Firm productivity and wages: evidence from Finnish twin data

The 11th CAED COST Conference Nuremberg 26.-28.4.2012 Anni Nevalainen (JSBE, FDPE)

Outline

- Introduction
- Empirical modeling
 - OLS
 - FE
 - WT and WT-FD
- Data
- Descriptive statistics
- Estimation results
- Conclusions

Do high productivity firms pay higher wages?

- Descriptive evidence: average wages increase when firm productivity increases
- Labor productivity affects wages more than TFP
- High productivity firms may pay higher wages, but effects are heterogeneous between workers and not only due to selection
- Heterogeneity between genders
- The effect of one standard deviation increase in firm productivity on wages
 - Men: labor productivity 1.6% to 3.3%, TFP 1.0% to 2.1%
 - Women: labor productivity -2.5% to 2.3%, TFP -0.7% to 1.5%

Introduction (1/3)

- The role of firms in the wage setting one of the key questions in economics
 - Are firms price-takers or do they have an active role?
 - Rent sharing literature usually finds a positive connection between firm profitability and wages
 - e.g. Blanchflower et al. (1996), Van Reenen (1996), Hildreth & Oswald (1997), Bronars & Famulari (2001), Arai (2003)
 - Labor markets are not frictionless
 - Competitive models, efficiency wage models, bargaining models

• Why productivity instead of profitability?

- Less research
- Productivity is persistent (Foster et al. 2008), whereas profits may fluctuate more over time
- If firm productivity affects wages, it can create a more persistent wage gap between employees

Introduction (2/3)

Firms and employees are widely heterogeneous

- Firms: management quality, atmosphere...
- Employees: ability, attitudes, preferences...
- Remain largely unobserved, but affect the outcomes – pure selection?
- Traditional solutions: fixed effects (e.g. Abowd et al. 1999, Arai 2003), instrumental variables (e.g. Van Reenen 1996, Margolis & Salvanes 2001), IQ test scores (e.g. Bound, Griliches & Hall 1986, Blackburn & Neumark 1992)

Introduction (3/3)

- This study:
- Unobserved individual heterogeneity tackled with twin data
 - Use information on identical twins
 - Identical twins share the same genes and the same innate ability
 - Identification based on cross sectional variation within pair of identical twins (Ashenfelter & Kruger 1994)
- Unobserved firm heterogeneity complicates the choice of estimation method
 - Several approaches
 - Assumptions concerning estimation sample and structure of the error term in a key role

Empirical estimation (1/2)

• OLS

 $w_{j,k,t} = \beta_0 + \beta_1 \varphi_{p(j,k,t),t} + \beta_2 X_{j,k,t} + \beta_3 Z_{p(j,k,t),t} + \theta_k + \phi_{p(j,k,t)} + \varepsilon_{j,k,t}$

- *j* = twin order, *j* = {1,2}
- $k = \text{twin pair}, k = \{1, ..., K\}$
- *t* = time, *t* = {1990,...,2004}
- p(j,k,t) =firm indicator function (Abowd et al. 1999)
- w = logarithmic wage
- θ = innate ability (shared by an identical twin pair)
- $\circ \phi$ = unobserved firm/plant heterogeneity
- ε = i.i.d. error term
- φ = firm/plant productivity measure
- X = individual controls
- Z = firm/plant controls

• (Individual) FE

$$\widetilde{w}_{j,k,t} = \beta_1 \widetilde{\varphi}_{p(j,k,t)} + \beta_2 \widetilde{X}_{j,k,t} + \beta_3 \widetilde{Z}_{p(j,k,t)} + \widetilde{\phi}_{p(j,k,t)} + \widetilde{\varepsilon}_{j,k,t}$$

 $, where \ \widetilde{\log w_{j,k,t}} = \log w_{j,k,t} - \overline{\log w} , \\ \tilde{\varphi}_{p(j,k,t)} = \varphi_{p(j,k,t)} - \overline{\varphi} \ and \\ \tilde{\phi}_{p(j,k,t)} = \phi_{p(j,k,t)} - \overline{\phi}.$

Empirical estimation (2/2)

WT

$$\begin{split} \Delta w_{k,t} &= \beta_1 \Delta \varphi_{p(2,k,t),p(1,k,t),t} + \beta_2 \Delta X_{k,t} + \beta_3 \Delta Z_{p(2,k,t),p(1,k,t),t} + \Delta \phi_{p(2,k,t),p(1,k,t)} \\ &+ \Delta \varepsilon_{k,t} \end{split}$$

, if $p(2, k, t) \neq p(1, k, t)$ for some k.

• WT-FD

$$\begin{split} (\Delta w_{k,t} - \Delta w_{k,t-1}) &= \beta_1 \Big(\Delta \varphi_{p(2,k,t),\psi(1,k,t),t} - \Delta \varphi_{p(2,k,t-1),p(1,k,t-1),t-1} \Big) \\ &+ \beta_2 \Big(\Delta X_{k,t} - \Delta X_{k,t-1} \Big) + \beta_3 \Big(\Delta Z_{p(2,k,t),p(1,k,t),t} - \Delta Z_{p(2,k,t-1),p(1,k,t-1),t-1} \Big) + \big(\Delta \varepsilon_{k,t} \\ &- \Delta \varepsilon_{k,t-1} \big) \end{split}$$

 $, if \ p(2,k,t) \neq p(1,k,t), p(2,k,t) = p(2,k,t-1) and \ p(1,k,t) = p(1,k,t-1).$

Data

- Finnish Twin Cohort Study (1975, 1981 and 1990 surveys)
- Finnish Longitudinal Employer-Employee Data (FLEED)
 - In(wage) = In(salary income + income from entrepreneurial activities)

Additional variables

- Relative firm productivity = ln(productivity of firm p in year t/average productivity of 2-digit industry in year t)
- Employee characteristics (average wages, ages, education...)
- Firm characteristics (R&D, global-dummy...)
- Unbalanced panel of nearly 12 000 identical (1/3) and fraternal (2/3) twin pairs between 1990-2004
- This study includes only twins working in private sector
- **Data on total population** TBA!

Descriptive statistics (1/3)

Table 1. Wages and productivity distribution

Panel A. Full twin sample

			Relative	firm LP			Relative	firm TFP	
		1st quartile	2nd quartile	e 3rd quartile	4th quartile	1st quartile	2nd quartile	3rd quartile	4th quartile
Both	In(wage)								
	Average	10.02	10.10	10.18	10.31	10.07	10.11	10.17	10.27
	Std. dev.	0.460	0.418	0.422	0.445	0.463	0.426	0.421	0.460
	t-tests (H₀)	q2 = q1	q3 = q2	q4 = q3		q2 = q1	q3 = q2	q4 = q3	
	p-values	< 0.001	< 0.001	< 0.001		< 0.001	< 0.001	< 0.001	
			Relative	firm LP			Relative	firm TFP	
		1st quartile	2nd quartile	e 3rd quartile	4th quartile	1st quartile	2nd quartile	3rd quartile	4th quartile
Men	In(wage)								
	Average	10.18	10.24	10.32	10.45	10.22	10.25	10.31	10.41
	Std. dev.	0.440	0.383	0.401	0.414	0.440	0.407	0.391	0.428
	t-tests (H₀)	q2 = q1	q3 = q2	q4 = q3		q2 = q1	q3 = q2	q4 = q3	
	p-values	< 0.001	< 0.001	< 0.001		< 0.001	< 0.001	< 0.001	
			Relative	firm LP			Relative	firm TFP	
		1st quartile	2nd quartile	e 3rd quartile	4th quartile	1st quartile	2nd quartile	3rd quartile	4th quartile
Womer	n In(wage)								
	Average	9.83	9.87	9.95	10.06	9.86	9.89	9.94	10.02
	Std. dev.	0.416	0.374	0.345	0.396	0.404	0.362	0.369	0.410
	t-tests (H₀)	q2 = q1	q3 = q2	q4 = q3		q2 = q1	q3 = q2	q4 = q3	
	p-values	< 0.001	< 0.001	< 0.001		< 0.001	< 0.001	< 0.001	

Notes: Both = men and women included, ln(wage) = ln(salary income + income from entrepreneurial activities). LP = labor productivity, TFP = total factor productivity. Relative firm productivity = ln(productivity of firm p in period t/average productivity of 2-digit industry in year t). At 5% level statistically significant p-values of t-tests are bolded.

Descriptive statistics (2/3)

Panel B. Identical (MZ) twins

			Relative	firm LP		Relative firm TFP					
		1st quartile	2nd quartile	3rd quartile	4th quartile	1st quartile	2nd quartile	3rd quartile	4th quartile		
Both	In(wage)										
	Average	10.01	10.09	10.17	10.33	10.05	10.10	10.16	10.29		
	Std. dev.	0.473	0.429	0.421	0.457	0.472	0.408	0.426	0.496		
	t-tests (H₀)	q2 = q1	q3 = q2	q4 = q3		q2 = q1	q3 = q2	q4 = q3			
	p-values	< 0.001	< 0.001	< 0.001		< 0.001	< 0.001	< 0.001			
			Relative	firm LP			Relative	firm TFP			
		1st quartile	2nd quartile	3rd quartile	4th quartile	1st quartile	2nd quartile	3rd quartile	4th quartile		
Men	In(wage)										
	Average	10.19	10.23	10.34	10.50	10.21	10.26	10.33	10.46		
	Std. dev.	0.462	0.407	0.394	0.434	0.467	0.371	0.392	0.485		
	t-tests (H₀)	q2 = q1	q3 = q2	q4 = q3		q2 = q1	q3 = q2	q4 = q3			
	p-values	0.001	< 0.001	< 0.001		< 0.001	< 0.001	< 0.001			
			Relative	firm LP			Relative	firm TFP			
		1st quartile	2nd quartile	3rd quartile	4th quartile	1st quartile	2nd quartile	3rd quartile	4th quartile		
Wome	n In(wage)										
	Average	9.83	9.87	9.93	10.04	9.86	9.87	9.90	10.03		
	Std. dev.	0.422	0.369	0.336	0.352	0.416	0.335	0.350	0.391		
	t-tests (H ₀)	q2 = q1	q3 = q2	q4 = q3		q2 = q1	q3 = q2	q4 = q3			
	p-values	0.044	< 0.001	< 0.001		0.610	0.019	< 0.001			
Notes:	See panel A.										

Descriptive statistics (3/3)

Table 2. Twin pairs working in different firms

	All			DZ			MZ		
•	Both	Men	Women	Both	Men	Women	Both	Men	Women
Percentage share (%)	73.8	72.2	76.3	80.0	79.0	81.6	63.4	60.8	67.6
No. of observations	12323	7300	5023	8353	5000	3353	3970	2300	1670

Notes: All = full twin sample, DZ = fraternal twins, MZ = identical twins, Both = men and women included.

Estimation results (1/3)

Table 3. OLS and FE results for the effects of productivity on wages

Panel A. Relative firm labor productivity

	Men								Women							
Method:	OLS	OLS	OLS	OLS	FE	FE	FE	FE	OLS	OLS	OLS	OLS	FE	FE	FE	FE
Sample:	All	All	MZ	MZ												
Relative firm LP	0.06***	0.04***	0.06***	0.04***	0.04***	0.04***	0.04***	0.03***	0.03***	0.02***	0.03**	0.03***	0.02***	0.01*	0.02***	0.01**
	(0.012)	(0.008)	(0.017)	(0.013)	(0.008)	(0.006)	(0.013)	(0.010)	(0.007)	(0.008)	(0.011)	(0.007)	(0.006)	(0.006)	(0.006)	(0.005)
Region, industry																
and year controls	ye s	yes	ye s	ye s	yes	yes	yes	ye s	yes	yes						
Firm controls	no	ye s	no	ye s	no	ye s	no	yes	no	ye s	no	yes	no	ye s	no	yes
# observations	20500	20500	6785	6785	20500	20500	6785	6785	13435	13435	4773	4773	13435	13435	4773	4773

Notes: Equations refer to equations (2) and (3). Standard errors are clustered at individual level. All = full twin sample, MZ = identical twins. Significance levels: *** = 1%, ** = 5%, * = 10%. All regressions contain individual and firm controls. Individual controls: age, age2, age3, age4, years of schooling, house owner -dummy, married -dummy, no of children under 7 years, no of children 7-18 years old. Firm controls: average wage of employees, average age of employees, average seniority of employees, share of female employees, no of employees, R&D-dummy, global-dummy. Relative firm productivity = In(productivity of firm *p* in year *t*/average productivity of 2-digit industry in year *t*). LP = labor productivity, TFP = total factor productivity.

Panel B. Relative firm TFP

	Men								Women							
Method:	OLS	OLS	OLS	OLS	FE	FE	FE	FE	OLS	OLS	OLS	OLS	FE	FE	FE	FE
Sample:	All	All	MZ	MZ												
Relative firm TFP	0.03***	0.03***	0.03**	0.04***	0.02***	0.03***	0.02***	0.03***	0.02**	0.01*	0.02**	0.02**	0.02***	0.02***	0.02***	0.01*
	(0.011)	(0.007)	(0.017)	(0.014)	(0.006)	(0.006)	(0.009)	(0.010)	(0.007)	(0.007)	(0.011)	(0.007)	(0.005)	(0.006)	(0.008)	(0.006)
Region, industry																
and year controls	ye s	yes	ye s	ye s	ye s	yes	ye s	ye s	ye s	yes						
Firm controls	no	ye s	no	ye s	no	ye s	no	yes	no	ye s	no	yes	no	ye s	no	yes
# observations	20453	20453	6765	6765	20453	20453	6765	6765	13353	13353	4747	4747	13353	13353	4747	4747
Notes: See panel	A.															

Estimation results (2/3)

Table 4. WT and WT-FD estimates for the effects of productivity on wages

	Men			Women		
Method:	WT	WT	WT-FD	WT	WT	WT-FD
Relative firm LP	0.03	0.02	0.04*	-0.01	-0.03	0.00
	(0.024)	(0.025)	(0.023)	(0.017)	(0.023)	(0.020)
Region, industry						
and time controls	yes	yes	ye s	ye s	ye s	yes
Firm controls	no	ye s	no	no	ye s	no
# observations	1994	1994	457	1005	1005	220

Panel A. Relative firm labor productivity

Notes: Estimation equations refer to equations (4) and (5). Standard errors are clustered by twin pair. Significance levels: *** = 1%, ** = 5%, * = 10%. All regressions contain individual and firm controls. Relative firm productivity = $\ln(\text{productivity of firm } p \text{ in year } t/\text{average productivity})$ vity of 2-digit industry in year t). LP = labor productivity, TFP = total factor productivity. Regressions include only identical twins.

Panel B. Relative firm TFP

	Men			Women		
Method:	WT	WT	WT-FD	WT	WT	WT-FD
Relative firm TFP	0.03	0.02	0.05**	0.00	-0.01	-0.01
	(0.022)	(0.025)	(0.024)	(0.019)	(0.023)	(0.021)
Region, industry						
and time controls	yes	ye s				
Firm controls	no	yes	no	no	ye s	no
# observations	1982	1982	452	996	996	218
Notes: See panel A						

Estimation results (3/3)

- OLS produces the highest coefficient values when no control for innate ability or unobserved firm heterogeneity
- Labor productivity affects wages more than TFP
- Men's wages are more affected by firm productivity than women's
 - One standard deviation increase in labor productivity increases men's wages by 1.6 to 3.3% and women's by -2.5 to 2.3%
 - One standard deviation increase in TFP increases men's wages by 1.0 to 2.1% and women's by -0.7 to 1.5%
- Directions of biases caused by unobserved individual and firm heterogeneity
- Robustness
 - 4-digit industries
 - Plant level
 - Total population TBA!
 - Others TBA!

Conclusions

- Working in high productivity firm can result in higher earnings
 - Effects for men positive and (nearly always) statistically significant after ability and unobserved firm heterogeneity are controlled for
 - For women results less straight forward to interpret
 - Selection by ability does not fully explain connection between firm productivity and wages
 - Comparisons to results for firm profitability and wages
 - Elements according with rent sharing -models
- Heterogeneity between employees especially between genders
 - Occupational selection by gender (Nekby 2003)
 - Differences in bargaining abilities?
 - Efficiency wages?