
Automating Survey Coding for
Occupation

Malte Schierholz

10/2014

Automating Survey Coding for Occupation

Malte Schierholz (Institut für Arbeitsmarkt- und Berufsforschung)

Die FDZ-Methodenreporte befassen sich mit den methodischen Aspekten der Daten des

FDZ und helfen somit Nutzerinnen und Nutzern bei der Analyse der Daten. Nutzerinnen

und Nutzer können hierzu in dieser Reihe zitationsfähig publizieren und stellen sich der

öffentlichen Diskussion.

FDZ-Methodenreporte (FDZ method reports) deal with methodical aspects of FDZ data

and help users in the analysis of these data. In addition, users can publish their results in

a citable manner and present them for public discussion.

FDZ-Methodenreport 10/2014 2

Contents

Zusammenfassung . 4

Abstract . 4

1 Introduction . 1

2 Background . 3
2.1 Coding Examples . 3
2.2 Code Structures and Classifications . 3

2.2.1 German Classification of Occupations 2010 5
2.3 Coding Options: Manual or Automatic . 8
2.4 Techniques for Automated Coding . 10

2.4.1 Rule-Based Coding . 11
2.4.2 Data-Based Coding with Supervised Learning Techniques 12

2.5 Coding Evaluation . 13
2.5.1 Quality of Occupation Coding . 16

3 Data Analysis . 19
3.1 Description of Survey Data . 19

3.1.1 Job Codes . 21
3.2 Methods for Automated Coding . 23

3.2.1 Rule-based Coding . 28
3.2.2 Naive Bayes . 29
3.2.3 Bayesian Categorical . 34
3.2.4 Combined Methods (Boosting) 39

4 A Prototype for Computer-Assisted Coding . 47

5 Conclusion and Perspectives . 50

References . 52

A Diagrams . 59

B Exemplary Job Category Suggestions . 61

FDZ-Methodenreport 10/2014 3

Zusammenfassung

In vielen Umfragen ist es üblich den Beruf mit offenen Fragen zu erheben. Nach der Befra-

gung müssen diese Texte in eine Klassifikation mit hunderten Kategorien und tausenden

Berufen eingeordnet (kodiert) werden. Diese Aufgabe ist nicht nur zeitaufwändig und da-

her teuer, sondern auch fehleranfällig. Dieser Bericht stellt internationale Forschung zur

Berufskodierung zusammen, wobei die automatische Berufskodierung besondere Beach-

tung findet.

Eine weitverbreitete Methode zur automatischen Kodierung besteht darin, in einem Wörter-

buch den korrekten Code nachzuschlagen. Im Gegensatz dazu sind datenbasierte Metho-

den hier hauptsächlich von Interesse. Dabei werden bereits kodierte Antworten verwendet

um damit die Codes für neue Antworten vorherzusagen. Vier verschiedene Kodiermetho-

den werden an zwei Datensätzen getestet: (1) Regelbasierte Kodierung unter Verwendung

eines Wörterbuchs, (2) datenbasiertes Naive Bayes, welches zur Kodierung von Antworten

mit mehreren Wörtern gedacht ist, (3) datenbasiertes Bayesian Categorical verbessert die

Kodierqualität, wenn nur wenige Antworten bereits zuvor kodiert wurden, und (4) Combined

Methods (Boosting) verknüpft die Vorhersagen aus den drei zuvor genannten Methoden.

Mit dem vorgestellten Bayesian Categorical Modell können 38% der Antworten bei einer

Fehlerrate von 3% vollautomatisch kodiert werden. Bei allen übrigen Antworten braucht

es den menschlichen Verstand um den korrekten Code bestimmen. Ein Computerpro-

gramm kann die Entscheidung des Menschen unterstützen, indem es mögliche Berufs-

codes vorschlägt. Der Prototyp einer solchen Software wird vorgestellt. Dieses Programm

könnte hilfreich für 74% aller Antworten sein, nämlich dann wenn der korrekte Code unter

den fünf besten Vorschlägen enthalten ist. Die Trainingsdaten, die hier zur Vorhersage

verwendet wurden, waren mit 32882 kodierten Antworten vergleichsweise klein. Die oben

genannten Kennziffern lassen sich vermutlich noch verbessern, wenn zusätzliche Train-

ingsdaten vorhanden wären.

Abstract

Currently, most surveys ask for occupation with open-ended questions. The verbatim re-

sponses are coded afterwards into a classification with hundreds of categories and thou-

sands of jobs, which is an error-prone, time-consuming, and costly task. Research related

to the coding of occupations is summarized with an international literature review. Special

attention is paid to our main topic, the automation of coding.

A prominent approach for automated coding is to consult a dictionary on the correct code.

In contrast, we focus on data-based methods where codes for new answers are predicted

from those answers that are already coded. Four different coding methods are tested

on two data sets: (1) Rule-based Coding that consults a dictionary, (2) data-based Naive

Bayes that allows coding for text answers with multiple words, (3) data-based Bayesian Cat-

egorical is used to improve performance when relatively few answers were coded before,

and (4) Combined Methods (Boosting) combining predictions from the first three methods.

FDZ-Methodenreport 10/2014 4

The proposed Bayesian Categorical model is able to code 38% of all answers at 3% error

rate without human interaction. In all remaining cases or for higher quality human intellect is

needed to decide on the correct code and computer software can only assist by suggesting

possible job codes. With the prototype software we developed for this task, we expect that

for 74% of all answers the correct category is provided within the top five code suggestions.

The training data used for prediction consists of only 32882 coded answers which is small

compared to other systems with similar purpose. The proportions given above are expected

to improve with additional training data.

Keywords: Coding, Occupation, Machine Learning, Questionnaire Design

Origin: This report has emerged as a master thesis in Statistics at the University of Munich.

FDZ-Methodenreport 10/2014 5

1 Introduction

Surveys are a well-established instrument to collect information about society, living con-

ditions, people’s background, or their environment. Most survey questions are written in a

closed format and respondents mark the best-fitting category. An example for this is the

question about sex with two standard categories "male" and "female", and a third category

"indeterminate", which is most adequate for intersex people, often missing. The definition

of answer categories prior to field measurements may be problematic or the sheer number

of possible categories prohibits the use of a closed question. An alternative is then to ask

open-ended questions and record the exact verbatim answer given from the respondent.

For statistical analysis it is necessary to assign these answers to categories. While this is

done by the respondents themselves for closed questions, this task is laborious for open-

ended questions. Traditionally, interviewers or clerks, sometimes called "coders", have

been employed to do this time-consuming coding job.

The application of open-ended questions is tempting for social scientists. There is no need

to define answer categories, and respondents are not influenced from predefined cate-

gories. Nevertheless, closed questions are often preferred to circumvent high coding costs

(cf. Reja et al. (2003)). Closely related to survey coding is content analysis which "has

been defined as a systematic, replicable technique for compressing many words of text

into fewer content categories based on explicit rules of coding" (Stemler, 2001). Its aim

is more general than survey coding in the sense that whole documents instead of respon-

dent’s answers need to be classified into categories. The problem is still the same. For

the large number of documents to be categorized it would be helpful to cut costs with auto-

mated coding methods. Scharkow (2012) applies machine learning methods for automated

content analysis.

Our goal is to facilitate survey coding using machine learning methods. The idea is to use

answers that were coded before to predict correct codes for new answers. These methods

are continuously and successful applied for survey coding in other countries whereas the

German coding praxis is lagging behind.

In our study we focus on the coding of employments. The same problem was addressed

internationally multiple times but as we are concerned with German employments, we need

to account for some special characteristics. The current official German employment clas-

sification consists of 1286 well-defined job categories, more than in most other countries.

For a detailed ascertainment and coding into the correct category, German surveys often

ask not one but two or three open-ended questions on the employment. The adaption of

automatic prediction methods to the German environment is further complicated by the fact

that our training data consists of only 32882 job records, far less than what is available in

comparable systems. With the proposed methods for automated occupation coding we try

to address this problem of limited training data. Though, better performance will require

additional training data.

This report is organized as follows. In section 2 we provide a literature review and theoreti-

cal considerations about automated coding. Special attention is paid to employment coding

FDZ-Methodenreport 10/2014 1

and quality control. The main part of our work is in section 3. Four different techniques for

automated coding are described. The performance from these prediction methods is tested

on two data sets that have employments already coded. We believe most helpful for Ger-

man employment coding will be a computer system that suggests possible job categories

to human coders who decide which category is correct. A prototype for this is described in

section 4.

FDZ-Methodenreport 10/2014 2

2 Background

2.1 Coding Examples

A multiplicity of different response types requires coding. Hacking/Willenborg (2012), for

example, list multiple variables that are coded at Statistics Netherlands: Education, oc-

cupation, articles, shops, industrial sector, job vacancy, important political problems, and

causes of death. Groves et al. (2009) name some frequently used classification systems

where coding is necessary: The Standard Occupational Classification, the North American

Industry Classification System, the International Classification of Diseases, and the Diag-

nostic and Statistical Manual for Mental Disorders. For most of the examples above, coding

is necessary, because the high number of target categories makes it impractical to present

all of them to the respondent. For other variables, including the following, the researcher

wants to avoid that respondents are influenced from predefined answer categories.

DeBell (2013) describes open-ended question coding on the American National Election

Studies (ANES) asking "’what job or political office’ is now held by various prominent offi-

cials". The answers have been coded into four categories to distinguish misinformed, un-

informed, partially informed, and fully informed respondents. The author laments on prob-

lematic coding practices that "support only the simplest and grossest inferences" (quote

from Gibson/Caldeira (2009)) and develops new coding rules to counter this "data analysis

crisis".

Esuli/Sebastiani (2010) apply coding to multiple market research problems. They give an

exemplary question "What is your favourite soft drink?" that respondents answer typically

with a product or brand name.

Groves et al. (2009) point out that coding is not only done for textual responses. There

is more nonnumeric data collected in surveys that needs a numeric value assigned, e.g.,

visual images, sounds, soil or blood samples, or geographical data (respondent’s position)

to be coded into some geographic unit.

2.2 Code Structures and Classifications

Coding is the process of transforming nonnumeric material to a numeric code. Groves et

al. (2009) call it both "an act of translation and an act of summarization". When there exists

an one-to-one mapping between the original material and the target code, the mapping

can be carried out without problems. When, however, "frameworks are mismatched, the

translation task can be complex and subject to error". For the summarization part, someone

has to decide "whether two verbal representations are equivalent" and what the "level of

summarization" should be. Taken together, the code structure is central to the problem of

coding and shall be described in more detail here.

For the construction of new code structures, Groves et al. (2009) give some general rules

for codes to be useful:

FDZ-Methodenreport 10/2014 3

1. "A unique number, used later for statistical computing

2. A text label, designed to describe all the answers assigned to the category

3. Total exhaustive treatment of answers (all responses should be able to be assigned

to a category)

4. Mutual exclusivity (no single response should be assignable to more than one cate-

gory)

5. A number of unique categories that fit the purposes of the analyst". It is suggested

that "each of the code categories should link to different parts of key hypothesis". For

example, employment could be coded by "supervisory status" to "separate supervi-

sors from nonsupervisors", or by educational background required for a job.

Regarding the points 3) and 4) it is almost always the case that some answers do not fall

into predefined codes. Groves et al. (2009) therefore suggest to test and refine the code

structure on the basis of previously collected responses. Further, "coding structures must

be designed to handle all responses, even those judged as uninformative". It is therefore

recommended to include further categories for respondents that did not give an answer or

for cases when it is not possible to ascertain the correct code.

As described, in a perfect research world one would setup and test a code structure ac-

cording to the research hypothesis. This is in contrast to coding when the code structure

is an official classification. Hacking/Willenborg (2012) point out that classifications often

have been constructed from a theoretical perspective and without actual usage in mind.

Typically, a classification cannot be changed easily as (possibly international) committees

are responsible for their maintenance. Furthermore, when changes are made, this is often

done "with regards to the subject matter itself and not with observation/measurement in

mind".

Because a given classification cannot be changed, the coding practice needs to cope with

arising problems. Hacking/Willenborg (2012) point out the following difficulties:

"The categories cannot clearly be distinguished;

The categories are rare in the population;

There is not very much empirical material available to describe the categories, or the

empirical information is not sufficiently diverse;

There are categories that are close together, and therefore it is difficult to distinguish

between them;

The categories are very clearly defined and also occur in practice, but they are not

actually used in practice because nobody uses the associated distinction."

Hacking/Willenborg (2012) describe further principles common for classifications that can

be useful for coding: The structure of a classification is a tree. In this mathematical concept,

FDZ-Methodenreport 10/2014 4

the leaves are the most specific categories having more general parent categories. So-

called "classifying principles" are used to distinguish more specialized categories from each

other. We will exemplify the tree structure together with classifying principles in the next

section related to the German Classification of Occupations.

2.2.1 German Classification of Occupations 2010

To classify occupations, the International Standard Classification of Occupations 2008

(ISCO-08) is widely used. Additionally, many countries have their own national classifi-

cations. As this study is concerned with German occupations, we will follow the work

from Hartmann/Schütz (2002), TNS Infratest Sozialforschung (2012) and Paulus/Matthes

(2013) and use the German national classification for coding. This section describes this

classification and how it is connected to other classifications in more detail.

Until 2010, two German national classifications have been used, one published by the

Federal Employment Agency ("BA") in 1988 (Klassifikation der Berufe 1988, KldB 1988)

and the other one published by the Federal Statistical Office in 1992 (Klassifikation der

Berufe 1992, KldB 1992). As both classifications have a common origin in theoretical

work from the 1960s, they were outdated and replaced by the German Klassifikation der

Berufe 2010 (KldB 2010). This classification was developed with two main goals: Special

characteristics of the German labor market were taken into account while at the same time

a high degree of compatibility with the international ISCO-08 was obtained (Bundesagentur

für Arbeit, 2011).

The KldB 2010 is a hierarchical classification (graph theory would call it a tree) with five

levels where the ten top-level categories (Berufsbereiche) are the most general and the

fifth level with 1286 categories (Berufsgattungen) is the most specific. Figure 1 is a small

extract from the classification to be read as follows. The Berufsgattung "Berufe in der

Landwirtschaft (ohne Spezialisierung) - Helfer-/Anlerntätigkeiten" contains multiple jobs.

This Berufsgattung itself is included in the Berufsuntergruppe "Berufe in der Landwirtschaft

(ohne Spezialisierung)" which itself is part of the Berufsgruppe "Landwirtschaft" and its

parent categories. The code numbers reflect these relations in the sense that the first

digit specifies the most general Berufsbereich, the first two digits give the more specific

Berufshauptgruppe and so on. Figure 2 provides the number of categories at each level

in the classification.

The KldB 2010 is structured by two dimensions ("classifying principles"): professional spe-

cialisation ("Berufsfachlichkeit") and the skill level ("Anforderungsniveau"). The first four

digits are used to group occupations by professional specialisation. Based on the ca-

pabilities, skills, and knowledge required for a job, a cluster analysis was performed to

group jobs with a higher degree of similarity into the same category. The clustered results

were reviewed multiple times by specialists and so the 2-, 3-, and 4-digit categories may

be used for comparisons. The last digit allows for different degrees of complexity within

occupations, i.e. the skill level. Each Berufsuntergruppe (4-digits) combines up to four

FDZ-Methodenreport 10/2014 5

Extract from the Classification of Occupations 2010 (KldB 2010)
1 Land-, Forst- und Tierwirtschaft und Gartenbau
11 Land- Tier- und Forstwirtschaftsberufe
111 Landwirtschaft
1110 Berufe in der Landwirtschaft (ohne Spezialisierung)
11101 Berufe in der Landwirtschaft (ohne Spezialisierung) - Helfer-/Anlerntätigkeiten
11102 Berufe in der Landwirtschaft (ohne Spezialisierung) - fachlich ausgerichtete
Tätigkeiten
11103 Berufe in der Landwirtschaft (ohne Spezialisierung) - komplexe Spezialisten-
tätigkeiten
11104 Berufe in der Landwirtschaft (ohne Spezialisierung) - hoch komplexe Tätigkeiten
1111 Berufe in der Landtechnik (contains 2 Berufsgattungen)
1112 Landwirtschaftliche Sachverständige (contains 2 Berufsgattungen)
1113 Berufe im landwirtschaftlich-technischen Laboratorium (contains 2 Berufsgattungen)
1118 Berufe in der Landwirtschaft (sonstige spezifische Tätigkeitsangabe) (contains 3
Berufsgattungen)
1119 Aufsichts- und Führungskräfte - Landwirtschaft (contains 2 Berufsgattungen)
112 Tierwirtschaft (contains 5 Berufsuntergruppen)
113 Pferdewirtschaft (contains 6 Berufsuntergruppen)
114 Fischwirtschaft (contains 4 Berufsuntergruppen)
115 Tierpflege (contains 5 Berufsuntergruppen)
116 Weinbau (contains 2 Berufsuntergruppen)
117 Forst- und Jagdwirtschaft, Landschaftspflege (contains 5 Berufsuntergruppen)
12 Gartenbauberufe und Floristik
121 Gartenbau (contains 6 Berufsuntergruppen)
122 Floristik (contains 2 Berufsuntergruppen)
2 Rohstoffgewinnung, Produktion und Fertigung (contains 8 Berufshauptgruppen)
...
0 Militär
01 Angehörige der regulären Streitkräfte
011 Offiziere
0110 Offiziere
01104 Offiziere - Hoch komplexe Tätigkeiten
012 Unteroffiziere mit Portepee
0120 Unteroffiziere mit Portepee
01203 Unteroffiziere mit Portepee - Komplexe Spezialistentätigkeiten
013 Unteroffiziere ohne Portepee
0130 Unteroffiziere ohne Portepee
01302 Unteroffiziere ohne Portepee - Fachlich ausgerichtete Tätigkeiten
014 Angehörige der regulären Streitkräfte in sonstigen Rängen
0140 Angehörige der regulären Streitkräfte in sonstigen Rängen
01402 Angehörige der regulären Streitkräfte in sonstigen Rängen - Fachlich ausgerichtete
Tätigkeiten

Figure 1: Extract from the Classification of Occupations 2010 (KldB 2010)

10 Berufsbereiche (one-digit)
37 Berufshauptgruppen (two-digits)
144 Berufsgruppen (three-digits)
700 Berufsuntergruppen (four-digits)
1286 Berufsgattungen (five-digits)

Figure 2: Number of Categories in the KldB 2010

FDZ-Methodenreport 10/2014 6

Skill Level Assigned Occupations→ 5-digits from KldB 2010
1: Helfer-/Anlerntätigkeiten Gesundheits- und Krankenpflegehelfer/in→ 81301
2: fachlich ausgerichtete Tätigkeiten Gesundheits- und Krankenpfleger/in→ 81302
3: komplexe Spezialistentätigkeiten Fachkrankenschwester-/pfleger→ 81313
4: hoch komplexe Tätigkeiten Allgemeinarzt/-ärztin→ 81404

Figure 3: Berufsgattungen (5-digits) in Health and Patient Care (taken from Paulus/Matthes
(2013))

Berufsgattungen (5-digits): (1) Auxiliary and semiskilled occupations, (2) specialized oc-

cupations, (3) complex occupations for specialists, and (4) highly complex occupations.

These Berufsgattungen are mainly defined by the duration of formal vocational education.

Figure 3 illustrates similar occupations with different skill levels (Paulus/Matthes, 2013).

There exist, however, some exceptions to these general classifying principles (Paulus/Matthes

(2013), Bundesagentur für Arbeit (2011)):

The Berufsuntergruppe (4-digits) has an indicator function: If the fourth digit is "0",

the corresponding employments cover various duties without further specialization.

Typically, this applies to auxiliary occupations. An "8" at the fourth digit is used for

employments with a specific focus that do not suit into the other defined Berufsunter-

gruppen.

To identify all supervisors and managers uniquely within a specific Berufsgruppe (3-

digits), these are grouped together in a Berufsuntergruppe labeled with a "9" at the

fourth digit. Managers are assumed to have highly complex occupations and are

hence given a "4" in the fifth digit. Supervisors, in particular the German "Meister",

typically work in less complex occupations and therefore get a "3" in the last digit.

For occupations in the one-digit Berufsbereich for military, the KldB 2010 groups

occupations only into four Berufsgattungen: 01104 for officers, 01203 for high-ranked

sergeants, 01302 for low-ranked sergeants, and 01402 for privates.

For its job placement activities, the Federal Employment Agency uses the so-called Doku-

mentationskennziffer (DKZ) which is derived from the KldB 2010. The DKZ-database is

continuously updated and contains all occupation and vocational training names used cur-

rently in Germany together with further occupation-specific information. The DKZ is an

eight-digit number where the first five digits are identical to the KldB 2010. The last three

digits specify one particular occupation (as opposed to occupation categories in the KldB).

The sixth digit is used to distinguish between occupations (digit equals "1" or "2") and

vocational trainings (digit equals "8" or "9").

With ISCO-08, KldB 2010, and the DKZ, three different classifications are available for

the coding of occupation. The DKZ is the most detailed and the other classifications can

be derived from it. When the last three digits are truncated, one obtains the KldB 2010.

For international studies, the ISCO-08 classification is often used. As the KldB 2010 was

developed to be compatible with ISCO-08, the transition from KldB 2010 to ISCO-08 can

be done using a transition table. For 90% of the KldB-categories, there exists exactly one

FDZ-Methodenreport 10/2014 7

corresponding category in ISCO-08, otherwise more than one. Other studies are con-

cerned with the social position, socio-economic status, or job prestige. Nearly all common

measures for it (e.g., class scheme of Erikson, Goldthorpe and Portocarero (EGP), Euro-

pean Socio-economic Classification (ESeC), Magnitude Prestige Scale (MPS), Standard

International Occupational Prestige Scale (SIOPS), or International Socio-Economic Index

(ISEI)) are based on ISCO-coded occupations (Paulus/Matthes, 2013).

Not only is the DKZ the most detailed classification for German occupations but a large part

of the DKZ-database is also available online. Paulus/Matthes (2013) therefore recommend

using the published resources from the DKZ for automatic and computer-assisted coding.

We will discuss and use the different resources in section 3.2. Despite all the advantages

from the DKZ, it is only a supplementary tool for coding into official classifications. For a

number of reasons it is not a suitable target classification in itself. Because it is updated

daily, it may happen that the correct category for an answer changes over night. Also, the

DKZ is not just the 6-th level in the KldB but a full hierarchy with multiple levels and thus it

can happen that a specific and a more general DKZ code both are correct. A file with 3920

DKZ codes is available for download and another, overlapping set with 3098 DKZ codes is

used for the BERUFENET1 online. Taken together this means that the DKZ is not a stable

classification where all categories are well defined. We will therefore use the 5-digit KldB

2010-Berufsgattungen for the coding of occupations in this work.

2.3 Coding Options: Manual or Automatic

In principle, different kinds of coding systems exist: manual coding, computer-assisted

coding, and automatic coding. It depends on the complexity of the coding task which option

is best and combinations of these systems are typically used in practice. This section and

figure 4 explore the different options in more detail.

For most survey questions, coding is done implicitly by the respondent. That is, after a

closed question was asked, the respondent indicates the most adequate category. Some-

times, - and this is the case for occupations - the coding scheme contains too many cat-

egories or is too complex for the respondent. In these cases, an open-ended question

is asked and the textual answer is categorized by a professional coder. With this method,

relevant details may be missing when the coder does his work. As a resort, it has been sug-

gested to give the coding task to the interviewer who can inquire all necessary information

during the interview (cf. Conrad (1997), Hacking/Willenborg (2012)).

Computer-assisted coding is used to facilitate the coding task with specially designed com-

puter programs. While the decision which category is correct remains with the human

coder, the coding program offers help and often suggests a small number of adequate

categories. For occupations, Bushnell (1998) has shown that a computer program may

accelerate the coding process and increase coding quality at the same time. A specialized

software for this task is the Cascot-program2 for occupation coding in the United King-

1 http://berufenet.arbeitsagentur.de/berufe/
2 Online available at http://www2.warwick.ac.uk/fac/soc/ier/software/cascot/

FDZ-Methodenreport 10/2014 8

http://berufenet.arbeitsagentur.de/berufe/
http://www2.warwick.ac.uk/fac/soc/ier/software/cascot/

Who Advantages Disadvantages
Respondent

direct feedback no knowledge of the classifica-
tion

Interviewer
direct feedback superficial knowledge of the

classification

Professional Coder
expert in the classification

can also use extra information
that was included

in general, can interpret an-
swers better than a computer
program

direct feedback not always
possible

feedback is very time-
consuming

coding may be inconsistent

Computer Program
fast, consistent coding

coding knowledge is specified
in a system and is therefore
transferrable

can operate day and night

no direct feedback

only the relatively simple cases
are coded (but that is often the
bulk)

Figure 4: Possible Places for coding (table taken from Hacking/Willenborg (2012))

FDZ-Methodenreport 10/2014 9

Technique Description or Example (Original String → Parsed
String)

Replacement of Symbols ’+’→ ’plus’
Non-standard Character Replace-
ment

’#’→ ’ ’ (space)

Replacement of Abbreviations ’Prof.’ → ’professor’
Substitution of Letters ’à’→ ’a’
Removing Stop Words ’the’→ ’ ’ (space)
Splitting Composite Words ’machinefabrieksopzichter’ → ’machine fabriek s

opzichter’
Spell Checking Spell checkers or fuzzy matching methods (e.g., tri-

grams, Levenshtein distance, Soundex)
Phrasing Split text into different phrases that will be coded sepa-

rately
Tokenizing Split phrases into single words or n-grams (e.g. ’ma-

chine’→ {’ ’ma, mac, ach, chi, hin, ine, ne’ ’})
Lemmatization / Stemming ’mine’→ ’his’ / ’fished’→ ’fish’
Replace Synonyms, Loan Words and
Hypernyms

’account manager’ → Dutch equivalent,
’tomato’→ ’greenhouse vegetables’

Word-Sense disambiguation ’bank’→ ’banking institution’ (based on context)

Figure 5: Preprocessing for Texts (summary from Hacking/Willenborg (2012))

dom. More generally, the integration of open-ended questions into surveys is a longstand-

ing methodological concern and both Fielding/Fielding/Hughes (2013) and Esuli/Sebastiani

(2010) describe various software solutions available for the analysis and coding of verbatim

answers.

In contrast to computer-assisted coding, in automatic coding the computer automatically

assigns one target category. According to Lyberg/Kasprzyk (1997), proportions as high as

70%-80% may be coded this way while maintaining low error rates. When automatically

assigned codes are expected to be incorrect, these residual cases are conferred to an

expert for the final classification. Around the world, statistical agencies have developed

programs for automatic coding and reported satisfying results as well as cost-savings (cf.

United Nations Statistical Commission and Economic Commission for Europe (1997)).

When it is not relevant to distinguish between computer-assisted coding and automatic

coding, we will use the term automated coding that can mean both. The next section will

give an overview over the techniques used for automated coding.

2.4 Techniques for Automated Coding

In order to automatically code a textual answer, most methods rely on a dictionary con-

taining this answer or other answers with similar meaning together with the corresponding

code. In section 2.4.1, we will give an overview over systems with rule-based coding.

All described systems have in common that expert knowledge is required to set up these

systems. In contrast, the data-based coding techniques summarized in section 2.4.2 use

material that was coded previously by human coders. If a sufficient number of equal or sim-

FDZ-Methodenreport 10/2014 10

ilar answers (this is quite similar to a dictionary) is already coded into only one category,

chances are good that the current answer may also fall into the same category.

Human language exhibits a high degree of variety, e.g., spelling errors, grammatical forms,

slang language, and synonyms. Both the expert and the data-based methods perform

better when textual answers and entries from the dictionary can be matched to each other.

Therefore, a number of functions may be used to bring these texts into a standardized form

that simplifies textual comparison. Figure 5 contains a number of textual preprocessing

techniques that have been suggested for this task in the context of automated coding.

2.4.1 Rule-Based Coding

The simplest approach to automated coding uses logical rules: Under exactly specified

conditions a code is assigned. For example, when a (preprocessed) answer is identical to

a given string, the corresponding code is assigned. For occupation, various authors have

described this technique (e.g., Geis (2011), Drasch et al. (2012), Jung et al. (2008), Conrad

(1997)) and use it as a first step. Although a few 1000 rules exist in these systems, it is rare

to code more than 50% of the occupation codes accurately. Hartmann/Schütz (2002) have

generated additional rules for higher production rates and describe the arising problems.

Closely related is an approach based on dictionaries that associate each entry with exactly

one code. Some expressions in the dictionary may appear multiple times with different

codes. Now, the coding task is to match a given answer in standardized form (i.e. prepro-

cessed with methods described in figure 5) to one or more entries in the dictionary. Exact

matches are not needed but the match must be close enough to exclude any ambiguity.

When only one match is found, the associated code is assigned. Multiple matches may be

resolved manually or automatically with the help of weighting algorithms that make use of

how specific associations between expressions and particular codes are. Conrad (1997)

gives the main concepts in greater detail and describes the historical development at the

US Census Bureau. Different statistical agencies around the world have used this ap-

proach (see United Nations Statistical Commission and Economic Commission for Europe

(1997)).

One of these systems is G-Code (old name ACTR) which has been under development

by Statistics Canada for more than 20 years. It is a generalized coding software in the

sense that it can be used for different languages and coding tasks. Its particular strength

are sophisticated text processing functions that transform natural language answers with

equivalent meaning into a standardized form that can be looked up in a dictionary. Good

performance results have been reported for Canada (Tourigny/Moloney, 1997) and Italy

(Ferrillo/Macchia/Vicari, 2008). Research related to this software has been published by

Gillman/Appel (1994) and Macchia/Murgia/Vicari (2010).

Another idea is to exploit the linguistic relation between textual answers and the target

category description. Textual answers and target categories may be represented in the

same vector space. Then, one assigns the category which is most similar (cosine similarity)

FDZ-Methodenreport 10/2014 11

to the textual response. This technique from Information Retrieval is described in Manning/

Raghavan/Schütze (2008). Jung et al. (2008) and Viechnicki (1998) find that this similarity-

based approach is outperformed by dictionary-based and multinomial regression methods.

A recent approach to utilize the linguistic relation between textual response and category

description has been described by Sangameshwar/Palshikar (2013). A promising feature

in their prototype is that it searches for synonyms and related words from a public database.

The use of such semantic relationships has shown to be useful for coding (e.g., Jung et al.

(2008), Hacking/Willenborg (2012)). Willenborg (2012) describes the underlying concepts

in detail.

Most methods described so far suffer from one drawback: Substantial background knowl-

edge or human supervision is needed to set up the software. Lyberg/Kasprzyk (1997)

observe that coding rules are suboptimal when they are only based on expert descrip-

tions. The software is much more efficient when the "empirical pattern generated by re-

spondents themselves" is used to create the dictionary. A similar view is expressed by

Giorgetti/Sebastiani (2003) who come to the conclusion that supervised learning methods

may outperform traditional methods. The next section will give an overview over these

approaches.

2.4.2 Data-Based Coding with Supervised Learning Techniques

The automated classification of texts into predefined categories is well-studied in the field of

machine learning (e.g., Aggarwal/Zhai (2012), Sebastiani (2002)). The task is to learn from

training data, i.e. existing text documents are already grouped into categories, and use this

data to predict the correct category for additional texts. Some algorithms allow classification

into hierarchically structured target categories (e.g., Esuli/Fagni/Sebastiani (2008)), which

appears useful for automated coding. Typically, text classification techniques are designed

to classify whole documents with multiple words into a small number of categories.

The survey coding task is more challenging. Although it is theoretically equivalent to the

classification of text, practical aspects differ. In surveys, the respondents typically answer

with only a few words and the number of possible categories may be very large. Text

classification has nonetheless been applied to the field of survey coding. Esuli/Sebastiani

(2010) describe automatic coding software designed to classify short survey answers into

classifications with only two categories.

In the following, we will give some examples from working systems that code occupations

automatically. Compared to other text classification algorithms, ideas are simple and train-

ing data should be large:

The US Census Bureau has been experimented with "nearest neighbor and fuzzy

search techniques" (Gillman/Appel, 1994) and neural networks (Conrad, 1997) for

the coding of occupations. Current practice is still dictionary-based (see above).

Multiple dictionaries are created automatically from training data, one dictionary for

FDZ-Methodenreport 10/2014 12

single word entries, another dictionary for two-word long entries, and a third dictio-

nary for whole answer texts. To include an entry in the dictionary, it needs to appear

multiple times in the training data and a strong association to a specific code is re-

quired (Thompson/Kornbau/Vesely, 2012).

Hacking/Willenborg (2012) use how close words W correspond with particular cat-

egories Ci. If a particular word falls mostly in one or a few categories ("lawyer" in

contrast to "employee"), a higher specificity score

F (W) =

√∑n
i=1 P (Ci|W)2

n

is calculated, where n is the number of categories which had the word W assigned.

If more than one word from the current verbatim match with some answer from the

training set, specificity scores for these words are added up. If the similarity is higher

than a certain threshold, the corresponding code is assigned.

Jung et al. (2008) use training data to learn a maximum entropy model that estimates

the conditional probability p(Codei|Textualanswer). To this end, it was necessary

to build a large domain specific thesaurus that reduces the number of possible textual

answers.

2.5 Coding Evaluation

Finding a single correct category for a given answer is not always possible. Textual an-

swers may be very general (e.g., "Angestellter" / "clerk") and allow coding into multiple

similar categories. For example, "call-center telephonist" may be coded into both cate-

gories "call-center agent" and "telephonist" (examples come from Hartmann/Schütz (2002)

resp. Drasch et al. (2012)). Campanelli et al. (1997) state that coding quality "can be seen

to depend on a number of factors, such as the type of question, the nature of the answers,

the length and adequacy of the coding frame, and the training and supervision of coders."

The same authors summarize the following definitions to measure coding quality:

Reliability is the proportion of agreement between two different coders. It ranges

from the worst case 0, if coders always assign different codes to the same answer, to

1, if coders completely agree for all answers. For supervision of individual coders, it

may be useful to calculate the reliability for each coder separately. It is also possible

to study the reliability of individual codes to find inherent weaknesses in a given code

frame.

Two coders might assign the same code not by a shared understanding but by

chance. An estimator, Cohen’s Kappa is proposed for adjustment. For the large

KldB-coding frame at hand, however, it is highly improbable to assign a correct code

by chance and therefore we will not use Kappa.

When coding reliability is low, derived estimators, such as the population share with

a specific characteristic, have increased variance. Given a measurement model, the

FDZ-Methodenreport 10/2014 13

variance is increased by the variance inflation factor

Eff = (1 + ρc(M − 1)(1− κi))

where ρc measures systematic biases in the coding process, M gives the average

coding workload, and κi is the reliability of the individual code. Based on this formula

it is argued that more coders with less workload for each might reduce the variance

of estimators.

It is desired to see if coders assign the "right" code to textual answers, i.e. the

code that corresponds best to the described occupation. This concept of validity

is, however, hard to operationalize. A possibly ideal criterion would be to send an

expert team to observe and consult the respondent and have the occupation coded

afterwards. As this is not achievable, some classification experts might be asked for

a "correct" coding given the textual answers. The coder’s work can then be compared

to this expert work.

To measure the performance in automatic coding, further measures for quality and effi-

ciency are common in the literature:

The agreement rate (or its inverse, the error rate) is the proportion of automatically

generated codes that agree with a manual-assigned code. Hereby it is assumed

that the manual-assigned code is the correct code. Some systems also account for

erroneous codes from manual coding (e.g., Tourigny/Moloney (1997), Thompson/

Kornbau/Vesely (2012), Svensson (2012)). Often it is required that the automatic

coding system performs as good as professional coders.

The coding or production rate is the proportion of codes that can be generated auto-

matically. With a higher production rate, fewer text answers are presented to profes-

sionals for manual coding making the coding process less expensive.

Speed considerations are sometimes made. As some automatic coding techniques

are computationally intensive, one might observe the time needed for model training

or for prediction.

It is relevant to note that there is a trade-off between agreement rate and production rate:

There are always some answers that are hard to code automatically and should be left to

specialist coders. This will decrease the production rate but increase the agreement rate.

Predicting which codes will be correct is therefore an important task that was studied by

Chen/Creecy/Appel (1993) and Kaptein (2005). The following is an example from Thomp-

son/Kornbau/Vesely (2012) that describes actual usage at the U.S. Census Bureau. A logit

model with 79 independent variables is used to calculate the probability PHAT for an auto-

matically assigned code to be correct. Only when PHAT exceeds a fixed score cutoff, the

answer is coded automatically. The score cutoffs were set such that automatic coding with

PHAT = score cutoff is expected to perform as accurate as 100% manual coding. With this

score cutoff, a 43% production rate together with an agreement rate around 94,14% was

calculated on verification data.

FDZ-Methodenreport 10/2014 14

Other topics on coding quality have gained less attention in the literature and we will only

touch those as well: DeBell (2013) comments on optimal practices for manual coding into

small-size coding schemes that are rarely ever fulfilled. Hacking/Willenborg (2012) empha-

size that not a single code but multiple ones may be considered correct. Esuli/Sebastiani

(2010) describe an accuracy measure useful when it is not of relevance to assign each

answer to the correct code but only the population estimate is of interest.

Figure 6: Coding Ambiguity

In order to comply with the international stan-

dard ISO 20252 for market, opinion and social

research, Statistics Sweden has implemented

several measures for quality control in the cod-

ing process. Erroneous codes can be corrected

and the coding process can be improved by

identification of problematic categories. For hu-

man coders with noticeable high error rates ad-

equate training is given. An IT-tool was de-

veloped for computer-assisted coding that sup-

ports independent verification coding (Svens-

son, 2012).

We shall conclude this section with a thought experiment demonstrating that reliability is

not to be optimized at all costs and the ideal automatic coding software may need to make

random decisions: Imagine a verbatim answer that cannot clearly be assigned into one

category A, but fits into two categories A and B equally well (see Figure 6: contrary to

the assumption described here, both categories are not exactly equal). Furthermore, we

assume that no other verbatim can be coded into these categories. At this point, a general

rule can be included in the coding manual that assigns the verbatim to category A. When

coders know this rule, inter-coder reliability increases, but this comes at the cost of inter-

pretability of category A and B. Contrary to the category definitions, category B is empty

and category A has doubled its size! Therefore, both proportions may only be interpreted

with the knowledge of coding rules, or, in other words, coding rules have been added to the

original category definitions. This needs to be made transparent to all data users.

While it may be acceptable to have such coding rules in a coding manual published (e.g.,

TNS Infratest Sozialforschung (2012), conventions from Geis (2011)) but generally not

known to the end user, matters become even worse with deterministic automatic coding

software that documents such rules only implicitly in the database. From a theoretic point

of view, we therefore suggest the following solution: Do not create a rule but let coders

decide which category comes closer to the verbatim’s meaning. When many coders do

this task, the law of large numbers ensures that both categories are assigned with the

same probability which is in accordance with our original assumption. The ideal computer

program should also allow for variations in coder decisions which can be done using the

Bernoulli distribution. Because it is clearly not desirable to have two categories with equal

meaning in the coding scheme, one may want to merge both categories afterwards. Note

that this argument is related to the survey literature, where it is generally feared that specific

coders are biased in their decisions by a preference for particular categories and therefore

FDZ-Methodenreport 10/2014 15

variance is inflated (e.g. Groves et al. (2009)). In other words, the argument is that un-

known coding rules related to specific categories will create a systematic coding bias as

well.

2.5.1 Quality of Occupation Coding

In this section we will give an international overview on the quality of occupation coding.

Empirical results for Germany will be discussed below. As a reference it shall suffice here

to say that the inter-coder reliability for coding into the old 7-digit DKZ is below 70%.

In the United States, the US Census Bureau used 1.5 million responses from the American

Community Survey (ACS) to learn a model for industry and occupation coding (4-digit).

Coding of industry and occupation is carried out in parallel to use the code from one vari-

able for prediction of the other. Clerical coders as well as the coding software "are required

to maintain an error rate of 5% or lower as determined by a quality assurance process

run". Although the training data set is huge, a production rate of only 43% is achieved

(Thompson/Kornbau/Vesely, 2012). This number may be compared to the production rate

in computer-assisted clerical coding where only "[a]pproximately 18 percent of all industry

and occupation responses are sent to coding referralists" (U.S. Census Bureau, 2009).

The Automated Industry and Occupation Coding System for the Koreans uses training data

from the 2005 Census with about two million records. Company name, business Category,

department, position, and job description is used to predict 1 of 450 categories from the

South Korean standard code book. If the agreement rate is fixed at 98% a 73% production

rate is reached (Jung et al., 2008).

The French automated coding system SICORE is reported to have a 66% production rate

and a 96% agreement rate for occupations (Riviere, 1997). Although this result seems

excellent, it should be taken with caution because the quality controls are not well described

in the report.

In the Labour Force Survey conducted by Statistics Sweden, more than 80% of occupations

were coded during the interview, a small percentage by automatic coding methods, and the

remaining, most difficult cases (15-20%) by computer-assisted manual coding. Error rates

are only reported on the highly aggregated one-digit level and are at 9% for manual coding

in ISCO. Even smaller error rates are achieved for cases from interviewer or automated

coding (Svensson, 2012).

In the United Kingdom, multiple studies have examined coding into the Standard Occupa-

tional Classification (SOC) with 371 categories. Campanelli et al. (1997) find an inter-coder

reliability of 78% for intermediate level coders. Other cited studies vary between 70% when

office coders are compared to interviewer field coding and 84% for expert coders.

For Germany, three different classifications are available for occupation. A manual for

coding into the international ISCO-08 is given by Geis (2011), coding into the national KldB

FDZ-Methodenreport 10/2014 16

has been described by Hartmann/Schütz (2002) and TNS Infratest Sozialforschung (2012),

and Paulus/Matthes (2013) give a manual for coding into the DKZ which is derived from

the KldB. To obtain good coding results, it is generally recommended to ask 2-3 questions

about the employment and a further question about the professional status ("Berufliche

Stellung").3 If available, further variables like industry, size of enterprise, school and voca-

tional education, or employment history have been useful as well. Geis/Hoffmeyer-Zlotnik

(2000) provide additional background information.

Though some attempts have been made to improve automated coding for ISCO (see

Hoffmeyer-Zlotnik/Hess/Geis (2004) , Hoffmeyer-Zlotnik/Warner (2012)) , the rule-based

method currently employed by Geis (2011) has a production rate lower than 50% and man-

ual checking is intended. The quality for coding according to the ISCO-88 classification

(390 categories) has been investigated by Maaz et al. (2009). In their study, two profes-

sional institutes and two research assistants without prior coding experiences have coded

occupations from the parents of 300 high school graduates. For the 12 resulting combi-

nations from four individual coders, inter-coder reliability varies between 41.6% and 53%.

After aggregating coding decisions into the ten one-digit major groups, reliability increases

to 67.5% to 74.7%. When coded occupations are transformed into the International Socio-

Economic Index of Occupational Status (ISEI), measures of validity are more promising.

The authors conclude that, while the ISCO scale only has low reliability, other derived

scales may still be valid.

Quality checks for coding into the KldB 2010 have been presented by Prigge/Liebers/Latza

(2013): The reliability for 5-digit KldB is above 80%, for 2-digit KldB above 90%, Cohens

Kappa has been calculated for supervisors and managers (4th digit = 9) to 82.6%, and for

the skill level (only 5th digit) to 88.0%.

Main results for semi-automated coding into the DKZ are summarized as follows: 61% of

the textual answers needed manual coding and 9% of these had to be revised by a super-

visor. The remaining 39% were coded automatically (the larger part) or semi-automatically

with a human decision. Inter-Coder Reliability was only calculated for answers that were

manually coded with the following results: 50% for the 7-digit DKZ, 65% for the 4-digit KldB

1988, 79% for the 2-digit KldB and 70% for the 4-digit ISCO-88. Under the strong assump-

tion that automatic coding was correct in all cases, there is 70% overall reliability for the

DKZ as mentioned above. Drasch et al. (2012) argue that automatically coded answers will

have lower error rates than manual coding, and for some answers multiple categories may

be considered correct. They further hope that coding into the newly developed KldB 2010

will increase inter-coder reliabilities. The study from Prigge/Liebers/Latza (2013) described

above supports this hypothesis.

3 Statistisches Bundesamt (2010) give the following standard formulations:

Welche berufliche Tätigkeit üben Sie derzeit hauptsächlich aus?

Bitte beschreiben Sie mir diese berufliche Tätigkeit genau.

Hat dieser Beruf noch einen besonderen Namen?

Nun sagen Sie mir bitte nach dieser Liste hier, zu welcher Gruppe dieser Beruf gehört.

FDZ-Methodenreport 10/2014 17

Summarizing, this short international survey reveals some interesting points. First of all,

quality measures are not consistent and often describe only one aspect from the whole

coding process. In some studies cited above, reliability is calculated, others report the pro-

duction rate and the proportion of "correct" codes. Though these concepts are not directly

comparable, the wide variety of reported quality is eye-catching. This can be best illus-

trated with the following numbers. With the DKZ approach, reliability for the 4-digit ISCO

is above 70%. When ISCO was coded directly, it was below 53% (4-digit) and below 75%

for 1-digit codes. The Swedish system reaches error rates below 9% for 1-digit ISCO. This

high variability is no surprise, but arises from the fact that ambiguity in verbatim answers,

coding procedure and coder’s expertise determine the quality of coding.

Despite all the differences, the difficulty to code occupations is obvious in all studies. This

underlines the need for quality control and systematic improvement. We shall further note

that quality measures are often - if at all - documented in some technical manual and not

used for further analysis. It may be more relevant to look at the quality of derived indexes

like the approach from Maaz et al. (2009) described above. An even more ambitious task

is to find ways to incorporate into statistical analysis the uncertainty from measurement

inherent to the occupation variable and see how results change.

Regarding automatic coding, we shall point out that, even though training data used by

Thompson/Kornbau/Vesely (2012) and Jung et al. (2008) is huge, production rates are be-

tween 43% and 73% and thus not neccessarily higher than systems with carefully designed

rules. With the exception of Jung et al. (2008), all automatic systems envisage manual or

computer-assisted coding for doubtful cases. We believe such a tool can prove useful for

Germany as well.

FDZ-Methodenreport 10/2014 18

3 Data Analysis

To use computers for automated coding, one needs to supply the machine with relevant

background information. As described in section 2.4, hand-crafted rules and dictionaries

are often used but laborious to construct. The other option is to use training data, where

verbatim answers are already coded. Our work focuses on the latter, and different meth-

ods to predict new codes using training data will be discussed in section 3.2. Data from

the ALWA survey is used to train and test the algorithms. To see if automated coding pro-

cedures can be generalized to new data sets, we use another test set from the lidA survey.

Both data sources will be described in detail in the next section.

3.1 Description of Survey Data

The ALWA survey (short for ’Arbeiten und Lernen im Wandel’, translated ’Working and

Learning in a Changing World’) described by Antoni et al. (2010) has been conducted to

study how informal competencies and knowledge, aside from formal educational attain-

ments, support professional careers. To this end, a clustered sample from all persons

born between 1956 and 1988 and living in Germany was drawn and questioned about

their educational and professional development. 10404 telephone interviews (CATI) were

conducted. In this sample the following groups are underrepresented: the young, the low-

educated and persons with a migration background are less frequent compared to the total

population.

We are only interested into the employment biography, i.e. all the jobs that each person

was holding during her lifetime. In the dataset we used, 32882 job records from 9227

different persons are present. When people find a new job, they often keep working in the

same occupational area and thus the job reports from a single person are not statistically

independent and often even identical. Many dependent answers lead to a dataset with less

diversity compared to independent answers and thus the effective sample size is smaller

than 32882 job records. We are interested how well our prediction methods generalize

for new, independent job descriptions. Special provisions are taken and will be described

below to provide performance measures that hold also for independent answers.

To allow for comparisons over different data sets, codings from another study are used as

well: The lidA survey (short for ’leben in der Arbeit. Kohortenstudie zu Gesundheit und

Älterwerden in der Arbeit’) is a cohort study to examine the relationship between work and

health among aging employees. The total population consists of all employees with social

insurance and born either in 1959 or 1965 excluding public officials ("Beamte") and self-

employed workers. A sample of 6585 persons was interviewed face-to-face (CAPI). This

sample is nearly representative of the population with only small deviations similar to those

described for the ALWA study above (Schröder et al., 2013). Each person gives information

on her current job, or, for the unemployed, the last job before unemployment.

For occupation coding, professional coders use a number of different variables from the

dataset. 2-3 questions on employment activities and a further question on professional

FDZ-Methodenreport 10/2014 19

status are most helpful for coding and asked in most German surveys to classify the oc-

cupation. We will use the same variables for automated coding as well. Before we can

consider generalizations over different datasets, we must look if these input variables have

a similar format. As we will describe in the following, some of these variables differ in

relevant aspects.

0
1000
2000
3000
4000

0

200

400

600

800

0

1000

2000

3000

0

100

200

300

0

1000

2000

3000

4000

first question
first question

second question
second question

third question
A

LW
A

lida
A

LW
A

lida
lida

0 50 100 150 200
number of characters

fr
eq

ue
nc

y

Figure 7: Number of Characters to Verbatim Answers

Prior to all analysis, we

make the following stan-

dardizations with all ver-

batim answers: All let-

ters are capitalized, spe-

cial German characters

replaced (e.g., ’Ä’ to ’AE’,

’ß’ to ’SS’, etc.), punc-

tuation and short abbre-

viations (i.e., at most 3

characters followed by a

’.’) removed, and white

spaces at the start and

end of each string are

trimmed.

Figure 7 shows differ-

ent answer lengths to

the open-ended ques-

tions "Welche berufliche

Tätigkeit üben Sie derzeit

hauptsächlich aus?" (first

question), "Bitte beschreiben

Sie mir diese berufliche

Tätigkeit genau." (sec-

ond question), and "Hat

dieser Beruf noch einen

besonderen Namen?" (third

question). When ALWA

answers exceeded a limit

of 50 characters, the last

characters were clipped

and the full answer is not saved. While answer length to the first question does not dif-

fer much, answers for the second question in lidA are in general longer than for ALWA.

The third question was not asked in ALWA. In lidA 57% of the respondents answered this

question for another job name with a simple 4-digit "nein" (no).

Two possible explanations for the longer answers in lidA are that, firstly, respondents are

less willing to give detailed answers after they have answered the same question for mul-

tiple prior jobs before and, secondly, respondents may want to give more details on them-

FDZ-Methodenreport 10/2014 20

ALWA lidA
Second answer refused 0.3% 0.1%
Second answer is not informative 32.1% 8.0%
Second answer equals first answer 9.1% 6.2%
Second answer contains additional information 58.4% 85.6%

Table 1: Information Content from Second Answer

selves in personal interviews (lidA) compared to telephone interviews (ALWA). A closer

view into the second answer provides additional evidence that respondents in the lidA

study were more motivated to give informative answers. Table 1 summarizes common an-

swers to the second question. For a small proportion of respondents, interviewers recorded

refused answers (’-7’ or ’verweigert’) that we replaced with the word ’VERWEIGERT’ for

further processing. A proportion of 32.1% from the ALWA respondents did not specify their

job with the second answer. Frequent records for this are ’keine näheren Angabe’, ’nein’,

’dto.’, ’dito’, ’-8’, ’weiß nicht’, and the empty string. We replace such statements with the

answer given to the first question in order to treat them the same way as those answers

where identical words are given for the first and second question. Only 58.4% from the

ALWA study and 85.6% from the lidA study give additional details about their job in the

second question that can be used for coding.

Careful inspection of the verbatim answers reveales additional patterns that a perfect au-

tomated coding algorithm should recognize automatically: This includes misspelled words,

answers with a hyphen (i.e. for the answer ’Küchen- und Möbelmonteur’ the two words

’Küchenmonteur’ and ’Möbelmonteur’ would be better suited as algorithm input), and the

detection of multiple jobs (i.e. ’Schlosser und Kraftfahrer’ cannot be coded into one cate-

gory). We will not provide solutions for these problems but use only the simple algorithms

described above for string preprocessing.

Aside from verbatim answers about employment activities, the professional status is used

for coding. ALWA and lidA both asked for it with a closed question but different answer

categories were used. We therefore aggregated categories from both studies into a less

detailed variable such that an exact mapping from both studies into the new variable exists.

Figure 20 shows the resulting category scheme and relative frequencies how often each

category is found in each study. Large differences between ALWA and lidA are probably

caused by different total populations in both studies.

3.1.1 Job Codes

The coding procedure and quality checks for ALWA have been documented by Drasch et

al. (2012). Automatic coding was complemented by manual coding with special provisions

for dificult cases. Because the original answers were coded into the out-dated 7-digit DKZ,

a transition table was used to convert the codes into the current 8-digit DKZ where the first

five digits represent the KldB 2010. For lidA, answers were coded directly into the current

DKZ/KldB2010.

FDZ-Methodenreport 10/2014 21

For the coding in both studies, additonal categories were necessary. When it was not pos-

sible to find the correct code for a verbatim answer, it was coded as an imprecise answer.

In ALWA, a proportion of 0.46% of all answers was coded as imprecise compared to a

proportion of 1.05% in lidA. Because answers from lidA are in general longer and therefore

should be more precise, this significant difference comes as a surprise and we recommend

further investigation. For the coding in ALWA, further categories were introduced for stu-

dent research assistants, helpers not included in other codes, and persons with multiple

jobs. Together with 1286 categories defined in the KldB 2010, this gives us in total 1290

categories for coding.

Although different populations were interviewed for ALWA and lidA, one might hypothize

that each job category has the same probability of occurence in both studies. This assump-

tion may be tested with the χ2-Test for homogenity. The test statistic is

χ2 =
k∑
i=1

m∑
j=1

(fij − f̂ij)2

f̂ij

with k = 2 studies, m is the number of categories, fij the frequency of category j in study i

and f̂ij is the expected frequency under the null hypothesis. Applied to the two-digit Beruf-

shauptgruppen, the null is significantly recected with χ2 = 615.4. Particular high deviations

between both studies can be found for the Berufshauptgruppen ’Medizinische Gesund-

heitsberufe’ (more frequent in lidA than expected, (fij−f̂ij)2

f̂ij
= 85) and ’Mechatronik-,

Energie- und Elektroberufe’ (less frequent in lidA than expected, (fij−f̂ij)2

f̂ij
= 58). Fur-

ther research would be required to find out if the differences are caused by distinct total

populations or by disparate coding practices in both studies. For the different proportions

of answers coded as imprecise (see above, (fij−f̂ij)2

f̂ij
= 82) the latter explanation is more

plausible to us.

While the test for equal distributions of Berufshauptgruppen reveals relevant differences

in both studies, the same test is also helpful to check if frequent answers in both studies

have been coded into the same categories. For each first answer, e.g. ’Sachbearbeiterin’

(’clerk’), that was coded multiple times in ALWA as well as in lidA one may expect that both

studies code the same word typically into the same category. To test this, we calculate the

χ2-statistic for each first word. Due to the small number of observations for each word,

assumptions for formal tests are in general not fulfilled. High χ2-statistics are, however,

still a good indicator to find first answers that were coded systematically different in both

studies. We therefore recommend this statistic to find erroneous code assignments for

manual inspection.

Two examples may illustrate the use: After calculating the χ2-statistic for all first answers,

we find that the Sachbearbeiterin ("clerk") has the highest score χ2 = 315 of all first an-

swers. Closer inspections shows that different standard categories were used in lidA (97%

coded into category 71302) and ALWA (66% coded into category 71402). Another exam-

ple is the Informatiker (’computer scientist’, χ2 = 14). In lidA, four persons gave this first

answer and all were coded into the general computer science category 43104. ALWA, in

contrast, coded ten persons with the very same first answer in three different, more specific

FDZ-Methodenreport 10/2014 22

categories (mostly in categories 43414/43423 for software development). With a closer in-

spection of the second answer, more precise code assignment would have been possible

for lidA, too.

A further indicator that lidA codings may often be correct but overly general is the following.

The KldB 2010 includes an alphabetic dictionary with 24000 occupation titles that assigns

a 5-digit code to each occupation. 45% (lidA) respectively 49% (ALWA) of all first answers

have an exact match to one of those dictionary entries. For lidA, 95.6% of all dictionary

codes with exact matches agree with the assigned code whereas the same number is only

76.4% for ALWA. This difference can possibly be explained with the Informatiker-example

described above. The lidA codes are in accordance with the dictionary entry while the

ALWA codes are not. Because lidA did not use additional information from the second

answer to find the most specific job, the codes are in better alignment with dictionary codes

from the KldB 2010. We are skeptical that this implies better job codes as well. In section

3.2.1 the dictionary coding method is described in detail.

To summarize, we have shown that lidA and ALWA data differ in many aspects. Two differ-

ent populations were surveyed and relevant variables do not follow the same distribution.

In lidA, the average answer length for the second answer is longer but it has possibly been

used less for coding. There is evidence that people with similar jobs in both studies have

been coded systematically into different categories. Moreover, many categories were not

used once for coding. Out of 1290 existing categories, 437 categories (ALWA) respectively

646 categories (lidA) have not been used a single time. No prediction algorithm that is

based on this training data will therefore predict these categories. This is a first sign - and

others will follow - that additional training data will improve all the methods proposed in the

next section for automated coding.

3.2 Methods for Automated Coding

Our aim is to develop new automated techniques to reduce the amount of work required

for coding. At the same time, the quality is of high relevance and needs to be closely mon-

itored. All automated coding systems we have described in section 2.5.1 require therefore

human efforts to code difficult cases. But even if the human makes the final decision,

computer-assisted coding has proven useful. Hereby, the computer program provides a list

with possible categories to reduce the time needed to search for the correct code. When

the number of suggested categories is large, the coding clerk may find ordered results

helpful with best fitting categories first. All probabilistic methods described below provide a

score that can be used for ordering.

Computer-assisted coding is one automated coding method, automatic coding the other.

When human supervision is not required for quality control, the top-ranked category is a

natural candidate for automatic coding. Then, it becomes essential to estimate the proba-

bility that this top-ranked category is also the correct one. Typically, only those answers with

highest correctness probabilities are coded automatically, the rest is referred to a human

coder. Thompson/Kornbau/Vesely (2012) and Jung et al. (2008) both fix this probability

FDZ-Methodenreport 10/2014 23

at a point such that more than 94% of automatically generated codes agree with human

coding decisions.

To test our methods we use the ALWA and lidA data described above. Only the ALWA data

is large enough to be used for training. We therefore split the ALWA data into training data

with 7436 persons having 26297 jobs recorded and test data with 1791 persons having

6585 jobs recorded. The split is done at random, but under the condition that no person

has her different jobs she was holding during her lifetime scattered over both the training

and the test data. This condition avoids unrealistic good results that may happen when a

person gives multiple times the same answer to describe the same job. If these answers

were scattered over training and test data the algorithm would find useful training data more

often than what would be the case for a different data set. To see how good our automated

coding methods using the same ALWA training data generalize to new coding situations,

test data from the lidA survey is used. With 6585 respondents in lidA, both test data sets

are of equal size. As we have seen above, ALWA and lidA codes differ systematically and

thus one must expect test performance to be worse in lidA when the same ALWA training

data is used for prediction in both test data sets.

We believe that employment coding should not be done in the back office from computers

and coding clerks but at the time of the interview when the interviewer can ask for further

details from the respondent. For this, the interviewer shall be provided with the ordered list

of suggested job categories, alike to computer-assisted coding. A difference between the

coding methods arises in the fact, that back office coding should use as much information

as available to find the correct code. This is not the case for our desired general tool for

interviewer coding, where it is prohibitive to assume that questions found useful for back

office coding about industry, vocational education, or employer’s size are always asked be-

forehand and can be used for interviewer coding. Also, a second and third question about

the respondent’s employment is relevant for back office coding, but the tool for interviewer

coding should work without because the interviewer is expected to ask more precise an-

swers. Unless otherwise noted, we have therefore tested our prediction methods using

only the respondent’s first answer and the shortened differentiated professional status as

depicted in Figure 20. In any case, the Naive Bayes method and the Combined Method are

designed to allow usage of additional covariates. Improvements over the following reported

results should therefore easily be possible for back office coding.

The following sections describe different methods we have tested for automated coding.

Each algorithm except the rule-based coding makes predictions using training data from

n = 26297 answers that are already coded. To measure performance, we have test data

from m = 6585 respondents available. The common output from all algorithms is a score

θlj for each respondent in the test data, l = 1, ...,m, and all possible categories j =

1, ..., J where J = 1290 is the number of job categories. The construction of these scores

differs for each method but with one property holding for all: The score θlj is expected to

correlate with the true probability P (cj |l) that job category cj is correct for respondent l.

In fact, with the exception of the rule-based coding method, the idea for all the following

methods is to estimate this probability, setting θlj = P̂ (cj |l). We therefore call θlj the

estimated correctness probability. To obtain these probabilities, statistical models are built

FDZ-Methodenreport 10/2014 24

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●●●●
●●
●●
●
●●●
●●●●●
●●●●
●●

●
●
●
●●
●

●

●

●
●
●●●
●●
●
●●●●
●
●

●
●
●●●
●
●●●
●
●
●
●●●●
●●
●●●
●●
●
●
●●●
●
●

●

●
●●
●●●
●●●●●●●
●●
●
●●
●●●●●●●

●

●●
●

●
●
●
●●●●●
●
●

●●
●
●●●
●●
●
●●
●

●
●●●●
●
●●

●
●●
●
●●●●
●
●

●

●●
●●●●
●●●●
●●●

●
●
●
●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●●●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●
●●
●

●

●

●

●

●
●
●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●
●

●

●
●●

●

●●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●●●

●●

●

●
●

●
●

●

●
●●

●

●●
●

●

●

●
●

●

●

●

●

●●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●●
●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●●

●

●●

●●●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●
●

●
●●

●

●

●
●

●

●

●
●

●

●
●
●
●
●
●

●
●
●

●●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●

●
●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●●●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●
●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●●

●

●
●

●
●

●

●
●

●
●●
●

●

●
●

●

●

●
●

●

●●
●

●●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●
●
●

●

●
●●
●

●

●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●●
●

●

●

●

●

●●●

●●

●

●●●
●

●

●
●●

●

●
●
●

●

●●●

●

●

●

●
●
●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●
●

●

●●
●

●

●
●

●●

●

●●●●
●
●

●●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●●●

●●

●

●

●

●

●
●●
●

●
●●

●●

●●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●
●
●
●●
●
●

●

●
●
●

●

●

●
●

●

●●

●

●●

●●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●
●
●

●

●

●●

●

●

●

●●●

●
●

●●

●●●

●●

●

●
●●

●●

●
●

●

●●
●

●

●

●

●
●

●

●
●

●●

●

●

●●
●

●
●
●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●●

●
●
●●

●

●

●

●

●

●

●
●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●
●

●

●

●

●●
●

●

●

●●

●

●

●

●
●●

●

●

●

●

●
●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●●●

●

●

●●●

●

●●●

●

●

●●

●
●

●

●

●

●

●●●

●●

●
●

●

●

●

●

●

●

●

●
●●
●●
●●
●
●
●●●
●

●●
●●●
●●●●
●
●●●●
●
●
●●
●●
●●●●●
●●●
●
●●
●●●●
●
●
●
●●●
●
●●●●
●●
●●●●
●●●
●●
●
●●●●
●
●●
●●●●
●
●●
●

●●
●
●●●
●●●
●
●●●
●●
●●●●
●
●
●
●●●●
●●●
●
●●●
●
●

●●
●
●
●●●
● ●●

●
●●●●●
●●●
●
●
●
●●●●●●●●●●●
●●
●●
●●●
●
●●●●●
●
●
●
●●●
●●
●
●●●
●
●
●
●●●●●●●
●
●●
●●●●●●●●
●●
●
●
●●●●
●
●●●●
●●●●
●●
●●●●●●
●●
●●●●
●●●●●
●●●●●●●
●
●
●●
●
●●●●●
●
●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●●

●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●
●●

●

●

●

●●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●●●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●
●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●●●

●

●●

●●

●

●

●

●

●

●

●

●
●●●●●●

●

●
●

●

●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●●●●●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●
●●

●●

●●

●

●●

●

●

●
●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●
●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●●

●●
●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●●●●●●
●

●

●

●
●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●

●

●●●●

●●

●

●

●

●

●

●●

●●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●●

●●●
●
●●●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●●
●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●●●●

●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●●
●

●

●●

●●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●●
●●

●

●

●

●

●

●

●●
●
●
●●●

●

●

●

●

●

●

●
●●

●●

●●

●
●●
●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●●

●●●

●

●

●

●●●●●
●

●●●●●

●●

●●

●

●●
●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●
●

●
●

●

●●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●●

●●●●

●

●●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●
●●●

●

●

●●

●

●●

●

●

●

●

●●

●●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●
●●●

●
●

●
●

●

●

●

●

●●

●●

●

●

●

●●

●●

●

●●

●

●●
●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●●

●

●●●

●

●

●

●

●

●●

●●●

●
●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●
●

●●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●●●

●

●

●

●●●

●

●●●●●

●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●●

●

●
●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●
●
●

●

●

●
●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●●●●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●

●●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●
●

●

●

●●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●
●●

●

●

●

●●

●
●

●●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●●

●●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●
●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●●

●●●

●

●●

●

●

●

●●●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●
●
●
●

●●

●

●

●

●

●●●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●
●●

●
●

●●●●●

●●●
●

●

●

●●●

●●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●●

●
●

●

●●●

●
●
●●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●
●

●●

●

●

●●●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●●●

●●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●

●●

●

●

●●●●●

●

●

●

●

●●

●

●●

●●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●●●●●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●●

●

●●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●●●●●●●●●●●

●●

●

●●

●
●

●

●

●

●●

●

●

●

●●

●●●

●●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●●
●●
●
●●

●

●

●

●

●●

●

●

●

●

●

●●●
●
●
●●
●

●

●●●

●
●●●●

●
●●●

●●

●

●

●
●
●●
●●
●●

●●

●
●

●●

●

●

●

●
●

●●

●

●

●●

●
●

●●

●
●

●●
●●
●
●●●

●●

●

●
●
●
●●

●

●

●●
●●●●●
●
●●●

●
●●
●●●

●
●

●
●

●

●
●●

●

●●●●

●
●●●
●
●
●●

●●
●

●●

●●
●●

●●
●●●

●
●

●

●●●●

●

●

●●●●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●●

●

●●

●

●
●●
●
●

●●●

●●

●

●

●

●

●
●
●●●
●

●
●●

●

●●●●●●

●

●

●
●
●

●●

●

●

●●

●●●●●

●●
●●●
●

●

●●●
●

●

●
●

●
●

●●●

●

●

●
●

●

●●

●

●

●●
●
●●

●●

●

●●●

●

●

●
●
●
●

●

●

●●

●●

●
●

●

●●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●●

●

●●●●

●

●

●

●

●●●

●●

●●
●
●
●
●

●
●

●●

●

●

●

●●

●●

●●

●●
●●●●●

●●
●

●
●

●●

●

●●

●

●

●●●●

●
●

●
●

●

●

●●

●●
●

●

●●
●

●●

●●

●
●

●

●
●

●

●

●●●
●

●

●
●

●

●
●
●
●

●

●●
●

●

●
●

●

●

●●●

●
●

●

●

●●

●
●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●●●
●

●

●

●

●
●●
●●●

●●
●

●●

●●

●

●

●

●●●
●
●
●

●

●●●
●

●●●●

●
●
●●

●

●

●

●

●●

●

●

●

●●

●●

●●

●●

●

●

●

●

●

●

●

●
●●

●●
●●●
●

●●

●
●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●●

●●●

●

●
●
●
●

●●●

●

●

●

●●

●●

●
●●

●

●

●●

●●

●
●

●

●
●

●●

●

●

●

●●

●
●

●

●

●●●●
●

●●
●

●

●●
●
●●

●

●●●
●

●●

●
●
●

●

●
●●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●●●

●

●

●

●

●
●●

●

●

●
●

●

●
●●●

●
●

●

●●●
●

●

●

●
●
●

●
●●●●

●●
●
●

●
●●

●

●

●

●
●●●

●

●●

●

●
●

●

●

●
●
●
●
●
●●

●
●
●

●●●

●●

●

●

●

●

●

●
●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●●
●●
●●

●

●
●

●

●
●

●

●
●
●

●●●

●●●
●
●●

●
●
●

●
●
●●

●
●●●
●●

●●
●

●●

●

●
●

●

●●●
●

●●●
●

●

●

●
●●
●

●●●

●

●

●

●

●
●

●

●
●

●

●

●
●●●
●●
●●
●●●
●
●●
●
●
●●●●●
●●
●●●●
●
●
●
●
●●●
●●
●
●
●

●
●●
●●●

●●●
●
●●●●●
●●●●●
●●●●●

●●●●
●●●●
●

●●●
●
●●●●●●
●●●
●●
●
●●
●●
●
●
●
●
●
●●
●●
●●
●
●

●●●
●
●
●●●●●
●●●●●●●

●●

●
●
●●●
●
●●
●
●●
●●●
●●●●
●●●●●● ●●

●
●●●●
●●●●●●●●●
●
●●●●●●●
●
●●●●
●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●

●●
●●●●●
●
●
●●●
●
●
●●●●●●●
●●●
●●●●●
●
●
●●●●
●●
●●●●●●●●●●●●●●
●
●
●
●●
●
●●●●●●●
●●
●●●●●
●●●
●●
●●●●●
●
●●●●
●
●
●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 >5 * **
n−th Item in Suggested Job Categories

(ALWA Test Data on the Left, lidA Test Data on the Right)

A
gr

ee
m

en
t R

at
e

0.25

0.50

0.75

Estimated
Correctness
Probability

Figure 8: Agreement rates for comuter-assisted coding. Shown are relative frequencies
how often the n-th ranked category is correct. Error rates are given for grey bars.

from training data with respondents i = 1, ..., n. Estimations obtained from the training

data are then extrapolated to the test data.

The different prediction methods may be considered as black-box algorithms where one

is not interested into the internal mode of operation. From this point of view our main

results are presented next. The best method we developed is a combination of the other

algorithms as described in section 3.2.4. Figure 8 shows the usefulness of this method for

computer-assisted coding. For the diagram, the estimated correctness probability θlj have

been sorted for each respondent l with highest scores first. The associated codes can then

be presented to the coding clerk who should hopefully find the correct job category within

the first few suggestions that have highest scores. The graphic shows that top-ranked job

categories (1st item) are in agreement with the assigned code 63.64% of the time for ALWA

(left) and 54.88% for lidA (right). The worse performance in the lidA test data is as expected

because of the described systematic differences in ALWA and lidA codes. One can further

see that suggested categories ranked second to fifth contain a substantial proportion of

correct codes. Thus, it would be possible for a human coder to find for 74.08% of all

answers (ALWA, lidA: 69.35%) the correct code within the top five suggestions. For the

residual cases the the system is less useful due to different reasons: A proportion of 7.15%

for ALWA (lidA: 13.41%) has the correct job category only suggested after the five top-

FDZ-Methodenreport 10/2014 25

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
Production Rate

C
um

ul
at

iv
e

A
gr

ee
m

en
t R

at
e

Prediction Method

Official Dictionary

Naive Bayes

Combined Methods (Boosting)

Bayesian Multinomial

Figure 9: Agreement and Production Rates for ALWA-test data

ranked categories. For these cases the available training data and dictionaries still find the

correct job category which can be suggested to a professional coder. This is not the case

for other answers, marked grey in the diagram. For 8.23% (ALWA, lidA: 5.76%) we find only

wrong code suggestions in training data and dictionaries and for further 10.54% (ALWA,

lidA: 11.48%) these sources do not provide any hint about a possible job category at all.

Taken together, this sums up to nearly 20% of all answers where neither dictionary nor data-

based statistical learning methods are able to give any suggestion about the correct job

category. Only additional training data, more dictionary rules, or better string preprocessing

may be useful to process these answers with automated coding methods. Colors are

used to depict the algorithm’s certainty that the correct category has been found. Answers

with high estimated correctness probability θlj are marked blue. These are candidates for

automatic coding without human interaction.

If one desires automatic coding, the algorithm’s performance is better described with fig-

ure 9. Applying ideas from Chen/Creecy/Appel (1993), the chart compares quality from

FDZ-Methodenreport 10/2014 26

automatic coding for ALWA test data using different prediction methods. As described be-

fore, the top-ranked category suggestion is the only candidate for automatic coding. This

category suggestion is, however, not always correct and it is therefore relevant to decide

automatically if the suggested code shall be assigned by the computer or if the answer is

referred to manual coding. The estimated correctness probability for the top-ranked cat-

egory, θl(1) = maxj θlj , can be used for this decision. Answers are only coded without

human supervision when this probability is above a certain threshold and otherwise not.

When this threshold is higher, fewer codes are assigned automatically and thus the pro-

duction rate is smaller. At the same time, the cumulative agreement rate, i.e., the propor-

tion of automatic code assignments that agree with the human-coded ’true’ job categories

rises. The diagram shows that, if one were to fix the desired agreement rate at 95%, it

would be possible to code 43.25% of all answers with the ’Combined Methods (Boosting)’-

algorithm, 7.96% with Naive Bayes, and 45.36% with the Bayesian Multinomial model. Al-

though these numbers show that the last model performs best when high agreement rates

are necessary, this is not the case if one were to code at 100% production rate all top-

ranking answers. In this case, only 59.06% would agree with human code decisions for the

Bayesian Multinomial method, 63.23% for the Naive Bayes method, and, as we have seen

in figure 8, 63.64% for the ’Combined Methods (Boosting)’. The ’Official Dictionary’-method

cannot be compared directly to the other methods, because it does not provide estimated

correctness probabilities necessary for ordering. There is still one possible point of com-

parison, namely that 48.77% of all answer are found in a dictionary (production rate) and

76.44% of these dictionary entries provide the correct code (agreement rate). Variation

at smaller production rates is due to random ordering of dictionary matches. For a pro-

duction rate above 48.77%, the agreement rate decreases towards an overall accuracy of

0.4877 ∗ 0.7644+ (1− 0.4877) ∗ 0 = 37.28% at 100% production rate, because all answers

not found in the dictionary cannot be coded accurately. Production and agreement rates

for the lidA test data are provided in the appendix (19) and are in accordance but without

new insights for our discussion here.

While the black-box approach above is good for an overview over methods used and re-

sults obtained, it is necessary to go into detail to understand why the different prediction

methods perform as they do. Within the next few sections we provide the required back-

ground and further evaluation. In section 3.2.1 we describe how we use an existing job

catalogue for automatic coding. Our study focuses, however, on the other possible source

for background information: we use previous code assignments from the ALWA study to

predict new codes. Two different methods, Naive Bayes and Bayesian Multinomial, applied

for this task are described in sections 3.2.2 and 3.2.3. As we will see, a particular strength

from the Naive Bayes model is that it uses the full answer string. This is in general not pos-

sible with the Bayesian Multinomial model, which comes with another advantage. Because

prior information is used, one can account for small training frequencies when certain an-

swers are not used often. To combine the strengths from all three methods, section 3.2.4

provides the details on the last method which is based on boosting.

FDZ-Methodenreport 10/2014 27

3.2.1 Rule-based Coding

The definition of rules to assign verbatim answers into predefined categories is often done

for survey coding. The idea is to match answers with entries from a dictionary and assign

the corresponding code. The coding manual given by Geis (2011) is based on a dictionary

and Drasch et al. (2012) have used dictionaries from the DKZ with 42000 job names and

additional 101000 search words for semi-automatic coding of ALWA data. This method is

also internationally the prevalent procedure and different coding programs developed for

dictionary-based coding are described in sections 2.3 and 2.4.1.

For German occupations a number of different dictionaries exist. The official KldB 2010

documentation (Bundesagentur für Arbeit, 2011) includes an alphabetic list with 24000 job

and occupation names together with corresponding 5-digit codes4. Other dictionaries are

available as part of the 8-digit DKZ. The Federal Employment Agency uses the DKZ for

various services and updates the database on a regular basis5. The file B_SY.txt contains

3920 8-digit DKZ codes, each with short and long job names in male, female, and neutral

format (6 names in total). Additionally, the file B_SW.txt provides more than 150000 search

words that link to one or more DKZ job codes and in the BERUFENET we find similar

jobs ("Beschäftigungs-/Besetzungsalternativen") that may be helpful for computer-assisted

coding.

Here, we use only the static and well documented alphabetic dictionary from the KldB 2010

and come back to the DKZ dictionaries only in section 3.2.4. The reason is that we want

the dictionary to be a stable point of reference. If the rules from a dictionary are followed,

identical verbatim answers are always coded into the same category, which explains the

popularity of this method. At the same time predefined rules may be problematic. If a

verbatim answer fits into multiple categories, a coding rule defines which single category

is to be used and thus the underlying ambiguity is concealed. When the dictionary assigns

answers to incorrect codes, systematic errors happen. No analysis of errors in coding

dictionaries is known to us and thus it is unknown how frequent these dictionary misas-

signments are. Interpretation of job codes is therefore only possible in the light of those

dictionary rules that were used for coding. With the regular updates in DKZ dictionaries

this would be impossible. Also, all research should be reproducible but for coding this is

not possible when updated dictionary versions are used.

The alphabetic list of occupations comes with some challenges for dictionary-based coding.

The problems involved are best described with the following example: Two entries from this

dictionary are "Betriebsschlosser/in" (Code 25102) and "Betriebsschlosser/in (Landtech-

nik)" (Code 25222). The first problem consists of different male and female names for many

occupations. We therefore searched for frequent word endings to extract the corresponding

male and female names (here "Betriebsschlosser" and "Betriebsschlosserin"). This proce-

4 Online at http://statistik.arbeitsagentur.de/Navigation/Statistik/

Grundlagen/Klassifikation-der-Berufe/KldB2010/Systematik-Verzeichnisse/

Systematik-Verzeichnisse-Nav.html
5 Relevant online services can be found at http://berufenet.arbeitsagentur.de/berufe/ and http:

//download-portal.arbeitsagentur.de/ (most relevant are the files B_SY.txt and B_SW.txt)

FDZ-Methodenreport 10/2014 28

http://statistik.arbeitsagentur.de/Navigation/Statistik/Grundlagen/Klassifikation-der-Berufe/KldB2010/Systematik-Verzeichnisse/Systematik-Verzeichnisse-Nav.html
http://statistik.arbeitsagentur.de/Navigation/Statistik/Grundlagen/Klassifikation-der-Berufe/KldB2010/Systematik-Verzeichnisse/Systematik-Verzeichnisse-Nav.html
http://statistik.arbeitsagentur.de/Navigation/Statistik/Grundlagen/Klassifikation-der-Berufe/KldB2010/Systematik-Verzeichnisse/Systematik-Verzeichnisse-Nav.html
http://berufenet.arbeitsagentur.de/berufe/
http://download-portal.arbeitsagentur.de/
http://download-portal.arbeitsagentur.de/

dure is obvious for the ending "/in", more difficult for endings like in "Leitende/r kaufmännis-

che/r Angestellte/r", and automatic recognition for names like "Absteckdirektrice/-modelleur"

was not possible for us. For 2091 out of 24000 job names from the dictionary we do not find

male and female forms automatically and these entries are therefore discarded. The sec-

ond problem arises from the fact that people do not use parentheses in verbatim answers.

For simplicity we delete parentheses and the text within.

Results from dictionary based coding have been reported earlier in this thesis. 45% (lidA)

respectively 49% (ALWA) of all first answers have an exact match to one of these (prepro-

cessed) dictionary entries, either in male or female form. Only if there is exactly one match

it is counted as a match. This means in particular for the "Betriebsschlosser" where two

possible codes (25102 and 25222) are found that this word is not coded automatically us-

ing this preprocessed dictionary. For lidA, 95.6% of all dictionary codes with exact matches

agree with the assigned code whereas the same number is only 76.4% for ALWA.

Another problem is that many jobs have general names (e.g., "Agrarwirt/in" or "Tischler/in")

that code in one category and more specific names (e.g., "Agrarwirt/in Baumpflege und

Baumsanierung", "Agrarwirt/in Besamungswesen", ... or "Bautischler/in", "Billardtischler/in",

...) that code into different categories. We assume that people often only answer with the

general name "Agrarwirt" or "Tischler" and the text is therefore miscoded when in fact the

more specific name would be correct. This means, when rule-based coding is based only

on the first answer, automatic code assignments are often incorrect. Computer-assisted

coding and coding during the interview may lead to better results and a prototype for it is

presented in chapter 4. With this method, job codes are suggested to the human coder not

only when the dictionary match is exact but also if the given answer is part but not identical

to the dictionary entry (partial match).

3.2.2 Naive Bayes

The Naive Bayes algorithm is well-known and often used as a benchmark for new algo-

rithms (e.g Lewis (1998)). We apply it, because it provides a simple technique to handle

answers with multiple words and any number of covariates can be included in the model.

Theory Let cj , j = 1, ..., J specify the J job categories, qi is a verbatim answer and xi
are further covariates for respondent i, i = 1, ..., N .

Using Bayes rule, one may calculate the probability that respondent i works in job category

cj ,

P (cj |qi, xi) =
P (qi, xi|cj)× P (cj)

P (qi, xi)
(1)

It is natural to predict that category cj with the highest probability given the covariates.

Tutz (2000) (p. 344) shows that this prediction rule minimizes the probability for false

FDZ-Methodenreport 10/2014 29

classification. This minimal error probability can in theory be calculated as

εopt =
∑
qi,xi

min
j=1,...,J

(1− P (cj |qi, xi))× P (qi, xi) (2)

Problems arise because the right hand side in formula 3.1 is in general not known. While

the denominator P (qi, xi) is constant for all cj and can be neglected, the numerator needs

to be estimated. This is difficult in particular for P (qi, xi|cj) because the number of possible

combinations between arbitrary verbatim answers qi and all possible values for covariates

xi and job categories cj is far larger than the size of our training data. Instead of estimat-

ing all the probabilities in this three way contingency table, we reduce dimensions with the

Naive Bayes assumption of condtional independence between answers and other covari-

ates given the job category. With this assumption we may write

P (cj |qi, xi) ∝ P (qi, xi|cj)× P (cj) (3)

∝ P (qi|cj)× P (xi|cj)× P (cj) (4)

The Naive Bayes assumption gives us therefore a way to handle a high number of covari-

ates by multiplying conditional probabilities together. For P (xi|cj) and P (cj), the relative

frequencies are obvious estimators.

More difficult is the handling of language. How should we estimate P (qi|cj), the probability

that the respondent gives the observed answer qi given that she works in job category

cj? This problem has been studied extensively in the field of Information Retrieval (e.g.

Manning/Raghavan/Schütze (2008)) and text categorization (e.g., Aggarwal/Zhai (2012)

and McCallum/Nigam (1998)). We follow a common approach that is also based on the

Naive Bayes assumption. The basic trick is to neglect, again, dependencies between how

often single words wi1, ..., wiV appear in qi (the so-called bag of words assumption) and

model this with a multinomial distribution:

P (qi|cj) = P (W1 = wi1, ...,WV = wiV |cj) (5)

= Kqi

V∏
v=1

P (Tv|cj)wiv (6)

Hereby, v = 1, ..., V is an index for the V possible words that may be used by respondents,

W1, ...,WV |cj is the distribution of word frequencies given cj which is assumed to follow

the multinomial distribution with parameters P (T1|cj), ..., P (TV |cj), interpretable as prob-

abilities that a word Tv is used by a respondent given she is in category cj . The constant

Kqi =
(
∑V

v=1 wiv)!∏V
v=1(wiv !)

can be ignored because it does not depend on the job category cj . We

simplify this model further by setting the word frequency for a particular word wiv to one

when it appears at least once in answer qi.

Estimation of usage probabilities for particular words P (Tv|cj) by a respondent is now the

key to achieve good model performance. Relative frequencies are not satisfactory because

many words are not used often and the contingency table for words and job categories is

FDZ-Methodenreport 10/2014 30

very sparse. When a respondent uses a new word Tv not answered before, P̂ML(Tv|cj) =
0, and inserting this estimators into the formulas above yields P (cj |qi, xi) = 0 for all job

categories, which is obviously not desirable. Even worse is the case when the respondent’s

answer contains a word that was only used a single time before. P̂ML(Tv|cj) will be zero

for all but one category cj and as a result this cj is strongly suggested by the algorithm to

be the correct category although only one little used word has indicated it.

Smoothing is therefore necessary and we use Jelinek-Mercer smoothing, which is a weighted

average from a category specific frequency estimate and a global estimate,

P̂ (Tv|cj) = λP̂ML(Tv|cj) + (1− λ)P̂ML(Tv) (7)

Although Manning/Raghavan/Schütze (2008) stress the importance to choose λ well, we

tested it with λ = 0.7 and λ = 0.95 and did not find large performance differences. Because

predictions were slightly better with λ = 0.95, we set λ accordingly in the following analysis.

To summarize the formulas above, we attain an estimation for P (cj |qi, xi) by plugging in

the different relative frequencies (ML-estimators) as

P̂ (cj |qi, xi) ∝ P̂ (cj)× P̂ (xi|cj)× P̂ (qi|cj) (8)

∝ P̂ML(cj)× P̂ML(xi|cj)×
V∏
v=1

P (Tv|cj)wiv (9)

∝ P̂ML(cj)× P̂ML(xi|cj)×
V∏
v=1

(λP̂ML(Tv|cj) + (1− λ)P̂ML(Tv))
wiv (10)

∝ #{cj}
N

× #{xi|cj}
#{cj}

×
V∏
v=1

(λ
#{Tv|cj}
#{cj}

+ (1− λ) #{Tv}∑V
u=1#{Tu}

)wiv (11)

with wiv = 1 if word Tv was used by respondent i and wiv = 0 otherwise. # is the count-

ing operator and thus #{xi|cj}
#{cj} is the proportion of respondents with covariate xi from all

respondents in job category cj . While this proportion is counted on the basis of respon-

dents, #{Tv |cj}
#{cj} is the proportion of the number of word Tv over all words used to describe

category cj .

Though this is the basic formula used, our calculations deviate in some technical as-

pects. First, in the next section we do not estimate P̂ML(cj) with relative answer fre-

quencies #{cj}
N but with relative freqencies how often single words are coded into cat-

egory cj . Second, the ML-estimator P̂ML(xi|cj) =
#{xi|cj}
#{cj} is not defined if #{cj} =

0 and not desireable for small #{cj}, because one would estimate P̂ (cj |qi, xi) = 0 if

#{xi|cj} = 0. As a workaround we set P̂ (xi|cj) = mink
#{xi|ck}
#{ck} if it would be zero

otherwise for the Naive Bayes model and for the Combined Methods algorithm we fix all

P̂ML(xi|cj) smaller than 0.05 at 0.03. Third, we find in section 3.2.4 numerical insta-

bilities when we multiply P̂ (cj) × P̂ (xi|cj) × P̂ (qi|cj) and solve these using logarithms

exp(log P̂ (cj) + log P̂ (xi|cj) + log P̂ (qi|cj)). While we do not expect these technicalities

to change our interpretations, they do explain different numerical result shown in Figures 9

and 11.

FDZ-Methodenreport 10/2014 31

Name Used Variables λ AUC

NB 1-answer lambda = 0.7 First Answer 0.7 0.877

NB 1-answer First Answer 0.95 0.884

NB 1-answer W Prof. Status First Answer & Professional Status 0.95 0.886

NB 1-answer W Full Training First Answer (& Second Answer pasted) 0.95 0.864

NB 2-answers First & Second Answer pasted 0.95 0.832

Figure 10: Properties from various Naive Bayes Models

The final estimated correctness probability θlj is then calculated as

θlj = P̂ (cj |ql, xl) =
P̂ (cj)× P̂ (xl|cj)× P̂ (ql|cj)∑J
k=1 P̂ (ck)× P̂ (xl|ck)× P̂ (ql|ck)

(12)

Evaluation Naive Bayes predictions can be obtained from a number of different settings.

Figure 10 provides an overview over the five different methods we tested for prediction.

’NB 1-answer lambda = 0.7’ and ’NB 1-answer’ are used to compare different choices for

λ. Both methods use only the first verbatim answer and no further variables. Because

performance is slightly better for λ = 0.95, this value is used for the other methods with

additional covariates. ’NB 1-answer W Prof. Status’ includes information on the profes-

sional status and the last two methods make use of the first and second verbatim answers

by connecting both answers to a single text in the training data. The difference between

’NB 1-answer W Full Training’ and ’NB 2-answers’ consists in the fact that the former uses

only the first answer to predict job codes and the latter connects first and second answers

in the test data like it is done in the training data.

Although we do not recommend evaluating performance from different prediction meth-

ods using a single number, the AUC is such a number and we provide it for reference. It

ranges from its (practical) minimum 0.5 if assignments were made at random to the perfect

maximum score 1 signifying that the prediction method can perfectly discriminate between

correct and wrong top-ranked category suggestions. Loosely speaking, it measures how

good the choices are to find a cutoff point on the scale of estimated correctness proba-

bilities to distinguish between top code suggestions in agreement with human coders and

those suggestions that disagree. A detailed discussion about this prediction performance

measure is given by Fawcett (2003).

Performance comparison from the different prediction methods is better done with dia-

grams as depicted in figure 11. With the exception of the ’NB 2-answers’ method, all

curves follow a similar pattern. For very low production rates agreement rates are around

0.9, then they decrease at high gradients before the curves slowly increase back to a 0.9

agreement rate at production rates around 0.5. Close inspection of responses shows that

this dent at 0.1 production rate is due to long verbatim answers with multiple words. The

algorithm often calculates high estimated correctness probabilities for these answers al-

though the agreement of suggested categories with human-coded categories is often not

given. The ’NB 1-answer W Prof. Status’ and ’NB 2-answers’ methods show that this effect

can be avoided when additional covariates are used for prediction. We further observe that

FDZ-Methodenreport 10/2014 32

0.6

0.8

1.0

0.6

0.8

1.0

A
LW

A
lidA

0.00 0.25 0.50 0.75 1.00
Production Rate

C
um

ul
at

iv
e

A
gr

ee
m

en
t R

at
e

Prediction Method

NB 2−answers

NB 1−answer W Prof. Status

NB 1−answer W Full Training

NB 1−answer lambda = 0.7

NB 1−answer

Figure 11: Agreement and Production Rates for Different Naive Bayes Procedures

agreement rates for most methods are around 0.9 for a 0.5 production rate but rarely above.

If one is not willing to accept 10% erroneous codes, no Naive Bayes method is therefore

useful for automatic coding. Still, these numbers show that any Naive Bayes method may

prove useful for computer-assisted coding.

Lower agreement rates for lidA compared to ALWA suggestions are, again, due to sys-

tematic differences in both codes. The comparison shows other peculiarities that we are

not able to explain. In particular, the lines for the ’NB 1-answer lambda = 0.7’ and ’NB

1-answer W Prof. Status’ methods appear to have different characteristics in both data

sets. It is also relevant that agreement rates at 100% production rate are nearly identical

with one exception: The ’NB 2-answers’ method performs worse for lidA predictions. This

means that, although with the second verbatim answer more information is entered, the

proportion of codes correctly predicted decreases.

Additional insights about strengths and weaknesses of Naive Bayes predictions are pro-

FDZ-Methodenreport 10/2014 33

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Estimated Correctness Probability Quantile

M
ea

n
A

cc
ur

ac
y

ov
er

 1
00

 P
re

di
ct

io
ns

0.25

0.50

0.75

Estimated
Correctness
Probability

Figure 12: Calibration for Naive Bayes First Answer with Professional Status

vided in figure 12. The diagram shows how well estimated correctness probabilities from

the ’NB 1-answer W Prof. Status’ model align with underlying true probabilities for a code

to be correct. Around 10% of the test data has very low estimated correctness probabil-

ities (red) and the suggested codes are - as expected - typically incorrect. Further 40%

have medium estimated correctness probabilities (violet) and as these probabilities rise

the suggested codes are also more often the correct ones. For the other half of the data,

the prediction method provides estimated correctness probabilities that are all above 0.85,

for 1/3 of the data even above 0.95. Still, accuracy for this top-valued third is only 91%

and the algorithm systematically overestimates its confidence. Even worse, for this top-

half the estimated correctness probabilities do not seem to correlate with true probabilities.

Naive Bayes methods are therefore inapplicable for automatic coding in high quality. The

Bayesian Categorical method described next will overcome these restrictions.

3.2.3 Bayesian Categorical

Many first answers are short with only one or two words. In the small training data we have

available, some of these answers do not appear at all or only a few times. This rareness is

problematic, because if answer Al was coded into the job category cj only once, then the

estimator for θlj = P̂ (cj |Al) will be very imprecise. With the Bayesian Categorical model

we tackle this problem. The theory is based on well-known conjugate Bayesian analysis

(e.g., Wagner (2010/2011)) with a simple extension described below.

Theory The approach taken above is frequentist in nature, that is, we try to estimate

some underlying "true" value θ̂j = P̂ (cj |qi, xi) that we wish to be identical with the relative

frequency that category cj occurs. In this section we follow a different path, Bayesian in

nature. Probabilities are used to quantify the degree of belief about the parameter θ. The

FDZ-Methodenreport 10/2014 34

basic Bayesian idea is given with the formula

p(θ|y1, ..., yn) =
p(y1, ..., yn|θ)p(θ)
p(y1, ..., yn)

The posteriori distribution p(θ|y1, ..., yn) is obtained when the likelihood for the observed

data p(y1, ..., yn|θ) is multiplied with the prior distribution p(θ). Using this formula, one

updates his current belief about the parameter θ. When no prior information is available, a

uniform, "non-informative" distribution is often used for θ. This degree of belief is improved

with the new posteriori distribution that reflects new knowledge from the data.

For the coding of occupation, the values y1, ..., yn denote the assigned codes for n respon-

dents. All codes are realizations from a categorical distribution Y = (Y (1), ..., Y (j), ..., Y (J))

with Y (j) = 1 if code cj was assigned and 0 otherwise. A categorical distribution has den-

sity

p(y(1), ..., y(J)) =
J∏
j=1

θy
(j)

j (13)

When the likelihood is categorical, a widely used prior is the Dirichlet distribution (θ1, ..., θJ) ∼
Dir(α1, ..., αJ). Its density is

p(θ1, ..., θJ) =
1

B(α)

J∏
j=1

θ
αj

j (14)

where the normalization constant B(α) is the multinomial Beta function. The expected

value from the Dirichlet distribution is E(θj) = αi∑J
k=1 αk

. This choice of a prior allows for a

conjugate Bayesian analysis where the posteriori distribution is again a Dirichlet distribu-

tion. This is shown by multiplying formulas 3.13 and 3.14,

p(θ1, ..., θJ |y1, ..., yn) ∝ p(y1, ..., yn|θ1, ..., θJ)p(θ1, ..., θJ) (15)

∝ (
n∏
i=1

p(yi|θ1, ..., θJ))p(θ1, ..., θJ) (16)

∝ (
n∏
i=1

J∏
j=1

θ
y
(j)
i
j)

J∏
j=1

θ
αj

j (17)

∝
J∏
j=1

θ
∑n

i=1 y
(j)
i +αj

j (18)

which is the kernel from the Dirichlet distribution, (θ1, ..., θJ)|y1, ..., yn ∼ Dir(
∑n

i=1 y
(1)
i +

α1, ...,
∑n

i=1 y
(J)
i + αJ) = Dir(#{c1} + α1, ...,#{cJ} + αJ). As above, #{cj} denotes

here the number of anwers coded into category cj . When not the full posteriori distribution

is required but only an estimator for cj , a good choice is often the posteriori expectation

θ̂j = P̂ (cj) = E(θj |x1, ..., xn) = #{cj}+αj∑J
k=1 #{ck}+αk

.

Our choice to use the Dirichlet prior is favorable for a number of reasons: To calculate

FDZ-Methodenreport 10/2014 35

the posteriori we only need to count and add values, which makes computation simple.

When no prior information is available, one may set α1 = ... = αJ and thus no category is

expected to be more probable beforehand. The parameters αj also have a simple interpre-

tation: Because they are added to the number of observed categories #{cj}, αj may be

regarded as the number of categories that we have observed in prior (imaginary) studies.

This interpretation is also supported by the equation

E(θj |x1, ..., xn) =
#{cj}+ αj∑J
k=1#{ck}+ αk

(19)

= ω
αj∑J
k=1 αk

+ (1− ω)#{cj}
n

(20)

with ω =
∑J

k=1 αj

n+
∑J

k=1 αj
. It shows that the posteriori expectation is a weighted mean from

the prior expectation and the relative frequencies in the observed data. The prior has

therefore a shrinkage effect, i.e. relative frequencies in the data are drawn towards the

prior expectation. Also note that, when larger numbers are chosen for the parameters

αi, the prior information has stronger effect on the posteriori expectation and, in contrast,

larger sample sizes n strengthen the importance of observed data.

The discussion above shows that a Bayesian categorical model is adequate to estimate

category probabilities θ̂j = P̂ (cj). Verbatim answers, however, have not been used so far

for prediction. Next, we will extend the method to use covariate information and calculate

estimated correctness probabilities θ̂j = P̂ (cj |qi). The idea is to train the model using only

a subset from all the coded persons, namely we choose those codes yi where the verbatim

answer given is exactly identical to the answer we try to predict, named qi above. In other

words, instead of using code frequencies from all observations, #{cj}, the likelihood is

formed from code frequencies #{cj |qi} where the given answers are identical.

Another question is how to choose the prior parameters α1, ..., αJ . While identical α are

reasonable to express no prior knowledge, we prefer to use relative frequencies for the

different categories, #{c1}/n, ...,#{cJ}/n. Due to the high number of categories, we

expect that relative frequencies are all very low and thus nearly identical. Because relative

frequencies sum up to 1, prior knowledge has an impact on the final result as if exactly

one additional person was asked about their job code. For answers that were coded many

times, this is negligible, but when an answer was only coded a single time into category

cj , it is relevant. In this case, the posteriori expectation evaluates to, with slight abuse of

notation,

E(θj |#{cj |qi} = 1,#{cj} = 1) =
#{cj |qi}+#{cj}/n∑J

k=1(#{ck|qi}+#{ck}/n)
(21)

=
1 + 1/n

1 + 1
(22)

≈ 0.5 (23)

and setting
∑J

k=1#{ck}/n = 1 has clearly a huge impact on the final result. To allow for

more flexibility in prior assumptions, we multiply the prior relative frequencies suggested

above with a constant α. This number describes, on how many imaginary persons we build

FDZ-Methodenreport 10/2014 36

our prior beliefs. The best choice for α will be discussed in the following section.

To summarize, the Bayesian categorical approach provides us with a Dirichlet distribution

over the probabilities θ1, ..., θJ that associated categories c1, ..., cJ are correct, given an

answer qi from the respondent. The distribution parameters are given in the equation

(θ1, ..., θJ)|(y1, q1 = qi), ..., (yn, qn = qi) ∼ (24)

Dir(#{c1|qi}+ α#{c1}/n, ...,#{cJ |qi}+ α#{cJ}/n) (25)

Hereby, the terms (y1, q1 = qi), ..., (yn, qn = qi) denote that only respondents that gave

the desired answer qi are used for estimation in the likelihood. Relevant estimators like

the posteriori expectation can easily be calculated from this distribution. Noteworthy is also

the aggregation property from the Dirichlet distribution. When only the distribution over a

single parameter θj is of interest, this parameter follows a Beta distribution with parameters

θj |(y1, q1 = qi), ..., (yn, qn = qi) ∼ Beta(#{cj |qi}+ α#{cj}/n, (26)

(

J∑
k=1

#{ck|qi}+ α#{ck}/n)− (#{cj |qi}+ α#{cj}/n)) (27)

Evaluation The good performance of the Bayesian Categorical model has been shown

in figure 9 and it is a method well suited to find answers that shall be coded automatically

without human supervision at high agreement rates. Our suggestion is to set the prior

parameter α = 0.5. With this choice the AUC equals 0.963 for the ALWA test data which is

considerably higher than the AUC from any Naive Bayes model. This section will provide

some insights how this good performance is reached and why we choose to set α = 0.5.

Relevant properties how good the Bayesian Categorical model with α = 0.5 can predict job

categories from the ALWA test data can be seen in the top panel from figure 13. For 35%

of all answers (the quantile on the x-axis) an identical answer is not available in the training

data. Without any information, the most frequent job category 71402 is predicted with

an estimated correctness probability at 0.054. In general, these predictions are false and

accuracies are zero. A substantial amount of answers is human-coded into this category

by chance, which explains the peek at 0.23. Further 27% of the test answers have already

been coded in the training data but into numerous different categories. The estimated

correctness probabilities for these answers are between 0.07 and 0.85 which depends

on relative frequencies how often specific answers were coded into a single job category.

Answers like "Wissenschaftlicher Mitarbeiter" or "Technischer Angestellter", for example,

have been coded into numerous different job categories and thus the algorithm expresses

its uncertainty about the correct code with low estimated correctness probabilities. When

the algorithm estimates correctness probabilities above 0.85, few suggested categories

are wrong and one could assign the predicted code automatically. With this cutoff point,

automatic coding would be possible at a production rate of 38% and an agreement rate

(y-axis) around 97%. This result is promising at first sight but there are two drawbacks.

First, the comparison with the lidA test data shows that human coders find other job codes

FDZ-Methodenreport 10/2014 37

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

A
LW

A
A

LW
A

lidA
lidA

alpha =
 0.5

alpha =
 2

alpha =
 0.5

alpha =
 2

0.00 0.25 0.50 0.75 1.00
Estimated Correctness Probability Quantile

M
ea

n
A

cc
ur

ac
y

ov
er

 1
00

 P
re

di
ct

io
ns

0.25

0.50

0.75

Estimated
Correctness
Probability

Figure 13: Calibration for Bayesian Categorical models

for lidA even if code assignments for a unique first answer in ALWA are nearly definite.

Second, these numbers are not better than the dictionary-based automatic coding that was

done for original ALWA coding and it is well possible that our method simply reconstructs

the results from ALWA automatic coding.

It must be noted that a few very frequent answers determine what the graph looks like.

This is best seen in the diagram for lidA test data with α = 2 where five green lines are

best visible. Each line shows how the graph would look different if certain responses were

not given. The high amplitude at the 0.5 quantile is due to 82 answers "Verkäuferin" (es-

timated correctness probability = 0.30) where the suggested category is in fact accurate

at 85%. Other large deviations in the graph result from the answers "Sachbearbeiterin"

(estimated correctness probability = 0.67, 33 answers with 0% accuracy), "Kaufmännis-

che Angestellte" (estimated correctness probability = 0.79, 52 answers with 2% accuracy),

"Lagerist" (estimated correctness probability = 0.87, 27 answers with 0% accuracy), and

"Verwaltungsangestellte" (estimated correctness probability = 0.91, 62 answers with 71%

accuracy).

A prediction method is better if the algorithm clearly distinguishes between answers that

can be coded automatically and those that can not. High and many amplitudes in the di-

agram represent unpredictibility as opposed to those parts in the diagram that are stable

FDZ-Methodenreport 10/2014 38

and correctness is therefore simple to predict. The diagram shows therefore that the algo-

rithm’s performance with prior parameter α = 0.5 is clearly better compared with α = 2.

Our choice for α = 0.5 has the following motivation. For answers that appear only a single

time in the training data and are given again in the test data, the relative frequencies that

assigned codes agree in training and test data are 78% (ALWA) resp. 63% (lidA). When

such answers are predicted with the Bayesian Categorical model one would want estimated

correctness probabilities to have similar values. These estimated correctness probabilities

are posteriori expectations that evaluate to

E(θj |#{cj |qi} = 1,#{cj} = 1) =
#{cj |qi}+ α#{cj}/n∑J

k=1(#{ck|qi}+ α#{ck}/n)
≈ 1

1 + α
(28)

when #{cj |qi} = 1 and #{cj} = 1 are given. Setting E(θj |#{cj |qi} = 1,#{cj} = 1) =

0.78 and solving for α yields α = 1−0.78
0.78 = 0.28 as the optimal value to predict new codes

in the ALWA test data. For lidA one calculates α = 1−0.63
0.63 = 0.59. Our choice α = 0.5 is

a conservative center point from both calculations that can be interpreted as a prior belief

that 2
3 of all answers that were coded once in the training data will get the same code in the

test data.

3.2.4 Combined Methods (Boosting)

Over the last sections we explored a number of different methods that can be used to find

adequate job categories. Different dictionaries exist and can be consulted to find the cor-

rect code for a given answer. With the Naive Bayes and Bayesian Categorical models,

we suggested two probabilistic algorithms that use ALWA training data for automatic cod-

ing. Figure 9 and the discussion above have shown that these algorithms have different

strengths. The Bayesian Categorical model is useful for short answers where identical

answers were already coded in the training data. The Naive Bayes method reaches only

lower agreement rates but gives reasonable category suggestions for a larger proportion

of answers. Not identical answers but identical words in non-identical answers are the

engine for this. We have further seen that there is a relevant proportion in the test data

where no adequate code suggestions are found due to the limited size of the training data.

Especially for these cases, we expect that rule-based coding from a dictionary will provide

additional category suggestions for automated coding. In this section we suggest a method

to combine the different algorithms described before. This allows better performance when

the different strengths from all procedures are combined. It is easily possible to construct

other methods that may be useful for coding. The question is then, if this new method

complements existing methods in a helpful way or if it is useless. Within this section we will

describe a possible way to evaluate predictive performance from different coding methods.

Central for this section is the following idea. All different coding methodsm calculate scores

(we called them estimated correctness probabilities before) θ(m)
lj for each response l and

all possible job categories j. As already noted in section 3.2, these scores are expected

to correlate with the true probability P (cj |l) that category cj is correct for respondent l.

We now build for each respondent a data frame with J = 1290 rows for the different job

FDZ-Methodenreport 10/2014 39

cj cj correct Score
(1)
lj Score

(2)
lj · · ·

c1 = 01104 FALSE θ
(1)
l,1 θ

(2)
l,1 · · ·

c2 = 01203 TRUE θ
(1)
l,2 θ

(2)
l,2 · · ·

...
...

...
...

...

c1290 = 99999 FALSE θ
(1)
l,1290 θ

(2)
l,1290 · · ·

Figure 14: Exemplarious data frame for person l with correct job category cj = 01203

categories. With each row j it is suggested that job category cj is correct. When for a

person l the correct category is known this is inserted into the data frame. This variable,

"cj correct", is the target variable for the following models. All scores form different models,

θ
(m)
lj , are also included into the data frame and will serve as covariates. In this section we

will then try to predict the binary variable "cj correct" given all the scores from all different

methods, θ(m)
lj . Powerful algorithms for binary classification are available. An exemplary

representation of this data frame for one person is given in figure 14.

To train the model it is not sufficient to use only one person with exactly one correct cat-

egory, but the same training data as before is used. For each person we calculate a

data frame as described above and bind all the different data frames together. The train-

ing data used before consists of n = 26297 answers and thus the new training data has

26297∗1290 = 33923130 rows with
∑
cjcorrect = 26297. A problem arises in the fact that

one might use training data twice: a first time to find scores θ(m)
lj and a second time to fit a

model that predicts "cj correct". Associations between scores θ(m)
lj and the target variable

"cj correct" would therefore be different for the training and the test data which is clearly

not desired. Instead, we predict all scores θ(m)
lj without usage of verbatim answers from

person l. This means that, when we used before the frequency for job category cj given a

verbatim answer qi, #{cj |qi}, we now subtract 1 from these frequencies, #{cj |qi} − 1, to

calculate scores for the training set.

In prior sections we had to calculate a single score θ(1)lj that we hoped to be correlated as

close as possible with the true probability P (cj |l). With the new method described in this

section, a multitude of different scores θ(1)lj , ..., θ
(M)
lj may be used for prediction and many

scores that reflect different structures in the data should improve the final prediction. We

construct a number of additional scores. An overview over all scores is given in figure 15.

Most scores require that the exact first answer matches perfectly with previous answers

from the training data or with dictionary entries. The exact word sequence is therefore the

input for these score construction methods. When first answers are more complex and

consist of multiple words, identical word sequences are often not found in the dictionary.

In this case, it may be helpful to find a useful substring to feed into the algorithm. When

methods use only the substring instead of the full answer it is indicated with the keyword

"phrase" in figure 15. To find a useful phrase, we calculate for all single words in the answer

and all combinations of successive words how frequent these possible phrases are in the

ALWA data and how good they align to a specific code. Input for the algorithm is then the

phrase where the product of frequency and code alignment is maximal. Figure 16 provides

FDZ-Methodenreport 10/2014 40

Name Description

numVerzeichnisBerufsben Number of dictionary entries from the alphabetic dictionary that
suggest category cj (exact and partial matches)

phraseNumVerzeichnisBerufsben (phrase) Number of dictionary entries from the alphabetic dic-
tionary that suggest category cj (exact and partial matches)

numExactSuchwort Number of dictionary entries from the search word dictionary
that suggest category cj (only exact matches)

phraseNumExactSuchwort (phrase) Number of dictionary entries from the search word
dictionary that suggest category cj (only exact matches)

numPartialSuchwort Number of dictionary entries from the search word dictionary
that suggest category cj (exact and partial matches)

phraseNumPartialSuchwort (phrase) Number of dictionary entries from the search word
dictionary that suggest category cj (exact and partial matches)

ALWAfrequencies Number of identical answers in ALWA training data that were
coded into category cj (only exact matches)

phraseALWAfrequencies (phrase) Number of identical answers in ALWA training data
that were coded into category cj (only exact matches)

posterioriExpectation Posteriori expectation (= estimated correctness probability)
from Bayesian Categorical model for category cj

phrasePosterioriExpectation (phrase) Posteriori expectation (= estimated correctness prob-
ability) from Bayesian Categorical model for category cj

postProb0point5 Posteriori probability P (θj > 0.05) from Bayesian Categorical
model for category cj

phrasePostProb0point5 (phrase) Posteriori probability P (θj > 0.05) from Bayesian
Categorical model for category cj

NBprob Probability for category cj (= estimated correctness probabil-
ity) from Naive Bayes model using the first answer and the
professional status

beruflicheStellung Professional status xl from person l

freqBeruflicheStellung Number of identical professional status in ALWA training data
that were coded into category cj

numSuggestedCategories Number of suggested categories for person l

Figure 15: Variables Used for the Combined Methods model

FDZ-Methodenreport 10/2014 41

Possible Phrases Frequency in
ALWA

Relative Fre-
quency in best
Category

Frequency in
best Category
(product)

GARTEN UND LANDSCHAFTS-
BAU BETRIEBSLEITER

5 1 5

GARTEN UND LANDSCHAFTS-
BAU

8 0.875 7

GARTEN UND 0 NA 0
GARTEN 0 NA 0
UND LANDSCHAFTSBAU BE-
TRIEBSLEITER

0 NA 0

UND LANDSCHAFTSBAU 0 NA 0
UND 0 NA 0
LANDSCHAFTSBAU BETRIEB-
SLEITER

0 NA 0

LANDSCHAFTSBAU 2 1 2
BETRIEBSLEITER 0 NA 0

Figure 16: Exemplarious Phrase Identification for Verbatim Answer "Garten- und Land-
schaftsbau Betriebsleiter". "GARTEN UND LANDSCHAFTSBAU" becomes Input Phrase

an example how the input phrase is calculated.

When we build for each person in the training data a new data frame with J = 1290 rows

and bind all these data frames together, the resulting data frame is with 33923130 rows

quite large. In fact, computer performance restrictions make it necessary to reduce its

size. At the same time, many of the J category suggestions are not helpful at all because

not a single score θ(m)
lj indicates that category cj could be correct for person l. For exam-

ple, if the answer from person l is "nurse", many health job categories are meaningful code

suggestions but job categories from gardening and floristry are not helpful. We then keep

only those rows in the data frame, where at least one entry from one dictionary or the ALWA

training data suggests that this categtory could be correct (i.e., for at least one m = 1, ..., 8

is θ(m)
lj > 0 for the top eight variables in figure 15) and drop all other rows. Category sug-

gestions are also kept if P̂ (ql|cj) > medianj(P̂ (ql|cj)) in the notation from equation 3.5.

After dropping all irrelevant category suggestions, the remaining category suggestions are

counted and the number is saved in the variable numSuggestedCategories. This number

may be helpful to predict the correct category because the probability for an entry from a

dictionary to be correct increases when only few or no other categories are suggested.

The task is now to estimate category correctness, named "cj correct" in figure 14 which

is a binary response. We described numerous covariates that are correlated by con-

struction. Many different algorithms have been implemented into standard software and

may be used for this task. First, we tried the Breiman’s random forest algorithm which

was implemented by Liaw/Wiener (2002) into an R-package with the same name. Vari-

able importance was calculated and suggested that the covariates beruflicheStellung,

freqBeruflicheStellung, posterioriExpectation, postProb0point5, phrasePos-

terioriExpectation, phrasePostProb0point5, NBprob, and numSuggestedCategories

have higher relevance for prediction than the other variables. In the end, we were not sat-

FDZ-Methodenreport 10/2014 42

isfied with random forests for the following reasons: The random forest-package only

returns frequencies how many trees vote for or against a specific outcome but results for

probabilistic interpretation are not provided. Another R-package is randomForestSRC from

Ishwaran/Kogalur (2013) which gives the required output but long calculations on large

training data to make very few new predictions prohibit its usage for interactive occupation

coding. Because we did not find a random forest implementation that fits our purpose we

resort to boosting which will be described in the rest of the section.

Theory Our choice is to use gradient boosted trees as implemented in the R-package

mboost because trees allow for high degrees of interaction between different covariates

and because it is possible to estimate probabilities that category cj is correct. Here we

give only a very brief review on the most relevant properties and suggest for a more thor-

ough introduction the chapters nine and ten from Hastie/Tibshirani/Friedman (2009). Our

presentation follows the style of Hofner et al. (2012) who give a tutorial for the mboost-

package.

Let y be the response variable ("cj correct" here) and x a vector of covariates. Boosting

aims to estimate the optimal prediction function

f∗ := argmin
f

Ey,x(ρ(y, f(xT))) (29)

that minimizes the expected loss ρ between the true values y and predicted values f(xT).

Because our response variable is binary, we choose the negative binomial log-likelihood as

a loss function which is also used for logistic regression models. In practice it is necessary

to approximate the expectation above with the observed mean

f∗ :≈ argmin
f

n∑
i=1

ρ(yi, f(x
T
i)) (30)

The final boosting estimation is calculated as f̂ = f [0] +
∑mstop

m=1 νû[m]. Starting with some

initial value for f̂ , f [0], the algorithm iteratively estimates base learners û[m] that reduce

the loss between true values y and current predictions f [0] +
∑m−1

k=1 νû
[k]. These base

learners can be any type of model and we use conditional inference trees (see Hothorn/

Hornik/Zeileis (2006)) for this. The hyperparameter ν ∈ (0, 1) controls the step size what

impact single base learners have and thus the speed how fast the predictions improve.

While it has been shown that the exact value for ν is of minor relevance, it is generally

recommended to use small values for ν such that the algorithm does not overshoot the

optimal solution. With smaller values for ν the number of iterations mstop grows until the

algorithm reaches a good solution. mstop is a major tuning parameter that needs careful

evaluation. If it is chosen too small, the model is not yet well fitted to the data. On the other

hand, with large mstop overfitting is likely to occur.

We use trees as base learners to allow for complex interactions within the covariates. When

fitting trees, the desired tree size needs to be set in advance which is another hyperparam-

FDZ-Methodenreport 10/2014 43

eter. Hastie/Tibshirani/Friedman (2009) argue in the context of boosting that trees chosen

too large will yield less accurate predictions. They further state that the maximal number

of interacting covariates is directly given by (tree size - 1). Because we suspect many in-

teractions between different covariates in our data the tree size must not be too small. We

applied bootstrapping with 3 folds to find optimal hyperparameters mstop, ν, and tree size.

Evaluation The large size of the training data with 820340 rows gives rise to practical

problems when gradient boosted trees are fitted. Due to limited memory space it proved

impossible to run as many iterations until the perfect stopping point mstop is found. There-

fore, we used only a random sample of 600000 observations for training and stopped after

mstop = 31 iterations. Beforehand we tested different hyperparameters to find an optimal

combination using a small random sample of only 30000 observations. Our final parame-

ters are tree size = 7 and ν = 0.6 where the large number for ν reflects that large step sizes

are necessary to reach a good fit after only 31 iterations. The resulting model is then used

to calculate correctness probabilities for all suggested categories. This allows ordering of

job categories with most probable categories first, which is useful for computer-assisted

coding.

For automatic coding and for a better presentation of result we select only the top-suggested

category for each answer. These are merged with those answers that were not included

in the training data because the verbatim answers provided no code suggestions. Now,

we work again with the original training data consisting of n = 26297 answers. For each

answer the top-ranked category suggestion is included as well as the corresponding co-

variates from figure 15. We further add one covariate that gives the estimated correctness

probability from boosted trees and a further binary covariate to indicate if an answer was

found in the large training data described above (equivalent to numSuggestedCategories

> 0). If the answer was not included before and only merged into the small training data, it

will be impossible to find the correct job category for it.

Again we use gradient boosted trees to decide if the suggested category is correct (meta-

classification). With the smaller training size we use the full training data and experiment

with different parameter values until we find optimal hyperparameters mstop = 241, ν =

0.07 and maxdepth = 11 which yields the minimum Cross-validated Negative Binomial

Likelihood equal to 0.2542. Our final estimated correctness probabilities are predictions

from this model. The good performance from the boosting method already have been

described in the context of figure 9 and further details are provided next.

Figure 17 is best compared to figures 12 and 13 to see similarities and differences for

all proposed methods. On the left side of the graph we find those answers with lowest

estimated correctness probabilities where no categories were suggested and automatic

coding is not useful. This is the case for 8.23% of all answers (ALWA, lidA: 5.76%), a

proportion a few percent points lower than what we observed for the Naive Bayes method.

In the middle part there is a large proportion of answers that may be correct or may not

and must be referred to a human coder. As has been described in section 3.2.3, only a

few very frequent answers are probably responsible for what this center part of the graph

FDZ-Methodenreport 10/2014 44

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

A
LW

A
lidA

0.00 0.25 0.50 0.75 1.00
Estimated Correctness Probability Quantile

M
ea

n
A

cc
ur

ac
y

ov
er

 1
00

 P
re

di
ct

io
ns

0.25

0.50

0.75

Estimated
Correctness
Probability

Figure 17: Calibration for Boosting Method

looks like. Answers where the correct code can be determined mostly automatic are on

the right side. For ALWA, a third of all answers with highest estimated correctness proba-

bility (all above 0.9465) reaches 98.04% accuracy which is competitive with the Bayesian

Categorical model for automatic coding (lidA: top 26% are above this threshold and have

overall accuracy of 90.11%). Systematic coding differences in ALWA and lidA are once

again to be blamed for worse predictions on the lidA test data. The AUC equals 0.888

for the ALWA test data, which is slightly better than the AUCs from Naive Bayes models.

The AUC from the Bayesian categorical model at 0.963 is superior because that model

finds a clear decision boundary between those answers practical for automatic coding and

those that are not. In fact, the AUC performance measure punishes the boosting method

because it suggests more, but probably incorrect answers. The AUC metric is therefore

not helpful here.

The starting point for this section was the idea to combine strengths from different methods

into a single better model. How did we succeed? Figure 9 shows that the Combined

Method has not highest agreement rates for all production rates but is always close to it.

The combination of methods is therefore a success. Still, we cannot recommend it for all

purposes and the computational requirements are such that the simpler techniques may

be preferred. For automatic coding with the desired high agreement rates there is no clear

evidence, if the Bayesian categorical model or the boosting model is preferable. This is

FDZ-Methodenreport 10/2014 45

similar for computer-assisted coding. When all answers are considered, agreement rates

from the boosting model and Naive Bayes are nearly identical and thus it is unknown which

model is more useful for this task. Only the use of multiple dictionaries leads to fewer

answers that have no job category suggested. This makes us recommend the Combined

Model for computer-assisted coding.

FDZ-Methodenreport 10/2014 46

4 A Prototype for Computer-Assisted Coding

A few decades ago, before every office was equipped with a computer, coding clerks had

to thumb through printed classifications and alphabetic dictionaries to find the desired job

code. Today, computers are omnipresent and in sections 2.3 and 2.4.1 we mention various

programs available for computer-assisted coding. Statistical agencies have developed own

software to meet their special requirements for large-scale classifications like employment

(e.g., Tourigny/Moloney (1997), U.S. Census Bureau (2009), Svensson (2012)). In Ger-

many, the Federal Employment Agency provides two online tools with similar functionality

but not tailored to code thousands of answers. Both tools list all possible jobs from the DKZ

after a search string is entered.6

The result list from both tools is often quite large and not perspiciuous at first glance. The

algorithms we developed produce relief. We can order the results with the most relevant

job codes first. Figure 18 gives the output from our system for the exemplarious verbatim

answer "Fleischer" ("butcher") and further examples are provided in the appendix. This list

can then be used for computer-assisted coding. For full comprehension of this figure it is

necessary to point out a number of details:

On the top is the verbatim answer for the first employment question. Right next

to it we see the "phrase" which is the most meaningful substring from the original

answer and was calculated automatically. Both the answer and the phrase are used

independently to find possible job categories. The last entry from the first line is

the job code that professional coders have assigned to the answer. Of course, for

computer-assisted coding this code will not be available.

The categories shown are selected with the Combined Method. This means that

ALWA training data and multiple dictionaries are searched for full and partial matches

with the given answer. If the algorithm finds any indication that a category might be

correct it is presented to the human coder.

For a fast overview over the possible codes, we have sorted the output with most

probable job codes first. Estimated correctness probabilities from the Combined

Method are used for sorting. For each job code, this is a number between 0 and 1

but it is not enforced that they sum up to 1 for all job codes. We also report how often

an identical answer was coded into each category in the ALWA training data.

A complete job code according to the German employment classification is always a

five-digit number. In the example, the "Helfer/in - Lebensmittelherstellung" is one job

within the job category "29201". Each job category pools multiple jobs. For intuitive

understanding which jobs belong into a category, we generate automatically for each

category 1-3 exemplarious job names from DKZ dictionaries (see code 62322). The

official category name is not written down explicitly but can be derived implicitly with

background knowledge.

6 Online at http://bns-ts.arbeitsagentur.de/ and http://berufenet.arbeitsagentur.de/dkz/

FDZ-Methodenreport 10/2014 47

http://bns-ts.arbeitsagentur.de/
http://berufenet.arbeitsagentur.de/dkz/

All job categories have similarities to each other and our result presentation arranges

them accordingly. The first three digits from a code specify the so-called "Berufs-

gruppe". For the "Helfer/in - Lebensmittelherstellung" this is the code "292" named

"Lebensmittel-& Genussmittelherstellung" (digits are not explicitly written down). Sim-

ilarly, the first four digits define the "Berufsuntergruppe", which is "Berufe Lebens-

mittelherstellung (ohne Spezialisierung)" in our example. Another job, the "Fleis-

cher/in" has been classified into the same Berufsgruppe but a different Berufsun-

tergruppe named "Berufe Fleischverarbeitung". Within this Berufsuntergruppe, we

see the meaning of the fifth digit that reflects the skill level for a job. Auxiliary and

semiskilled occupations have been assigned to categories where the last digit is a

"1", specialized occupations have a "2" in their last digit, complex occupations for

specialists a "3", and highly complex occupations a "4". The official name for a five-

digit "Berufsgattung" can then be derived from the name of the Berufsuntergruppe

and the last digit. For example, the "Helfer/in - Lebensmittelherstellung" is one job in

the category named "Berufe Lebensmittelherstellung (ohne Spezialisierung) - Helfer-

/Anlerntätigkeiten" and the "Fleischer/in" is in the Berufsgattung "Berufe in der Fleis-

chverarbeitung - fachlich ausgerichtete Tätigkeiten".

FDZ-Methodenreport 10/2014 48

Eingegebener Beruf: FLEISCHER | Phrase: FLEISCHER | Coded: 29232

__

Lebensmittel- & Genussmittelherstellung : (35 Antworten in ALWA;

Corr. Prob. = 1.002298)

__

~~~~~~~~~

Berufe Lebensmittelherstellung (o.Spez.)

29201 ..... z.B.: Helfer/in - Lebensmittelherstellung

~~~~~~~~~

Berufe Fleischverarbeitung

29232 z.B.: Fleischer/in || Fleischer/in

29233 z.B.: Techniker/in - Lebensmitteltechnik (Fleischereitechnik)

~~~~~~~~~

Aufsichts- & Führungskr.-Lebensmittel- & Genussmittelherst.

29293 ..... z.B.: Fleischermeister/in

____________________________________________________________________________________

Verkauf von Lebensmitteln : ( 0 Antworten in ALWA; Corr. Prob. = 0.009152703 )

____________________________________________________________________________________

~~~~~~~~~

Berufe Verkauf von Fleischwaren

62322 z.B.: Gewerbegehilfe/-gehilfin - Fleischerhandwerk ||

Fachverkäufer/in - Nahrungsmittelhandw.(Fleischerei)

__

Verkauf (ohne Produktspezialisierung) : (0 Antworten in ALWA;

Corr. Prob. = 0.007885854)

__

~~~~~~~~~

Aufsichts- & Führungskr.-Verkauf

62194 ..... z.B.: Verkaufsleiter/in im Nahrungsmittelhandwerk

____________________________________________________________________________________

Unternehmensorganisation & -strategie : ( 0 Antworten in ALWA;

Corr. Prob. = 0.006899456 )

____________________________________________________________________________________

~~~~~~~~~

Berufe Unternehmensorg.&-strat.(s.spez.Tät.)

71383 z.B.: Betriebswirt/in (Fachschule) - Vieh und Fleisch

Figure 18: Algorithm output for answer ’Fleischer’

FDZ-Methodenreport 10/2014 49

5 Conclusion and Perspectives

Although most surveys avoid asking open-ended questions when possible, closed ques-

tions are not always feasible. Occupation is one example that is typically asked with open-

ended questions and statistical agencies around the world struggle to code the verbatim

answers into large coding schemes with 100s of categories at low costs and high quality.

In this thesis, we have summarized the international literature on coding with a focus on the

coding of German occupations. The use of technology is widespread for computer-assisted

and automatic coding but the algorithms behind differ in many aspects. Some agencies

continuously monitor the coding quality from professional coders and computer systems.

Though, reported quality measures from the coding of occupation vary strongly within Ger-

many and worldwide and research into the causes and possible ways for improvement is

only at the beginning.

A central objective for this thesis was to develop supervised learning algorithms that use

coded answers from prior studies to predict new codes. Data from two surveys were used

to test the different methods. We have shown that systematic differences in ALWA and lidA

codes explain why our algorithms perform worse if lidA codes are predicted from ALWA

training data. Moreover, the limited size of the ALWA data forms an obstacle that we can

elude only partly. When answers have not been coded before it is impossible to find the

correct code from training data. With large training data, supervised learning methods have

been applied before for automated coding. We suggest the Bayesian Categorical model

to account for higher uncertainty about the correct code when answers were only given a

few times before. Promising coding results are obtained from our small training data and

even better performance is reached when different dictionary and two data-based coding

approaches are combined. If more training data were available, we expect additional im-

provements. Before our methods facilitate coding in practice, we recommend finding larger

training data where good coding quality is known.

Training data from one survey can be useful for another survey in a number of ways. When

both data sets have answers already coded, the χ2-statistic may be used to find systematic

differences in both data sets. The cheapest way to code new answers is with automatic

coding. The proposed Bayesian Categorical model is able to code 38% of all answers at 3%

error rate without human interaction. This is competitive with the dictionary-based method

from Drasch et al. (2012) who report a production rate around 39%. Even more useful

might be our prototype for computer-assisted coding where the computer suggests the

codes most probable and a human coder decides which one is correct. When information

from dictionaries and training data is combined, for 74% of all answers the correct category

is provided within the top five code suggestions. This allows the coding clerk to decide

within seconds on the correct code and only the residual 26% are more laborious. These

performance measures are calculated for the situation when only the first verbatim answer

and the professional status are used to predict new codes. Typically, additional helpful

covariates are available like a second verbatim answer or the employer’s industry. The

Naive Bayes method and the Combined Method we proposed provide intuitive ways to

include such information and thus better performance can be expected.

FDZ-Methodenreport 10/2014 50

A good system for computer-assisted coding is not only helpful for the omnipresent back

office coding but offers also new opportunities. A sample of the coded answers could be

forwarded automatically to a second human coder for control. This would allow one to

monitor coding quality automatically and to take action for continuous improvement (c.f.

Svensson (2012)). Another strand for future research is the development of better clas-

sification algorithms. Literature on text classification is abundant and we expect special

problems within this area to be relevant for automated coding. Related keywords are deep

learning (e.g. Bengio/Courville/Vincent (2012)), the classification of short (e.g. Romero

et al. (2013)) and noisy (e.g. Agarwal et al. (2007)) text, language models (e.g. Liu/Croft

(2004)), and hierarchical classification (e.g. Silla/Freitas (2011)). One may also try to

soften the Naive Bayes (e.g. Peng/Schuurmans/Wang (2004)) assumption or to combine

ideas from the Naive Bayes and the Bayesian Categorical model to obtain a single model.

The next step in our research is less ambitious. We plan to use computer-assisted coding

techniques during the interview and evaluate its quality.

FDZ-Methodenreport 10/2014 51

References

Agarwal, Sumeet; Godbole, Shantanu; Punjani, Diwakar; Roy, Shourya (2007): How Much

Noise Is Too Much: A Study in Automatic Text Classification. In: 2007 Seventh IEEE

International Conference on Data Mining, 2007 Seventh IEEE International Conference

on Data Mining, icdm, p. 3–12, URL http://doi.ieeecomputersociety.org/10.1109/

ICDM.2007.21.

Aggarwal, CharuC.; Zhai, ChengXiang (2012): A Survey of Text Classification Algorithms.

In: Aggarwal, Charu C.; Zhai, ChengXiang (Eds.) Mining Text Data, Springer US, p. 163–

222, URL http://dx.doi.org/10.1007/978-1-4614-3223-4_6.

Antoni, Manfred; Drasch, Katrin; Kleinert, Corinna; Matthes, Britta; Ruland, Michael;

Trahms, Annette (2010): Arbeiten und Lernen im Wandel * Teil 1: Überblick über die Studie.

FDZ-Methodenreport 05/2010, Forschungsdatenzentrum der Bundesagentur für Arbeit im

Institut für Arbeitsmarkt- und Berufsforschung, Nuremberg, URL http://fdz.iab.de/de/

FDZ_Individual_Data/ALWA.aspx.

Bengio, Yoshua; Courville, Aaron C.; Vincent, Pascal (2012): Unsupervised Feature Learn-

ing and Deep Learning: A Review and New Perspectives. In: CoRR, Vol. abs/1206.5538,

URL http://arxiv.org/abs/1206.5538.

Bundesagentur für Arbeit (2011): Klassifikation der Berufe 2010. Band 1: Systematischer

und alphabetischer Teil mit Erläuterungen. Bundesagentur für Arbeit, Nuremberg.

Bushnell, Diane (1998): An Evaluation of Computer-assisted Occupation Coding. In:

Westlake, Andrew; Martin, Jean; Rigg, Malcolm; Skinner, Chris (Eds.) New Methods

for Survey Research, Proceedings of the International Conference, Chilworth Manor,

Southampton: Association for Survey Computing, p. 23–36, URL http://www.asc.org.

uk/publications/proceedings/ASC1998Proceedings.pdf.

Campanelli, Pamela; Thomson, Katarina; Moon, Nick; Staples, Tessa (1997): The Quality

of Occupational Coding in the United Kingdom. In: Lyberg, Lars; Biemer, Paul; Collins,

Martin; DeLeeuw, Edith; Dippo, Cathryn; Schwarz, Norbert; Trewin, Dennis (Eds.) Survey

Measurement and Process Quality, New York: John Wiley & Sons, Inc., p. 437–453, URL

http://dx.doi.org/10.1002/9781118490013.ch19.

Chen, Bor-Chung; Creecy, Robert H.; Appel, Martin V. (1993): Error Control of Automated

Industry and Occupation Coding. In: Journal of Official Statistics, Vol. 9, No. 4, p. 729–745.

Conrad, Frederick G. (1997): Using Expert Systems To Model And Improve Survey Classi-

fication Processes. In: Lyberg, Lars; Biemer, Paul; Collins, Martin; DeLeeuw, Edith; Dippo,

Cathryn; Schwarz, Norbert; Trewin, Dennis (Eds.) Survey Measurement and Process Qual-

ity, New York: John Wiley & Sons, p. 393–414.

DeBell, Matthew (2013): Harder Than It Looks: Coding Political Knowledge on the ANES.

In: Political Analysis, Vol. 21, No. 4, p. 393–406, URL http://pan.oxfordjournals.org/

content/21/4/393.abstract.

FDZ-Methodenreport 10/2014 52

http://doi.ieeecomputersociety.org/10.1109/ICDM.2007.21
http://doi.ieeecomputersociety.org/10.1109/ICDM.2007.21
http://dx.doi.org/10.1007/978-1-4614-3223-4_6
http://fdz.iab.de/de/FDZ_Individual_Data/ALWA.aspx
http://fdz.iab.de/de/FDZ_Individual_Data/ALWA.aspx
http://arxiv.org/abs/1206.5538
http://www.asc.org.uk/publications/proceedings/ASC1998Proceedings.pdf
http://www.asc.org.uk/publications/proceedings/ASC1998Proceedings.pdf
http://dx.doi.org/10.1002/9781118490013.ch19
http://pan.oxfordjournals.org/content/21/4/393.abstract
http://pan.oxfordjournals.org/content/21/4/393.abstract

Dowle, M; Short, T; Lianoglou, S (2012): data.table: Extension of data.frame for fast in-

dexing, fast ordered joins, fast assignment, fast grouping and list columns. URL http:

//CRAN.R-project.org/package=data.table, r package version 1.8.6.

Drasch, Katrin; Matthes, Britta; Munz, Manuel; Paulus, Wiebke; Valentin, Margot-Anna

(2012): Arbeiten und Lernen im Wandel * Teil V: Die Codierung der offenen Angaben

zur beruflichen Tätigkeit, Ausbildung und Branche. FDZ-Methodenreport 04/2012,

Forschungsdatenzentrum der Bundesagentur für Arbeit im Institut für Arbeitsmarkt-

und Berufsforschung, Nuremberg, URL http://fdz.iab.de/187/section.aspx/

Publikation/k120504304.

Esuli, Andrea; Fagni, Tiziano; Sebastiani, Fabrizio (2008): Boosting multi-label hierarchical

text categorization. In: Information Retrieval, Vol. 11, No. 4, p. 287–313, URL http://dx.

doi.org/10.1007/s10791-008-9047-y.

Esuli, Andrea; Sebastiani, Fabrizio (2010): Machines that learn how to code open-ended

survey data. In: International Journal of Market Research, Vol. 52, URL https://www.

mrs.org.uk/ijmr_article/article/92864.

Fawcett, Tom (2003): ROC Graphs: Notes and Practical Considerations for Data Mining

Researchers. Tech. Rep., HP Laboratories, Palo Alto.

Feinerer, Ingo; Hornik, Kurt (2012): tm: Text Mining Package. URL http://CRAN.

R-project.org/package=tm, r package version 0.5-8.1.

Ferrillo, Angelina; Macchia, Stefania; Vicari, Paola (2008): Different quality tests on the

automatic coding procedure for the Economic Activities descriptions. In: Proceedings of

the European Conference on Quality in Official Statistics - Q2008, URL http://q2008.

istat.it/sessions/paper/15Ferrillo.pdf.

Fielding, Jane; Fielding, Nigel; Hughes, Graham (2013): Opening up open-ended survey

data using qualitative software. In: Quality & Quantity, Vol. 47, No. 6, p. 3261–3276, URL

http://dx.doi.org/10.1007/s11135-012-9716-1.

Geis, Alfons (2011): Handbuch der Berufsvercodung. GESIS. Survey Design and Method-

ology, Mannheim, URL http://www.gesis.org/unser-angebot/daten-erheben/

berufscodierung/.

Geis, Alfons J.; Hoffmeyer-Zlotnik, Jürgen H.P. (2000): Stand der Berufsver-

codung. In: ZUMA-Nachrichten, Vol. 24, No. 47, p. 103–128, URL http:

//www.gesis.org/fileadmin/upload/forschung/publikationen/zeitschriften/

zuma_nachrichten/zn_47.pdf.

Gibson, James L.; Caldeira, Gregory A. (2009): Knowing the Supreme Court? A Recon-

sideration of Public Ignorance of the High Court. In: The Journal of Politics, Vol. 71, p.

429–441, URL http://journals.cambridge.org/article_S0022381609090379.

Gillman, Daniel W.; Appel, Martin V. (1994): Automated Coding Research at the Census

Bureau. Statistical research report series, U.S. Census Bureau, Washington, DC, URL

https://www.census.gov/srd/papers/pdf/rr94-4.pdf.

FDZ-Methodenreport 10/2014 53

http://CRAN.R-project.org/package=data.table
http://CRAN.R-project.org/package=data.table
http://fdz.iab.de/187/section.aspx/Publikation/k120504304
http://fdz.iab.de/187/section.aspx/Publikation/k120504304
http://dx.doi.org/10.1007/s10791-008-9047-y
http://dx.doi.org/10.1007/s10791-008-9047-y
https://www.mrs.org.uk/ijmr_article/article/92864
https://www.mrs.org.uk/ijmr_article/article/92864
http://CRAN.R-project.org/package=tm
http://CRAN.R-project.org/package=tm
http://q2008.istat.it/sessions/paper/15Ferrillo.pdf
http://q2008.istat.it/sessions/paper/15Ferrillo.pdf
http://dx.doi.org/10.1007/s11135-012-9716-1
http://www.gesis.org/unser-angebot/daten-erheben/berufscodierung/
http://www.gesis.org/unser-angebot/daten-erheben/berufscodierung/
http://www.gesis.org/fileadmin/upload/forschung/publikationen/zeitschriften/zuma_nachrichten/zn_47.pdf
http://www.gesis.org/fileadmin/upload/forschung/publikationen/zeitschriften/zuma_nachrichten/zn_47.pdf
http://www.gesis.org/fileadmin/upload/forschung/publikationen/zeitschriften/zuma_nachrichten/zn_47.pdf
http://journals.cambridge.org/article_S0022381609090379
https://www.census.gov/srd/papers/pdf/rr94-4.pdf

Giorgetti, Daniela; Sebastiani, Fabrizio (2003): Automating survey coding by multiclass

text categorization techniques. In: Journal of the American Society for Information Science

and Technology, Vol. 54, No. 14, p. 1269–1277, URL http://dx.doi.org/10.1002/asi.

10335.

Groves, Robert M.; Fowler, Floyd J.; Couper, Mick P.; Lepkowski, James M.; Singer,

Eleanor; Tourangeau, Roger (2009): Survey Methodology (Wiley Series in Survey Method-

ology). Wiley.

Hacking, Wim; Willenborg, Leon (2012): Theme: Coding; interpreting short descriptions

using a classification. Statistics methods, Statistics Netherlands, The Hague/Heerlen, URL

http://www.cbs.nl/en-GB/menu/methoden/gevalideerde-methoden/bewerken/

default.htm.

Hartmann, Josef; Schütz, Gerd (2002): Die Klassifizierung der Berufe und der Wirtschaft-

szweige im Sozio-oekonomischen Panel * Neuvercodung der Daten 1984 - 2001.

Tech. Rep., Infratest Sozialforschung, Munich, URL http://www.diw.de/documents/

dokumentenarchiv/17/diw_01.c.40132.de/vercodung.pdf.

Hastie, Trevor; Tibshirani, Robert; Friedman, Jerome (2009): The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics, Springer, 2

ed., URL http://statweb.stanford.edu/~tibs/ElemStatLearn/index.html.

Hoffmeyer-Zlotnik, Jürgen H.P.; Hess, Doris; Geis, Alfons J. (2004): Computerunterstützte

Vercodung der International Standard Classification of Occupations (ISCO-88). In: ZUMA-

Nachrichten, Vol. 28, No. 55, p. 29–52.

Hoffmeyer-Zlotnik, Jürgen H.P.; Warner, Uwe (2012): Harmonisierung demographischer

und sozio-ökonomischer Variablen: Instrumente für die international vergleichende Sur-

veyforschung. Wiesbaden: VS Verlag für Sozialwissenschaften.

Hofner, Benjamin; Mayr, Andreas; Robinzonov, Nikolay; Schmid, Matthias (2012): Model-

based Boosting in R * A Hands-on Tutorial Using the R Package mboost. In: R Pack-

age Vignette, URL http://cran.r-project.org/web/packages/mboost/vignettes/

mboost_tutorial.pdf.

Hothorn, Torsten; Hornik, Kurt; Zeileis, Achim (2006): Unbiased Recursive Partitioning: A

Conditional Inference Framework. In: Journal of Computational and Graphical Statistics,

Vol. 15, No. 3, p. 651–674.

Ishwaran, Hemant; Kogalur, Udaya B. (2013): Random Forests for Survival, Regres-

sion and Classification (RF-SRC). URL http://cran.r-project.org/web/packages/

randomForestSRC/, r package version 1.4.

Jung, Yuchul; Yoo, Jihee; Myaeng, Sung-Hyon; Han, Dong-Cheol (2008): A Web-

Based Automated System for Industry and Occupation Coding. In: Bailey, James; Maier,

David; Schewe, Klaus-Dieter; Thalheim, Bernhard; Wang, XiaoyangSean (Eds.) Web In-

formation Systems Engineering - WISE 2008, Vol. 5175 of Lecture Notes in Computer

Science, Springer Berlin Heidelberg, p. 443–457, URL http://dx.doi.org/10.1007/

978-3-540-85481-4_33.

FDZ-Methodenreport 10/2014 54

http://dx.doi.org/10.1002/asi.10335
http://dx.doi.org/10.1002/asi.10335
http://www.cbs.nl/en-GB/menu/methoden/gevalideerde-methoden/bewerken/default.htm
http://www.cbs.nl/en-GB/menu/methoden/gevalideerde-methoden/bewerken/default.htm
http://www.diw.de/documents/dokumentenarchiv/17/diw_01.c.40132.de/vercodung.pdf
http://www.diw.de/documents/dokumentenarchiv/17/diw_01.c.40132.de/vercodung.pdf
http://statweb.stanford.edu/~tibs/ElemStatLearn/index.html
http://cran.r-project.org/web/packages/mboost/vignettes/mboost_tutorial.pdf
http://cran.r-project.org/web/packages/mboost/vignettes/mboost_tutorial.pdf
http://cran.r-project.org/web/packages/randomForestSRC/
http://cran.r-project.org/web/packages/randomForestSRC/
http://dx.doi.org/10.1007/978-3-540-85481-4_33
http://dx.doi.org/10.1007/978-3-540-85481-4_33

Kaptein, Rianne (2005): Meta-Classifier Approaches to Reliable Text Classification. Mas-

ter’s thesis, Universiteit Maastricht, Maastricht.

Lewis, DavidD. (1998): Naive (Bayes) at forty: The independence assumption in informa-

tion retrieval. In: Nédellec, Claire; Rouveirol, Céline (Eds.) Machine Learning: ECML-98,

Vol. 1398 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, p. 4–15, URL

http://dx.doi.org/10.1007/BFb0026666.

Liaw, Andy; Wiener, Matthew (2002): Classification and Regression by randomForest. In:

R News, Vol. 2, No. 3, p. 18–22, URL http://CRAN.R-project.org/doc/Rnews/.

Liu, Xiaoyong; Croft, W. Bruce (2004): Cluster-based Retrieval Using Language Models.

In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, SIGIR ’04, New York, NY, USA: ACM, p. 186–193,

URL http://doi.acm.org/10.1145/1008992.1009026.

Lyberg, Lars; Kasprzyk, Daniel (1997): Some Aspects of Post-Survey Processing. In: Ly-

berg, Lars; Biemer, Paul; Collins, Martin; DeLeeuw, Edith; Dippo, Cathryn; Schwarz, Nor-

bert; Trewin, Dennis (Eds.) Survey Measurement and Process Quality, New York: John

Wiley & Sons, p. 393–414.

Maaz, Kai; Trautwein, Ulrich; Gresch, Cornelia; Lüdtke, Oliver; Watermann, Rainer

(2009): Intercoder-Reliabilität bei der Berufscodierung nach der ISCO-88 und Validität des

sozioökonomischen Status. In: Zeitschrift für Erziehungswissenschaft, Vol. 12, No. 2, p.

281–301, URL http://dx.doi.org/10.1007/s11618-009-0068-0.

Macchia, Stefania; Murgia, Manuela; Vicari, Paola (2010): Integration between automatic

coding and statistical analysis of textual data systems. In: Bolasco, Sergio; Chiari, Isabella;

Giuliano, Luca (Eds.) Proceedings of the 10th International Conference on Statistical Anal-

ysis of Textual Data * Jadt 2010, Sapienza University of Rome and Istat - Instituto Nazionale

di Statistica and Enel - Ente Nazionale di Energia Elettrica and Percodsi srl and SAS Insti-

tute.

Manning, Christopher D.; Raghavan, Prabhakar; Schütze, Hinrich (2008): Introduction

to Information Retrieval. Cambridge: Cambridge University Press, URL http://nlp.

stanford.edu/IR-book/.

McCallum, Andrew; Nigam, Kamal (1998): A comparison of event models for naive bayes

text classification. In: AAAI-98 workshop on learning for text categorization, Vol. 752, p.

41–48.

Paulus, Wiebke; Matthes, Britta (2013): Klassifikation der Berufe * Struktur, Codierung und

Umsteigeschlüssel. FDZ-Methodenreport 08/2013, Forschungsdatenzentrum der Bunde-

sagentur für Arbeit im Institut für Arbeitsmarkt- und Berufsforschung, Nuremberg, URL

http://fdz.iab.de/187/section.aspx/Publikation/k131014a03.

Peng, Fuchun; Schuurmans, Dale; Wang, Shaojun (2004): Augmenting Naive Bayes Clas-

sifiers with Statistical Language Models. In: Information Retrieval, Vol. 7, No. 3-4, p. 317–

345.

FDZ-Methodenreport 10/2014 55

http://dx.doi.org/10.1007/BFb0026666
http://CRAN.R-project.org/doc/Rnews/
http://doi.acm.org/10.1145/1008992.1009026
http://dx.doi.org/10.1007/s11618-009-0068-0
http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/
http://fdz.iab.de/187/section.aspx/Publikation/k131014a03

Prigge, Michaela; Liebers, Falk; Latza, Ute (2013): Kodierung von Berufsangaben nach

KldB2010 im Rahmen der Gutenberg-Gesundheitsstudie (GHS) - Methodisches Vorgehen,

Qualität und Auswertemöglichkeiten, präsentation auf der 8. Jahrestagung der DGEpi und

1. Internationales LIFE-Symposium.

R Core Team (2012a): foreign: Read Data Stored by Minitab, S, SAS, SPSS, Stata, Systat,

dBase, ... URL http://CRAN.R-project.org/package=foreign, r package version 0.8-

51.

R Core Team (2012b): R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org/,

ISBN 3-900051-07-0.

Reja, Urša; Manfreda, Katja Lozar; Hlebec, Valentina; Vehovar, Vasja (2003): Open-ended

vs. close-ended questions in web questionnaires. In: Developments in Applied Statistics

(Metodološki zvezki), Vol. 19, p. 159–77.

Riviere, Pascal (1997): SICORE - General Automatic Coding System. In: United Na-

tions Statistical Commission and Economic Commission for Europe (Ed.) Statistical Data

Editing Volume No. 2, New York: United Nations, URL http://www.unece.org/stats/

publications/editing/SDE2.html.

Romero, Francisco P.; Julián-Iranzo, Pascual; Soto, Andrés; Ferreira-Satler, Mateus;

Gallardo-Casero, Juan (2013): Classifying unlabeled short texts using a fuzzy declara-

tive approach. In: Language Resources and Evaluation, Vol. 47, No. 1, p. 151–178, URL

http://dx.doi.org/10.1007/s10579-012-9203-2.

Sangameshwar, Patil; Palshikar, GirishK. (2013): SurveyCoder: A System for Classifi-

cation of Survey Responses. In: Métais, Elisabeth; Meziane, Farid; Saraee, Mohamad;

Sugumaran, Vijayan; Vadera, Sunil (Eds.) Natural Language Processing and Information

Systems, 18th International Conference on Applications of Natural Language to Informa-

tion Systems, Vol. 7934 of Lecture Notes in Computer Science, Springer Berlin Heidelberg,

p. 417–420, URL http://dx.doi.org/10.1007/978-3-642-38824-8_52.

Scharkow, Michael (2012): Automatische Inhaltsanalyse und maschinelles Lernen.

Ph.D. thesis, Universität der Künste Berlin, Berlin, URL http://opus.kobv.de/udk/

volltexte/2012/40/pdf/dissertation_scharkow_final_udk.pdf.

Schröder, Helmut; Kersting, Anne; Gilberg, Reiner; Steinwede, Jacob (2013): Method-

enbericht zur Haupterhebung lidA - leben in der Arbeit. FDZ-Methodenreport 01/2013,

Forschungsdatenzentrum der Bundesagentur für Arbeit im Institut für Arbeitsmarkt-

und Berufsforschung, Nuremberg, URL http://fdz.iab.de/187/section.aspx/

Publikation/k130307302.

Sebastiani, Fabrizio (2002): Machine Learning in Automated Text Categorization. In: ACM

Comput. Surv., Vol. 34, No. 1, p. 1–47, URL http://doi.acm.org/10.1145/505282.

505283.

FDZ-Methodenreport 10/2014 56

http://CRAN.R-project.org/package=foreign
http://www.R-project.org/
http://www.unece.org/stats/publications/editing/SDE2.html
http://www.unece.org/stats/publications/editing/SDE2.html
http://dx.doi.org/10.1007/s10579-012-9203-2
http://dx.doi.org/10.1007/978-3-642-38824-8_52
http://opus.kobv.de/udk/volltexte/2012/40/pdf/dissertation_scharkow_final_udk.pdf
http://opus.kobv.de/udk/volltexte/2012/40/pdf/dissertation_scharkow_final_udk.pdf
http://fdz.iab.de/187/section.aspx/Publikation/k130307302
http://fdz.iab.de/187/section.aspx/Publikation/k130307302
http://doi.acm.org/10.1145/505282.505283
http://doi.acm.org/10.1145/505282.505283

Silla, Carlos N. Jr.; Freitas, Ale xA. (2011): A survey of hierarchical classification across

different application domains. In: Data Mining and Knowledge Discovery, Vol. 22, No. 1-2,

p. 31–72, URL http://dx.doi.org/10.1007/s10618-010-0175-9.

Sing, Tobias; Sander, Oliver; Beerenwinkel, Niko; Lengauer, Thomas (2012): ROCR:

Visualizing the performance of scoring classifiers. URL http://CRAN.R-project.org/

package=ROCR, r package version 1.0-4.

Statistisches Bundesamt (2010): Demographische Standards. Statistisches Bundesamt,

Wiesbaden.

Stemler, Steve (2001): An overview of content analysis. In: Practical Assessment, Re-

search & Evaluation, Vol. 7, URL http://pareonline.net/getvn.asp?v=7&n=17.

Svensson, Jörgen (2012): Quality control of coding of survey responses at Statistics Swe-

den. In: Proceedings of the European Conference on Quality in Official Statistics - Q2012,

URL http://www.q2012.gr/default.asp?p=14.

Thompson, Matthew; Kornbau, Michael E.; Vesely, Julie (2012): Creating an Automated In-

dustry and Occupation Coding Process for the American Community Survey. unpublished.

TNS Infratest Sozialforschung (2012): Die Vercodung der offenen Angaben zur beruflichen

Tätigkeit nach der Klassifikation der Berufe 2010 (KldB2010) und nach der International

Standard Classification of Occupations (ISCO08) * Entscheidungsregeln bei nicht ein-

deutigen Angaben. TNS Infratest Sozialforschung, Munich, URL http://www.bibb.de/

dokumente/pdf/a22_etb_Berufsvercodung_KldB2010_ISCO08.pdf.

Tourigny, Jocelyn Y.; Moloney, Joanne (1997): The 1991 Canadian Census of Pop-

ulation Experience with Automated Coding. In: United Nations Statistical Commission

and Economic Commission for Europe (Ed.) Statistical Data Editing Volume No. 2, New

York: United Nations, URL http://www.unece.org/stats/publications/editing/

SDE2.html.

Tutz, Gerhard (2000): Die Analyse kategorialer Daten. Oldenbourg.

United Nations Statistical Commission and Economic Commission for Europe (Ed.) (1997):

Statistical Data Editing Volume No. 2, chap. 6. New York: United Nations, URL http:

//www.unece.org/stats/publications/editing/SDE2.html.

U.S. Census Bureau (2009): Design and Methodology: American Community Sur-

vey. U.S. Census Bureau, Washington, DC, URL http://www.census.gov/acs/www/

methodology/methodology_main/.

Viechnicki, Peter (1998): A performance evaluation of automatic survey classifiers. In:

Honavar, Vasant; Slutzki, Giora (Eds.) Grammatical Inference, Vol. 1433 of Lecture Notes

in Computer Science, Springer Berlin Heidelberg, p. 244–256, URL http://dx.doi.org/

10.1007/BFb0054080.

Wagner, Helga (2010/2011): Einführung in die Bayes-Statistik WiSe 2010/11. Lecture at

LMU Munich, URL http://thomas.userweb.mwn.de/Lehre/wise1011/Bayes_1011/.

FDZ-Methodenreport 10/2014 57

http://dx.doi.org/10.1007/s10618-010-0175-9
http://CRAN.R-project.org/package=ROCR
http://CRAN.R-project.org/package=ROCR
http://pareonline.net/getvn.asp?v=7&n=17
http://www.q2012.gr/default.asp?p=14
http://www.bibb.de/dokumente/pdf/a22_etb_Berufsvercodung_KldB2010_ISCO08.pdf
http://www.bibb.de/dokumente/pdf/a22_etb_Berufsvercodung_KldB2010_ISCO08.pdf
http://www.unece.org/stats/publications/editing/SDE2.html
http://www.unece.org/stats/publications/editing/SDE2.html
http://www.unece.org/stats/publications/editing/SDE2.html
http://www.unece.org/stats/publications/editing/SDE2.html
http://www.census.gov/acs/www/methodology/methodology_main/
http://www.census.gov/acs/www/methodology/methodology_main/
http://dx.doi.org/10.1007/BFb0054080
http://dx.doi.org/10.1007/BFb0054080
http://thomas.userweb.mwn.de/Lehre/wise1011/Bayes_1011/

Wickham, Hadley (2012): stringr: Make it easier to work with strings. URL http://CRAN.

R-project.org/package=stringr, r package version 0.6.2.

Wickham, Hadley (2009): ggplot2: elegant graphics for data analysis. Springer New York,

URL http://had.co.nz/ggplot2/book.

Willenborg, Leon (2012): Semantic Networks for Automatic Coding. Discussion

paper, Statistics Netherlands, The Hague/Heerlen, URL http://www.cbs.nl/

en-GB/menu/methoden/onderzoek-methoden/discussionpapers/archief/2012/

semantic-networks-for-automatic-coding.htm.

FDZ-Methodenreport 10/2014 58

http://CRAN.R-project.org/package=stringr
http://CRAN.R-project.org/package=stringr
http://had.co.nz/ggplot2/book
http://www.cbs.nl/en-GB/menu/methoden/onderzoek-methoden/discussionpapers/archief/2012/semantic-networks-for-automatic-coding.htm
http://www.cbs.nl/en-GB/menu/methoden/onderzoek-methoden/discussionpapers/archief/2012/semantic-networks-for-automatic-coding.htm
http://www.cbs.nl/en-GB/menu/methoden/onderzoek-methoden/discussionpapers/archief/2012/semantic-networks-for-automatic-coding.htm

A Diagrams

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
Production Rate

C
um

ul
at

iv
e

A
gr

ee
m

en
t R

at
e

Prediction Method

Official Dictionary

Naive Bayes

Combined Methods (Boosting)

Bayesian Multinomial

Figure 19: Agreement and Production Rates for lidA-test data

FDZ-Methodenreport 10/2014 59

0.0

0.1

0.2

0.3

Militä
r

BeamteR im
 einfachen Dienst

BeamteR im
 mittle

ren Dienst

BeamteR im
 höheren Dienst

BeamteR im
 gehobenen Dienst

Arbeiter, F
acharbeiter, G

eselle, G
ehilfe

Vorarbeiter, K
olonnenführer, M

eister

Angestellte
R mit e

infacher Tätigkeit

Angestellte
R mit q

ualifiz
ierte

r Tätigkeit

Angestellte
R mit h

ochqualifiz
ierte

r Tätigkeit

SelbständigeR LandwirtIn

Selbstständig/FreieR MitarbeiterIn
/Mithelfender F

amilie
nangehöriger

Sonstiges (z.B. N
A, ve

rweigert,
Anerke

nnungsjahr, P
raktikum, R

eferendariat, T
rainee, Volontariat)

professional status

re
la

tiv
e

fr
eq

ue
nc

y
in

 e
ac

h
st

ud
y

study

ALWA

lidA

Figure 20: Professional Status in both datasets

FDZ-Methodenreport 10/2014 60

B Exemplary Job Category Suggestions

Eingegebener Beruf: BAUMASCHINIST | Phrase: BAUMASCHINIST | Coded: 52522

__

Bau- & Transportgeräteführung : (5 Antworten in ALWA; Corr. Prob. = 0.9529602)

__

~~~~~~~~~

Führer/innen Erdbewegungs- & verw. Maschinen

52522 ..... z.B.: Baugeräteführer/in || Baumaschinist/in

____________________________________________________________________________________

Berg-, Tagebau & Sprengtechnik : ( 0 Antworten in ALWA; Corr. Prob. = 0.008892748 )

____________________________________________________________________________________

~~~~~~~~~

Berufe Berg- & Tagebau

21112 z.B.: Bergbaumaschinist/in || Bergmechaniker/in

__

Tiefbau : (0 Antworten in ALWA; Corr. Prob. = 0.007855415)

__

~~~~~~~~~

Berufe Gleisbau

32232 ..... z.B.: Gleisbaumaschinist/in || Gleisbauer/in

Figure 21: Algorithm output for answer ’Baumaschinist’

FDZ-Methodenreport 10/2014 61



Eingegebener Beruf: KUECHENHELFERIN | Phrase: KUECHENHELFERIN | Coded: 29301

____________________________________________________________________________________

Speisenzubereitung : ( 1 Antworten in ALWA; Corr. Prob. = 0.9399518 )

____________________________________________________________________________________

~~~~~~~~~

Köche/Köchinnen (o.Spez.)

29301 z.B.: Küchenhelfer/in || Küchenhelfer/in

Figure 22: Algorithm output for answer ’Küchenhelferin’

Eingegebener Beruf: ALTENPFLEGEHELFERIN IM SENIORENHEIM |

Phrase: ALTENPFLEGEHELFERIN | Coded: 82101

__

Altenpflege : (0 Antworten in ALWA; Corr. Prob. = 0.9301586)

__

~~~~~~~~~

Berufe Altenpflege (o.Spez.)

82101 ..... z.B.: Altenpflegehelfer/in || Hilfskraft - Altenpflege

____________________________________________________________________________________

Gesundheits- & Krankenpflege, Rettungsdienst & Geburtshilfe :

( 0 Antworten in ALWA; Corr. Prob. = 0.01307547 )

____________________________________________________________________________________

~~~~~~~~~

Berufe Gesundh.- & Krankenpflege (o.Spez.)

81301 z.B.: Kranken- und Altenpflegehelfer/in ||

Gesundheits- und Krankenpflegehelfer/in

Figure 23: Algorithm output for answer ’Altenpflegehelferin im Seniorenheim’

FDZ-Methodenreport 10/2014 62

Eingegebener Beruf: BUCHHALTERIN | Phrase: BUCHHALTERIN | Coded: 72213

__

Rechnungswesen, Controlling & Revision : (36 Antworten in ALWA;

Corr. Prob. = 0.202529)

__

~~~~~~~~~

Berufe Buchhaltung

72212 ..... z.B.: Kfm. Ass./Wirtschaftsassistent/in - DV/Rechnungswesen

72213 ..... z.B.: Finanzbuchhalter/in || Kontokorrentbuchhalter/in ||

Lohn- und Gehaltsbuchhalter/in

~~~~~~~~~

Berufe Kostenrechnung & Kalkulation

72223 z.B.: Kostenrechner/in

__

Informatik : (52 Antworten in ALWA; Corr. Prob. = 0.1426831)

__

~~~~~~~~~

Berufe Wirtschaftsinformatik

43112 ..... z.B.: Wirtschaftsassistent/in - DV/Rechnungswesen

____________________________________________________________________________________

Versicherungs- & Finanzdienstleistungen : ( 0 Antworten in ALWA;

Corr. Prob. = 0.01019844 )

____________________________________________________________________________________

~~~~~~~~~

Anlageberater/innen & sonst.Finanzdienstl.

72123 z.B.: Wertpapiersachbearbeiter/in

__

Hotellerie : (0 Antworten in ALWA; Corr. Prob. = 0.007068873)

__

~~~~~~~~~

Hotelkaufleute

63212 ..... z.B.: Hotelkaufmann/-frau

____________________________________________________________________________________

Tourismus & Sport : ( 0 Antworten in ALWA; Corr. Prob. = 0.006908971 )

____________________________________________________________________________________

~~~~~~~~~

Tourismuskaufleute

63113 z.B.: Betriebswirt/in (Fachschule) - Touristik/Reiseverkehr

Figure 24: Algorithm output for answer ’Buchhalterin’

FDZ-Methodenreport 10/2014 63

Eingegebener Beruf: ENTWICKLUNGSINGENIEUR FUER MASCHINENBAU |

Phrase: ENTWICKLUNGSINGENIEUR | Coded: 27104

__

Technische Forschung & Entwicklung : (0 Antworten in ALWA;

Corr. Prob. = 0.4761688)

__

~~~~~~~~~

Berufe techn. Forsch. & Entwickl. (o.Spez.)

27104 ..... z.B.: Forschungs- und Entwicklungsingenieur/in || Entwicklungsingenieur/in

____________________________________________________________________________________

Maschinenbau- & Betriebstechnik : ( 0 Antworten in ALWA;

Corr. Prob. = 0.3666988 )

____________________________________________________________________________________

~~~~~~~~~

Berufe Maschinenbau-&Betriebstech.(o.Spez.)

25104 z.B.: Ingenieur/in - Maschinenbau (allgemeiner Maschinenbau)

__

Elektrotechnik : (0 Antworten in ALWA; Corr. Prob. = 0.01888952)

__

~~~~~~~~~

Berufe Elektrotechnik (o.Spez.)

26304 ..... z.B.: Ingenieur/in - Elektrotechnik (allgemeine Elektrotechnik)

____________________________________________________________________________________

Softwareentwicklung & Programmierung : ( 0 Antworten in ALWA;

Corr. Prob. = 0.01817224 )

____________________________________________________________________________________

~~~~~~~~~

Berufe Softwareentwicklung

43414 z.B.: Softwareentwickler/in || Softwareentwickler/in

__

Informatik : (0 Antworten in ALWA; Corr. Prob. = 0.01432823)

__

~~~~~~~~~

Berufe Informatik (o.Spez.)

43104 ..... z.B.: Dipl.-Informatiker/in (FH)

____________________________________________________________________________________

IT-Netzwerktechnik, IT-Koord., IT-Admin. & IT-Organisation :

( 0 Antworten in ALWA; Corr. Prob. = 0.009487363 )

____________________________________________________________________________________

~~~~~~~~~

Berufe IT-Koordination

43323 z.B.: IT-Entwickler/in

Figure 25: Algorithm output for answer ’Entwicklungsingeneur für Maschinenbau’

FDZ-Methodenreport 10/2014 64

Eingegebener Beruf: SYSTEMANALYTIKERIN | Phrase: SYSTEMANALYTIKERIN | Coded: 43214

__

Softwareentwicklung & Programmierung : (1 Antworten in ALWA;

Corr. Prob. = 0.4589744)

__

~~~~~~~~~

Berufe Softwareentwicklung

43414 ..... z.B.: Softwareentwickler/in

____________________________________________________________________________________

Vermessung & Kartografie : ( 1 Antworten in ALWA; Corr. Prob. = 0.4086493 )

____________________________________________________________________________________

~~~~~~~~~

Berufe Vermessungstechnik

31214 z.B.: Ingenieur/in - Vermessungswesen

__

IT-Systemanalyse, IT-Anwendungsberatung & IT-Vertrieb : (0 Antworten in ALWA;

Corr. Prob. = 0.09561851)

__

~~~~~~~~~

Berufe IT-Systemanalyse

43214 ..... z.B.: Systemanalytiker/in || IT-Systemanalytiker/in

____________________________________________________________________________________

Informatik : ( 0 Antworten in ALWA; Corr. Prob. = 0.0385127 )

____________________________________________________________________________________

~~~~~~~~~

Berufe Wirtschaftsinformatik

43112 z.B.: Assistent/in - Informatik (Wirtschaftsinformatik)

43114 z.B.: Verwaltungsinformatiker/in (Hochschule)

__

Redaktion & Journalismus : (0 Antworten in ALWA; Corr. Prob. = 0.01367254)

__

~~~~~~~~~

Redakteure/-innen & Journalisten/-innen

92413 ..... z.B.: Lernsystemanalytiker/in

____________________________________________________________________________________

IT-Netzwerktechnik, IT-Koord., IT-Admin. & IT-Organisation :

( 0 Antworten in ALWA; Corr. Prob. = 0.00698711 )

____________________________________________________________________________________

~~~~~~~~~

Berufe IT-Netzw.-Adm&-Orga.(sonst.spez.Tät.)

43384 z.B.: Fraud-Analyst/in

Figure 26: Algorithm output for answer ’Systemanalytikerin’

FDZ-Methodenreport 10/2014 65

01/2009

FDZ-Methodenreport 10/2014 Englisch

Stefan Bender, Heiner Frank

Heiner Frank

http://doku.iab.de/fdz/reporte/2014/MR_10-14_EN.pdf

Malte Schierholz

Institute for Employment Research
Regensburger Str. 104
90478 Nuremberg

Phone: +49(0)911/179-6022
mailto: Malte.Schierholz@iab.de

http://doku.iab.de/fdz/reporte/2014/MR_10-14_EN.pdf
http://doku.iab.de/fdz/reporte/2014/MR_10-14_EN.pdf
mailto:mailto:%20Malte.Schierholz@iab.de

	Title
	Contents
	Zusammenfassung
	Abstract
	Introduction
	Background
	Coding Examples
	Code Structures and Classifications
	German Classification of Occupations 2010

	Coding Options: Manual or Automatic
	Techniques for Automated Coding
	Rule-Based Coding
	Data-Based Coding with Supervised Learning Techniques

	Coding Evaluation
	Quality of Occupation Coding

	Data Analysis
	Description of Survey Data
	Job Codes

	Methods for Automated Coding
	Rule-based Coding
	Naive Bayes
	Bayesian Categorical
	Combined Methods (Boosting)

	A Prototype for Computer-Assisted Coding
	Conclusion and Perspectives
	References
	Diagrams
	Exemplary Job Category Suggestions
	Imprint

