior of female workers in East Germany
- Unemployment reduces participation of men, but for females only in the West

□ If anything, the spread in the wage distribution affects participation negatively; → contradiction to theory!