Exporting and Productivity: The Effects of Multi-market and Multi-product Export Entry

Jaan Masso & Priit Vahter University of Tartu (Estonia) & University of Birmingham (UK) 11th CAED Conference, April 26-28, Nürnberg, Germany

Outline of our study

- Empirical international trade paper, related to multi-product firm models of international trade
- What does this paper do? Investigates the heterogeneity of learning-by-exporting: are the effects of export market entry on firm performance stronger in the case of multi-market and multi-product export entry compared to more limited or sequential export entry?
- **How?** Based on panel of full population of Estonia's manufacturing firms, estimate (causal) effects using propensity score matching approach. Detailed firm-product-market level export data.
- Main findings? Stronger effects of export entry on productivity in the case of multi-market and multi-product export entry.

Background: literature on learning-by-exporting and multiproduct trade models

- Standard finding: exporting and productivity of firms are positively correlated.
- Explanations:
- 1. Self-selection (Melitz 2003, etc.): only more productive firms can cover sunk costs of exporting. Standard result (e.g. Bernard and Jensen 1999, Wagner 2007).
- 2. 'Learning-by-exporting' (LBE) hypothesis. Effects of exporting on firm performance due to: knowledge transfer from abroad; technical assistance from buyers; international competition and increased incentives to innovation (e.g. Aghion et al. 2005), 'effort' and upgrade products; scale effects.
- Often, little evidence of LBE is found based on standard firm-level productivity data (positive LBE effects in de Loecker 2007, van Biesebroeck 2005).
- Firm-product and firm-market level (models of multi-product firms (MPF): Bernard, Redding and Schott 2009, Eckel and Neary 2010 etc): adding vs. dropping products; product entry/exit into export markets / adding & dropping new markets; volume of domestic vs. export sales
- Motivation: Is there evidence of LBE in the case of some particular export strategies?
- **Central issue:** direction of causality.

LBE effects: different export strategies

- Predominance of **sequential export market entry strategy**
 - Most firms start exporting with 1 variety to 1 (nearby) market (e.g. lacovone and Javorcik 2010)
 - Role of uncertainty and market experimentation (Rauch and Watson 2003, Albornoz et al. 2011)
- We differentiate here between 4 simple export entry modes (based on yearly data):
 - Multi-market export entry: start of export activities with exports to several (at least 2) foreign countries
 - Single market export entry: start of export activities with exports to only one foreign country
 - Multi-product export entry: start of export activities with exports of several (at least 2) products (at CN-8 digit code level)
 - Single product export entry: start of export activities with only one product

Effects on firm performance

Multi-market export entry:

 more scope for learning from a larger knowledge stock of foreign partners from different locations, less risks from reliance on one destination only (Chesbrough (2006) and Laursen and Salter (2006))

Multi-product export entry:

- Positive effects: potentially greater knowledge transfer from larger number of foreign partners, economies of product scope (Panzar and Willig 1981)
- Negative effects: (an indirect implication from recent multiproduct trade models, e.g. Eckel and Neary 2010) export entry with a smaller number of products may be more beneficial for the firm, as it would concentrate on its core-competence products

Data

- Transaction level export data from Estonia, from Statistics Estonia
- Aggregated to firm-product-destination and firm level annual observations
- Period: 1995–2003
- CN8 (8-digit) level individual products. Examples of CN8 level product definitions:
 - white chocolate (17049030), milk with fat content between 1% and 3%, specific types of fertilizers, specific types of plywood, skiing suits
 - Alcohol: wines by region (22042111- Alsace, etc); 2203 beer; 2204 wines;
 220410 sparkling wine, 2204101 champagne.
- Population of exporters in manufacturing industry: ca 1,700 2,400 firms
- Other firm level indicators (incl. productivity) from the dataset of the Commercial Registry (full population of all firms, also non-exporters)
- Multi-market export entrants (based on yearly data): **30%** of all export entrants
- Multi-product export entrants: **53%** of all export entrants
- Export entrants that export only 1 product to 1 foreign market: 43% of all entrants.

Average labour productivity after entry into exporting

Identification of the effects of multi-market and multi-product export entry

• Apply the '**propensity score matching**' method (Rosenbaum and Rubin 1984, Caliendo and Kopeinig 2005)

•4 'treatments' (N): multi-market entry, single market entry; multi-product entry, single product entry

•Estimate probit models for each of the 4 types of export entry:

$$\Pr M_{it}^{N} = 1 = f(X_{it-1}, \pi_{it-1})$$

•Explanatory variables: productivity (TFP), size, age, capital-labour ratio, cash-toassets ratio, FDI dummy, dummy for capital region, industry dummies, squared continuous control variables (as suggested in Wooldridge 2002), etc.

 Calculate propensity score p_i of each treatment for all firms. <u>Select for each</u> treated firm i 2 or 5 best matching non-exporter firms j based on this propensity score.

•Estimate the ATT (average treatment effect on treated) on productivity and TFP growth in post-estimation periods, compare the ATT of different types of export entry $ATT^{N} = \sum (\Delta \pi_{i} - \sum w_{ii} \Delta \pi_{i})$

$$ATT^{N} = \sum_{i \in N} (\Delta \pi_{i} - \sum_{j \in C_{N}} w_{ij} \Delta \pi_{j})$$

Quality of matching

Quality of matching: means of variables in pre-treatment period,

before and after matching

		Entry into more than 1 export				
		market vs. no entry				
	Comparison			T-test of		
		Treated	Control	difference		
Ln (TFP)	Before matching	10.603	10.053	(12.55)***		
	After matching	10.121	10.098	(0.19)		
Size	Before matching	2.126	1.497	(22.26)***		
	After matching	2.587	2.478	(0.95)		
Age	Before matching	0.982	1.640	(44.52)***		
	After matching	0.912	0.905	(0.11)		
Cash/assets	Before matching	1.016	14.934	(0.34)		
	After matching	0.709	0.861	(1.29)		
Ln(K/L)	Before matching	10.847	10.746	(2.36)**		
	After matching	10.529	10.483	(0.29)		
FDI dummy	Before matching	0.177	0.069	(22.42)***		
	After matching	0.135	0.092	(1.42)		

Notes: t-statistics of difference between treatment and control group means are in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%. Firms from manufacturing industry. Period: 1995–2003.Matching based on the values of variables at the time of export market entry, observations with later treatment excluded.

Results: ATT effects on total factor productivity (TFP)

Treatment variable	Matching algorithm	Period 2		Period 3		Period 4	
Multi-market	NN5	12.107	(3.96)***	4.725	(1.77)*	4.631	(1.73)*
entry	NN2	14.250	(4.16)***	3.808	(1.25)	4.244	(1.42)
	Unmatched	10.476	(5.27)***	8.792	(5.27)***	7.460	(4.11)***
Single-market	NN5	6.599	(3.51)***	3.541	(1.2)	2.721	(0.99)
entry	NN2	7.222	(3.44)***	2.063	(0.56)	2.233	(0.76)
	Unmatched	6.720	(4.91)***	15.655	(8.59)***	11.314	(6.15)***
Multi-product entry	NN5	11.067	(4.54)***	3.913	(1.98)**	4.884	(2.28)**
	NN2	12.239	(4.4)***	5.767	(2.65)***	4.587	(1.89)*
	Unmatched	11.924	(7.79)***	9.762	(7.76)***	8.235	(5.95)***
Single-product entry	NN5	9.003	(1.54)	2.016	(0.59)	2.761	(0.82)
	NN2	3.759	(1.59)	3.062	(0.75)	2.581	(0.66)
	Unmatched	15.682	(4.51)***	8.741	(4.07)***	9.031	(3.99)***

Results of propensity score matching: effects of export entry on TFP growth

Notes: * significant at 10%; ** significant at 5%; *** significant at 1%. t-statistics in parentheses. NN5: nearest neighbour matching with 5 matches; NN2: nearest neighbour matching with 2 matches; ATT: Average Treatment Effect on the Treated (ATT), t-statistics are in parentheses. Period 0: period before exports began. Panel data of firms from the manufacturing industry. Period: 1995–2003.

Possible issues with empirics

- Effects on the level of TFP and labour productivity suggest as well that wider entry into export markets has stronger effects on TFP, but not labour productivity
- **Different export markets** of multi-market and single-market exporters no significant differences
- The number of products and markets could be correlated the correlation between the number of products and the number of markets is significant but not very strong (0.38).
- **Different definition of product (with a different CN code) in different markets**: e.g. issues related to taxation and trade barriers likely related to only a small share of firms.
- **Exported products could have been previously imported** when reexported products were eliminated, only a small number of multi-product exporters (28) redefined as 'single-product exporters'.
- Changes in CN codes over the time more relevant for product churning (Masso, Vahter 2012 corrected for that)

Conclusions

- It is well known that the majority of firms expand their number of export markets and products slowly
- Nevertheless, multi-product and multi-market entrants form a significant proportion of export entrants
- We show that this more extensive entry into the export markets confer significant benefits for firm's productivity, despite the larger initial sunk costs
- Early export entry to several markets results in faster productivity growth after entry, compared to firms that enter only one market
- Similar regularity is found in the case of comparison of multi-product and single-product entrants
- These stronger effects may indicate more learning-by-exporting in the case of multi-market and multi-product entry
- Managerial implication: important it is for managers to consider strategies for wider entry into export markets
- **Policy implication**: public programmes targeted at promoting the internationalisation of firms should consider the number of markets and products as an evaluation and performance criteria