Complementarities between Information Technology and Innovation

Michael Polder*, Fardad Zand**, George van Leeuwen*, Cees van Beers** (* Statistics Netherlands, ** TU Delft)

CAED Conference | April 26-28 2012 | IAB, Nuremberg

What drives productivity?

 A_{it} is productivity

 X_{it} are drivers of productivity

Complementarities between IT and innovation

What drives productivity?

Hausse of candidate variables for X_{it}

(e.g. Bartelsman and Doms (2000), Syverson (2011))

Our focus...

- Adoption of new technologies
- For example:
 - Innovation
 - Product, process
 - Organizational, marketing
 - E-business
 - E-commerce, ERP, CRM, SCM

Stage 1: Adoption

- Modelling the adoption of new technologies
 - What drives adoption?
 - Are there (anticipated) complementarities in the adoption phase?

Adoption profiles

Adoption phase: comparing joint and marginal probabilities

Joint probability A and B:	$Pr(A \cap B)$
Marginal probabilities:	Pr(A), Pr(B)
Joint probability A and B if independent:	Pr(A) x Pr(B)

'simultaneity ratio' $R(A,B) = Pr(A \cap B)/(Pr(A) \times Pr(B))$

 \rightarrow increase in joint probability with respect to independence

Simultaneity of adoptions

/Ianufac	turing (N	= 2,973)			
Α	В	Pr(A)	Pr(B)	$Pr(A \land B)$	$Pr(A \land B)/Pr(A)Pr(B)$
prod	proc	0.540	0.430	0.355	1.529
proc	org	0.430	0.376	0.237	1.471
org	prod	0.376	0.540	0.279	1.373
ervices	(<i>N</i> = 4,535)			
Α	В	Pr(A)	Pr(B)	$Pr(A \land B)$	$Pr(A \land B)/Pr(A)Pr(B)$
prod	proc	0.265	0.198	0.125	2.377
proc	org	0.198	0.284	0.110	1.951
org	prod	0.284	0.265	0.148	1.967

Clear positive mutual dependence between all types of innovation in manufacturing...

... possibly even stronger in services

What's driving this?

- Why simultaneous adoption?
- Two competing theories:

Complementarities in the production process (Milgrom and Roberts, 1990, 1995)

Cost advantages in simultaneous adoption (adjustment cost, see e.g. Shapiro, 1986, Asphjell et al 2010)

Econometric modelling of joint dependence

Estimation of adoption equations:

 $\begin{aligned} & \Pr(\text{PROD} = 1) = \Phi(a_{12}\text{PROC}, a_{13}\text{ORG}, b_{1}Z_{1}), \\ & \Pr(\text{PROC} = 1) = \Phi(a_{21}\text{PROD}, a_{23}\text{ORG}, b_{2}Z_{2}), \\ & \Pr(\text{ORG} = 1) = \Phi(a_{31}\text{PROD}, a_{32}\text{PROC}, b_{3}Z_{3}) \end{aligned}$

where Z_k are drivers of adoption, including ICT

- multivariate probit (MVP) model
- with simultaneous discrete dependent variables (see Lewbel, 2007)
- Identification of sum of coefficients on simultaneous terms only (e.g. $a_1 = a_{12} + a_{21}$)
- Complementarity if the sum > 0 (e.g. $a_1 > 0$)

Estimation results adoption equations (manufacturing)

Manufacturing ($N = 2,973$)	product innova	tion	process inno	ovation	organizational i	nnovation
part of enterprise group	0.053	(0.458)	0.008	(0.868)	0.133 ***	(0.000)
foreignly owned	-0.087	(0.214)	-0.002	(0.972)	-0.013	(0.718)
cooperation on innovation	1.010 ***	(0.000)	0.503 ***	(0.000)	0.155 ***	(0.000)
exporter	0.257 ***	(0.000)	0.088	(0.108)	0.001	(0.983)
usage of IT systems	0.407 ***	(0.000)	0.120 *	(0.091)	0.112 **	(0.048)
intensity of broadband usage	0.590 ***	(0.000)	-0.269 ***	(0.001)	0.242 ***	(0.001)
employment (log)	0.103 ***	(0.001)	0.102 ***	(0.000)	0.092 ***	(0.000)
receives funding for innovation	1.025 ***	(0.000)	0.283 ***	(0.000)		
complementarity with						
product	-					
process	0.661 ***	(0.000)	-			
organizational	0.236 ***	(0.000)	0.219 ***	(0.000)	-	

• Significant positive cross-dependence between innovations

• Positive impact of ICT variables (IT systems, broadband (exception: process innovation))

Estimation results adoption equations (services)

Services (<i>N</i> = 4,535)	product innovat	ion	process innov	vation	organiz	ational in	inovation
part of enterprise group	0.048	0.377	0.048	0.225	0.074	**	0.010
foreignly owned	0.174 ***	0.004	-0.151 ***	0.001	0.044		0.213
cooperation on innovation	1.222 ***	0.000	0.855 ***	0.000	0.076	**	0.047
exporter	0.034	0.527	0.170 ***	0.000	0.008		0.780
usage of IT systems	0.075	0.188	0.137 ***	0.001	0.176	***	0.000
intensity of broadband usage	0.571 ***	0.000	0.097 **	0.032	0.229	***	0.000
employment (log)	0.007	0.719	0.102 ***	0.000	0.074	***	0.000
receives funding for innovation	1.298 ***	0.000	0.221 ***	0.007			
complementarity with							
product	-						
process	0.728 ***	0.000	-				
organizational	0.516 ***	0.000	0.340 ***	0.000	-		

• Significant positive cross-dependence between innovations

• Positive impact of ICT variables (IT systems (exception product innovation), broadband)

Stage 2: Productivity effects from joint adoption

Complementarity:

compare productivity gains of *combined* adoption to *individual* adoption

$$VA/L = \alpha_1 K + \alpha_2 L + \Sigma_i \gamma_i 1[\text{profile}_i]$$

Endogeneity: Innovation dummies are endogenous, therefore replaced by estimated propensities (from MVP, cf. Griffith et al. 2006)

PROD	PROC	ORG
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Estimation results augmented production function

[Manufacturing]

Significant innovation dummies include three types of innovation, where individual adoption is not signficant (except for marketing)

[Manufacturing]

Interaction terms with IT systems positive only for marketing

	Manufacturing (N = 2836)		Services ($N =$	1304)
	coeff.	se.	coeff.	se
IT capital	-0.004	0.005	-0.005	0.005
non-IT capital	0.202 ***	0.012	0.211 ***	0.010
employment	-0.202 ***	0.023	-0.373 ***	0.019
innovation profiles				
0,0,0,1	5.084 **	2.261	2.194	1.417
0,0,1,0	2.312	1.885	2.754 **	1.293
0,0,1,1	0.560	1.102	3.005 ***	0.603
0,1,0,0	3.236	1.844	3.232 **	1.333
0,1,0,1	-1.278	1.152	4.341 ***	1.561
0,1,1,0	-0.397	0.797	-2.549 ****	0.526
0,1,1,1	4.425 **	2.035	3.399 **	1.576
1,0,0,0	1.311	1.517	1.215	1.475
1,0,0,1	1.754	2.337	8.072 ***	2.844
1,0,1,0	1.609	1.430	0.180	1.172
1,0,1,1	3.701 *	2.109	1.686	2.31
1,1,0,0	0.627	0.972	0.785	0.612
1,1,0,1	5.563 ****	1.367	6.008 ***	2.088
1,1,1,0	2.632 **	1.172	1.213	1.156
1,1,1,1	0.168	0.956	4.623 ***	1.255
IT × product	-0.054 **	0.024	-0.117 ***	0.036
$T \times process$	0.039	0.024	0.112 **	0.044
$T \times organizational$	-0.023	0.026	0.259 ***	0.046
$T \times marketing$	0.148 ***	0.039	-0.286 ***	0.089
R ²	0.35		0.38	

No significant effect of IT-capital, and (quite substantial) decreasing returnsto-scale in both sectors

[Services]

Signs of complementarity, e.g. product and marketing. Exception: process and organizational innovation?

[Services]

Interaction terms with IT only positive for organizational innovation

Productivity effects from joint adoption

For example,

- gains to joint product-process innovation: γ_{11k} γ_{000}
- gains to individual adoption: $(\gamma_{01k} \gamma_{000}) + (\gamma_{10k} \gamma_{000})$
 - for $k \in \{0,1\}$ (joint organizational innovation yes or no)
- complementarity if
 - $\gamma_{11k} \gamma_{000} > (\gamma_{01k} \gamma_{000}) + (\gamma_{10k} \gamma_{000})$
 - test: Kodde-Palm (1984), Lokshin et al. (2011)

Conclusions

Preliminary stuff, but some patterns:

- descriptive evidence for joint adoption of innovation
- econometric evidence for simultaneity in the adoption equation
- positive role for IT in enabling innovation
- signs of complementarity in production process for a selection of combinations
- mixed results for interaction of IT with innovation

For the (near) future...

- Theoretical model for simultaneous adoption
- Reassess augmented production function (three types of innovation)
- Test complementarities in productivity equation
- Other adoptions? (E-business, going international, cooperation, merging/takeovers, ...)
- International comparisons?

