Firm-to-Firm Trade:

Imports, Exports, and the Labor Market

Jonathan Eaton, Samuel Kortum, Francis Kramarz, and Raul Sampognaro

April 2012

CAED, Nüremberg

Agenda

- Use data on French exporters/importers and their wages
- Display the detailed evidence.
- Extend the EKK version of Melitz to look at imports and exports
- Introduce labor markets (wages and employment)
- Combine efficient bargaining with firm export/import behavior
- Relate parameters of the model to the data (preliminary)

Related Literature

- Data: Bernard and Jensen (1995).
- Theory (on exports): Felbermayr, Prat, and Shmerer (2008), Egger and Kreickemeier (2009), Helpman, Itskhoki, and Redding (2010), Caliendo, Rossi-Hansberg (2012)
- Quantitative: Irarrazabal, Moxnes, and Ulltveit-Moe (2010), Klein, Moser, and Urban (2010), Frias, Kaplan, and Verhoogen (2010), Kramarz (2009), Caliendo, Monte, and Rossi-Hansberg (2012).

A Look at the Data

- Cross-section of 141,000 French manufacturing firms, in 2003
- Approximately 25,000 (20,000) of them export (import from) somewhere.
- Observe exports to (imports from) each of 112 destinations (origins)
- plus wages, employment (by skill-levels), purchases, and sales in France.
- Tables and Figures reveal some striking regularities ...

Exports and Sales in France

Imports and Sales in France

Distribution of Sales in France by Import Country

Distribution of Wages by Import Country

Exports and Wages in France

Imports and Wages in France

Exports and Average Hourly Wage

Administrative and commercial managers

Number of firms:30880; Number of exporters: 16556

Imports and Average Hourly Wage

Number of firms: 30877; Number of importers: 15296

Exports and Average Hourly Wage Technical managers and engineers

Number of firms:32757; Number of exporters: 17378

Imports and Average Hourly Wage

Number of firms: 32752; Number of importers: 16055

Exports and Average Hourly Wage

Skilled blue-collar workers (non-crafts)

Number of firms:66673; Number of exporters: 23631

Imports and Average Hourly Wage Skilled blue-collar workers (non-crafts)

® Wages and Nbr. of Sourcing Countries ® Wages and Nbr. of Sourcing Countries

1000

firms importing from the market

100

10000

100000

Number of firms: 66659; Number of importers: 20725

Exports and Average Hourly Wage

Unskilled blue-collar workers (non-crafts)

Number of firms:58376; Number of exporters: 21749

Imports and Average Hourly Wage

Number of firms: 58365; Number of importers: 19395

	Purchases of		Purchases of Int	ermediates in)			
	Intermediates/Total	Sales	France/To	tal Sales	Log Average	Hourly Wage	Log Emp	oloyment
number of destinations=2	0.0395		0.0350		0.0229		-0.0534	
number of destinations=3	0.0501		0.0464		0.0243		-0.0874	
number of destinations=4	0.0548		0.0512		0.0341		-0.1178	
number of destinations=5	0.0560		0.0482		0.0248		-0.1314	
number of destinations=6	0.0558		0.0592		0.0224		-0.1150	
number of destinations=7	0.0453		0.0494		0.0397		-0.0964	
number of destinations=8	0.0550		0.0551		0.0273		-0.1534	
number of destinations=9	0.0579		0.0640		0.0346		-0.1480	
number of destinations=10	0.0398		0.0497		0.0227		-0.1021	
number of destinations=11-20	0.0486		0.0588		0.0425		-0.1105	
number of destinations=21-50	0.0407		0.0699		0.0702		-0.1437	
number of destinations>50	0.0329		0.0834		0.0640		-0.2019	
number of origins=2	0.0546		-0.0091		0.0112		-0.1182	
number of origins=3	0.0690		-0.0280		-0.0054		-0.1764	
number of origins=4	0.0655		-0.0453		-0.0403		-0.1420	
number of origins=5	0.0686		-0.0547		-0.0498		-0.1716	
number of origins=6	0.0708		-0.0618		-0.0708		-0.1415	
number of origins=7	0.0694		-0.0770		-0.0795		-0.1391	
number of origins=8	0.0670		-0.0890		-0.0881		-0.1637	
number of origins=9	0.0756		-0.0896		-0.1002		-0.2181	
number of origins=10	0.0761		-0.1074		-0.1065		-0.2045	
number of origins=11-20	0.0844		-0.1417		-0.1345		-0.2630	
number of origins=21-50	0.1063		-0.1825		-0.1621		-0.3459	
number of origins>50	0.2201		-0.2300		-0.0728		-0.5157	
log sales	0.0070 0.0	231	0.0110	0.0076	0.0949	0.0889	0.9520	0.9097
r2	0.2817 0.2	572	0.2069	0.1934	0.4088	0.4061	0.8061	0.8045
N	141,046 141	,046	141,046	141,046	141,046	141,046	142,333	142,333

Log of hourly wage	Administrative and	Engineers,	Skilled Blue-Collar	Unskilled Blue-Collar
	Commercial Managers C	ommercial Engineers		
number of destinations=2	0.0062	-0.0073	0.0080	0.0079
number of destinations=3	-0.0053	-0.0207	0.0084	0.0189
number of destinations=4	0.0011	-0.0001	0.0109	0.0082
number of destinations=5	0.0130	-0.0093	0.0004	0.0125
number of destinations=6	0.0118	-0.0347	0.0078	0.0165
number of destinations=7	0.0145	0.0146	0.0065	0.0048
number of destinations=8	-0.0019	-0.0290	0.0109	0.0077
number of destinations=9	0.0273	-0.0318	0.0056	0.0055
number of destinations=10	0.0059	-0.0112	0.0082	0.0096
number of destinations=11-20	0.0088	-0.0066	0.0073	0.0162
number of destinations=21-50	0.0079	0.0192	0.0174	0.0268
number of destinations>50	0.0246	0.0427	0.0166	0.0391
number of origins=2	-0.0012	-0.0064	-0.0069	-0.0057
number of origins=3	0.0155	0.0013	-0.0187	-0.0032
number of origins=4	-0.0152	-0.0196	-0.0287	-0.0274
number of origins=5	-0.0035	-0.0190	-0.0298	-0.0116
number of origins=6	-0.0166	-0.0131	-0.0443	-0.0236
number of origins=7	-0.0242	-0.0244	-0.0455	-0.0304
number of origins=8	-0.0332	-0.0118	-0.0484	-0.0192
number of origins=9	-0.0012	-0.0235	-0.0490	-0.0120
number of origins=10	-0.0267	-0.0495	-0.0519	-0.0227
number of origins=11-20	-0.0331	-0.0396	-0.0623	-0.0336
number of origins=21-50	-0.0671	-0.0480	-0.0818	-0.0634
number of origins>50	-0.0001	-0.0600	-0.1311	-0.1610
log sales	0.0673	0.0600	0.0541	0.0422
r2	0.1125	0.1003	0.1871	0.1260
N	30,774	32,716	66,541	58,330

Share in employment	Administrative	and	Engir	ieers,	Skilled B	lue-Collar	Unskilled	Blue-Collar
	Commercial Mar	agers	Commercia	al Engineers				
number of destinations=2	0.0	0036		0.0043		-0.0023		0.0001
number of destinations=3	0.0	0022		0.0083		-0.0107		0.0030
number of destinations=4	0.0	0062		0.0050		-0.0134		0.0082
number of destinations=5	0.0	0038		0.0051		-0.0242		0.0099
number of destinations=6	0.0	0063		0.0079		-0.0160		0.0162
number of destinations=7	0.0	0079		0.0072		-0.0125		0.0005
number of destinations=8	0.0	0043		0.0106		-0.0187		-0.0029
number of destinations=9	0.0	0039		0.0101		-0.0294		0.0114
number of destinations=10	0.0	0045		0.0125		-0.0171		0.0070
number of destinations=11-20	0.0	0107		0.0111		-0.0300		-0.0015
number of destinations=21-50	0.0	0211		0.0178		-0.0460		-0.0220
number of destinations>50	0.0	0233		0.0092		-0.0495		-0.0225
number of origins=2	0.0	0066		0.0069		-0.0126		0.0075
number of origins=3	0.0	0006		0.0039		-0.0068		0.0167
number of origins=4	-0.	0031		0.0033		-0.0027		0.0283
number of origins=5	-0.	0028		-0.0014		-0.0008		0.0377
number of origins=6	-0.	0071		0.0001		0.0028		0.0334
number of origins=7	-0.	0059		0.0007		0.0068		0.0305
number of origins=8	-0.	0096		0.0035		0.0189		0.0203
number of origins=9	-0.	0084		0.0015		-0.0008		0.0187
number of origins=10	-0.	0071		0.0013		0.0077		0.0066
number of origins=11-20	-0.	0125		0.0035		-0.0125		0.0068
number of origins=21-50	-0.	0190		0.0141		-0.0326		-0.0084
number of origins>50	-0.	0335		0.0283		-0.0192		0.0409
log sales	0.0056 0.0	0049	0.0069	0.0044	0.0213	0.0264	0.0050	0.0037
r2	0.0727 0.0	0739	0.1113	0.1139	0.2865	0.2881	0.1473	0.1494
N	141,046 143	1,046	141,046	141,046	141,046	141,046	141,046	141,046

Share in wage bill	Administrative and	Engineers,	Skilled Blue-Collar	Unskilled Blue-Collar	
	Commercial Managers	Commercial Engineers			
number of destinations=2	0.0060	0.0061	-0.0071	-0.0029	
number of destinations=3	0.0046	0.0101	-0.0154	-0.0022	
number of destinations=4	0.0094	0.0061	-0.0185	0.0012	
number of destinations=5	0.0085	0.0061	-0.0285	0.0026	
number of destinations=6	0.0118	0.0106	-0.0213	0.0074	
number of destinations=7	0.0131	0.0098	-0.0197	-0.0066	
number of destinations=8	0.0100	0.0122	-0.0244	-0.0074	
number of destinations=9	0.0102	0.0115	-0.0365	0.0023	
number of destinations=10	0.0103	0.0159	-0.0233	-0.0011	
number of destinations=11-20	0.0207	0.0147	-0.0376	-0.0098	
number of destinations=21-50	0.0368	0.0239	-0.0555	-0.0282	
number of destinations>50	0.0436	0.0165	-0.0594	-0.0266	
number of origins=2	0.0095	0.0086	-0.0155	0.0028	
number of origins=3	0.0029	0.0061	-0.0104	0.0105	
number of origins=4	-0.0024	0.0051	-0.0059	0.0197	
number of origins=5	-0.0011	0.0000	-0.0048	0.0272	
number of origins=6	-0.0088	0.0027	-0.0008	0.0256	
number of origins=7	-0.0057	0.0031	0.0032	0.0244	
number of origins=8	-0.0131	0.0072	0.0129	0.0171	
number of origins=9	-0.0097	0.0033	-0.0022	0.0158	
number of origins=10	-0.0101	0.0021	0.0058	0.0079	
number of origins=11-20	-0.0159	0.0076	-0.0115	0.0092	
number of origins=21-50	-0.0295	0.0232	-0.0300	-0.0029	
number of origins>50	-0.0480	0.0349	-0.0363	0.0165	
log sales	0.0112	0.0099	0.0189	-0.0018	
r2	0.1029	0.1450	0.2596	0.1248	
N	141,046	141,046	141,046	141,046	

Lessons from the Data

- Imports and Exports are very similar (parallel?)
- The shapes of the Wage Figures are strikingly similar to those of sales (in EKK), with less variation though
- Both for Exports and Imports
- Firms that export (import) more and more widely pay more
- Firms that serve (are served by) less popular markets pay more
- Firms that sell more in France pay more

Grand Directions of the Model

- Model jointly the Export and Import decisions through a model of Outsourcing
- With Multiple Inputs Coming from France or abroad
- With heterogeneous firms: efficiency and number of skills (complexity)
- Introduce efficient bargaining (McDonald and Solow, 1981) for the labor market
- in an augmented EKK's version of Melitz.

Elements of the Model: EKK

- Firm j has efficiency z(j), same across markets, and a demand shifter $\alpha_n(j)$ in each destination market n, preferences are CES with $\sigma > 1$
- measure of firms with efficiency above z is $\mu^z(z) = Tz^{-\theta}$. (Hence, distribution of costs is proportional to c^{θ})
- charging p in market n, reaching a fraction f of consumers, sales in n are $x_n(j) = \alpha_n(j) f(j) X_n \left(\frac{p}{P_n}\right)^{-(\sigma-1)}$.
- with $l_n(j)$ firm's employment, $m_n(j)$ its use of intermediates, output is $q_n(j) = z(j) [l_n(j)]^{\beta} [m_n(j)]^{1-\beta}/d_n$

ullet Then, revenue as a function of $l,\,m,$ and f is:

$$x_n(l, m, f) = \left[\alpha_n(j)fX_n\right]^{1/\sigma} \left(\frac{z(j)l^{\beta}m^{1-\beta}P_n}{d_n}\right)^{(\sigma-1)/\sigma}.$$

EKKS: 2-Inputs and Outsourcing (Base Model)

• The production function uses input 0, cost w_0 and has the choice of either labor at cost w_1 or an input, at cost p

• Given prices of intermediates p, the cost of the input bundle is:

$$b(p) = w_0^{\beta_0} \min \{w_1, p\}^{\beta_1}.$$

• The distribution of costs:

$$\mu(c) = \int_0^\infty \mu(c|b(p))dF(p) = Tc^{\theta}w_0^{-\theta\beta_0} \int_0^\infty \min\{w_1, p\}^{-\theta\beta_1} dF(p)$$

• with \overline{c} , largest cost entering, is solution of:

$$\mu(\overline{c}) = \frac{X}{\sigma E} \frac{\theta - (\sigma - 1)}{\theta},$$

• **Extended Model:** The number of suppliers j sampled is distributed Poisson with parameter $\lambda(\overline{c})$, an increasing function of \overline{c} . The probability to sample j suppliers is

$$g_j(\overline{c}) = \frac{e^{-\lambda(\overline{c})} [\lambda(\overline{c})]^j}{j!}$$

ullet If P_j is the price of the lowest cost supplier among these j. Its distribution is

$$\Pr[P_j \le p] = F_j(p) = 1 - [1 - F(p)]^j$$
.

• Now, summing over all js:

$$\mu(c) = Tc^{\theta}w_0^{-\theta\beta_0} \int_0^{\infty} \min\{w_1, p\}^{-\theta\beta_1} e^{-\lambda(\overline{c})F(p)} \lambda(\overline{c})f(p)dp$$

• Plugging the Pareto distribution, we have $\mu(c) = \Psi(\overline{c})c^{\theta}$ with

$$\Psi(\overline{c}) = \Phi\left[\left(\lambda(\overline{c})\left(\frac{w_1}{\overline{c}}\right)^{\theta}\right)^{\beta_1} \gamma\left(1 - \beta_1, \lambda(\overline{c})\left(\frac{\overline{\omega}_1}{\overline{c}}\right)^{\theta}\right) + \left(e^{-\lambda(\overline{c})(\overline{\omega}_1/\overline{c})^{\theta}} - e^{-\lambda(\overline{c})(\overline{\omega}_1/\overline{c})^{\theta}}\right)\right]$$

As a consequence,

$$\begin{pmatrix} w_1 \geq \overline{c} & w_1 \leq \overline{c} \\ 1 \text{ encounter} & \frac{\partial \mu(c)}{\partial \overline{c}} = 0 & \frac{\partial \mu(c)}{\partial \overline{c}} < 0 \\ \text{Poisson } \lambda(\overline{c}) \text{ encounters} & \frac{\partial \mu(c)}{\partial \overline{c}} \geq 0 & \frac{\partial \mu(c)}{\partial \overline{c}} \leq 0 \end{pmatrix}$$

- As long as our choice of $\lambda(\overline{c})$ implies that $\Psi'(\overline{c}) \geq 0$ we are guaranteed that a drop in E increases $\mu(c)$
- The expected number of sales $E(N^s)$, is:

$$E(N^s) = \lambda \exp[-\lambda F(c)]$$

• A more efficient firm is more likely to thrive in an environment with more meetings.

EKKS: Sales with 2-Inputs and Outsourcing

• Expected intermediate sales of a seller in the market with unit cost c, equal to the expected number of buyers (G(c)) just derived times expected sales per buyer.

• A buyer has efficiency Z which is distributed: $\Pr[Z \leq z] = 1 - \left(\frac{z}{\underline{z}(\overline{c})}\right)^{-\theta}$ with $\underline{z}(\overline{c})$ the lowest efficiency possible for a buyer facing a supplier with cost c $(\underline{z} = \frac{w_0^{\beta_0} c^{\beta_1}}{\overline{c}})$.

• The distribution of expected sales:

$$\Lambda^{M}(c) = G(c)\beta_{1} \int_{\underline{z}(\overline{c})}^{\infty} \left[\frac{1}{\overline{m}} \frac{X}{P^{1-\sigma}} \left(\frac{\overline{m}w_{0}^{\beta_{0}}c^{\beta_{1}}}{z'} \right)^{1-\sigma} + \Lambda^{M} \left(\frac{w_{0}^{\beta_{0}}c^{\beta_{1}}}{z'} \right) \right] \theta \left[\underline{z}(\overline{c}) \right]^{\theta}$$

All computations done (note the Fixed Point, above) yields:

$$\Lambda^{M} = def \int_{0}^{\overline{c}} \Lambda^{M} \left(c' \right) \theta \overline{c}^{-\theta} \left(c' \right)^{\theta - 1} dc' \\
= \frac{\beta_{1} \overline{m}^{-\sigma} \frac{\theta}{\theta - (\sigma - 1)} \frac{X}{P^{1 - \sigma}} (\overline{c})^{1 - \sigma} \left(1 - \exp \left[-\lambda \left(\frac{\overline{\omega}_{1}}{\overline{c}} \right)^{\theta} \right] \right)}{1 - \beta_{1} (1 - \exp \left[-\lambda \left(\frac{\overline{\omega}_{1}}{\overline{c}} \right)^{\theta} \right])}$$

EKKS: Extension to K-Inputs

• The firm samples j_k suppliers for k=1,...,K, distributed Poisson with a parameter $\lambda(\overline{c})$

•

$$\mu(c) = Tc^{\theta}w_0^{-\theta\beta_0} \prod_{k=1}^K \int_0^{\infty} \min\{w_k, p_k\}^{-\theta\beta_k} e^{-\lambda(\overline{c})F(p_k)} \lambda(\overline{c})f(p_k)dp_k$$
$$= \Psi(\overline{c})c^{\theta}$$

• The measure of entrants is

$$\mu(\overline{c}) = \frac{X}{\sigma E} \frac{\theta - (\sigma - 1)}{\theta},$$

• with expected intermediate sales:

$$\boldsymbol{\Lambda}^{M} = \frac{\sum\limits_{k=1}^{K} \beta_{k} \overline{m}^{-\sigma} \frac{\theta}{\theta - (\sigma - 1)} \frac{X}{P^{1 - \sigma}} \overline{c}^{1 - \sigma} \left(1 - \exp\left[-\lambda \left(\overline{c} \right) \left(\frac{\overline{\omega}_{k}}{\overline{c}} \right)^{\theta} \right] \right)}{1 - \sum\limits_{k=1}^{K} \beta_{k} \left(1 - \exp\left[-\lambda \left(\overline{c} \right) \left(\frac{\overline{\omega}_{k}}{\overline{c}} \right)^{\theta} \right] \right)}$$

EKKS: Introducing Trade I

- All computations above can be extended to a multiplicity of N countries, by dividing appropriately by distance d_{mn} between m and n.
- For firms in country *i*:

$$\Psi_i(\overline{c}_i) = T_i w_{i,0}^{-\theta\beta_0} \prod_{k=1}^K \int_0^\infty \min\left\{w_{i,k}, p_k\right\}^{-\theta\beta_k} e^{-\lambda_i(\overline{c}_i)F_i(p_k)} \lambda_i(\overline{c}_i) f_i(p_k) dp_k.$$

With the associated system of N equations as:

$$\frac{X_i}{\sigma E_i} \frac{\theta - (\sigma - 1)}{\theta} = \overline{c}_i^{\theta} \sum_{l=1}^{N} d_{il}^{-\theta} \Psi_l(\overline{c}_l).$$

EKKS: Introducing Trade II

• Expected sales are:

$$\Lambda_{n}^{M}(c) = \sum_{k=1}^{K} G_{n,k}(c) \beta_{k} \overline{c}_{n}^{-\theta} \sum_{m=1}^{N} d_{mn}^{-\theta} \left\{ \begin{array}{l} \overline{m}^{-\sigma} \frac{X_{m}}{P_{m}^{1-\sigma}} \frac{\theta}{\theta - (\sigma - 1)} \overline{c}_{m}^{\theta - (\sigma - 1)} \\ + \int_{0}^{\overline{c}_{m}} \Lambda_{m}^{M} (c'') \theta (c'')^{\theta - 1} dc'' \end{array} \right\}$$

 $\bullet \ \ \mathsf{Defining} \ \boldsymbol{\Delta}^M = \{\overline{c}_1^{\theta} \boldsymbol{\Lambda}_1^M, \overline{c}_2^{\theta} \boldsymbol{\Lambda}_2^M, ..., \overline{c}_N^{\theta} \boldsymbol{\Lambda}_N^M\}'$

$$\bullet \ \widetilde{\mathbf{X}} = \left\{ \left(\frac{1}{P_1}\right)^{1-\sigma} X_1 \overline{c}_1^{\theta-(\sigma-1)}, \left(\frac{1}{P_2}\right)^{1-\sigma} X_2 \overline{c}_2^{\theta-(\sigma-1)}, ..., \left(\frac{1}{P_N}\right)^{1-\sigma} X_N \overline{c}_N^{\theta-(\sigma-1)} \right\}$$

• ${\bf B}$ an $N \times N$ matrix with representative element:

$$\mathbf{b}_{nm} = \sum_{k=1}^{K} \beta_k \pi_{nn} \left(\overline{c}_n\right)^{-\theta} \left(1 - \exp\left[-\lambda_n \left(\frac{\overline{\omega}_{n,k}}{\overline{c}_n}\right)^{\theta}\right]\right) (d_{mn})^{-\theta}$$

The solution is

$$\Delta^M = \frac{ heta \overline{m}^{-\sigma}}{ heta - (\sigma - 1)} [\mathbf{I} - \mathbf{B}]^{-1} \mathbf{B} \widetilde{\mathbf{X}}$$

EKKS: Bargaining on Wages and Employment

The profit resulting from above

$$\Pi_n(l, m, w, \delta) = x_n^F(l, m, \delta) + x_n^M - w_0 l_{0,n} - \sum_{k=1}^K \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_k m_{k,n} \right] - c_k^M \left[\delta_k w_k l_{k,n} + (1 - \delta_k) p_$$

ullet with $e_{k,n}$ is the overhead labor of type k to enter market n implying a fixed cost $E_n = \sum_{k=0}^K w_k e_{k,n}$

workers and firm use efficient bargaining and maximize:

$$\pounds(l,m,w,\delta) = (1-\gamma) \ln \Pi(l,m,w,\delta) + \gamma \ln \left[\sum_{k=0}^K \left(w_k - \underline{w}_k \right) \left(\delta_k l_k + e_k \right) \right],$$

- with $0 \le \gamma \le 1$ reflects the bargaining power of workers and \underline{w}_k type k workers' reservation wage.
- Notice that we have assumed a status-quo $\pi_0=0$ for the firm (to be changed soon).
- Solutions: the share of the surplus going to labor;

$$\sum_{k=0}^{K} (w_k - \underline{w}_k) (\delta_k l_k + e_k) = \gamma S(l, m, \delta),$$

• with the rest going to profits

$$\Pi(l, m, w, \delta) = (1 - \gamma) S(l, m, \delta).$$

• intermediates purchased:

$$\delta_k = \left\{ \begin{array}{ll} \mathbf{1} & \underline{w}_k \leq p_k \\ \mathbf{0} & \underline{w}_k > p_k \end{array} \right.$$

• Finally,

$$\frac{\partial x^F(l, m, \delta)}{\partial l_k} = \underline{w}_k.$$

$$\frac{\partial x^F(l,m,\delta)}{\partial m_k} = p_k.$$
when $\underline{w}_k > p_k$

EKKS: Solution for the Wage with K = 1

The solution

$$w(j) = \underline{w} \left(1 + \frac{\gamma}{(\sigma - 1)\beta} \right) - \gamma \underline{w} \frac{1 + (\sigma - 1)\beta}{(\sigma - 1)\beta} \sum_{n} \frac{\frac{e_n(j)}{x_n(j)}}{\frac{\beta(\sigma - 1)}{\underline{w}\sigma} + \frac{e_n(j)}{x_n(j)}} \frac{l_n(j) + e_n(j)}{l(j) + e(j)}$$

• The appendix shows that the ratio $e_n(j)/x_n(j)$ is increasing in v_n which implies that

$$rac{rac{e_n(j)}{x_n(j)}}{rac{(\sigma-1)eta}{w}\sigma+rac{e_n(j)}{x_n(j)}}$$

• is also increasing in v_n (as in the data).

Similarly

$$\frac{x(j)}{l(j) + e(j)} = \sum_{n} \frac{x_n(j)}{l_n(j) + e_n(j)} \frac{l_n(j) + e_n(j)}{l(j) + e(j)}$$
$$= \sum_{n} \frac{1}{\frac{\beta(\sigma - 1)}{\underline{w}\sigma} + \frac{e_n(j)}{x_n(j)}} \frac{l_n(j) + e_n(j)}{l(j) + e(j)}.$$

• whereas $\frac{x(j)}{l(j)}$ is equal to a constant

Gamma=0.0, Sigma=3, Thetatilde=2.46

Gamma=0.25, Sigma=3, Thetatilde=2.46

Gamma=0.50, Sigma=3, Thetatilde=2.46

Gamma=0.75, Sigma=3, Thetatilde=2.46

Gamma=0.99, Sigma=3, Thetatilde=2.46

Conclusion

- The EKK model can be "easily extended" to incorporate a parallel treatment of exports and imports
- It involves the construction of a fixed point (imports are in fact exports of some other foreign firm)
- The model can be further extended to an open economy, multiple inputs, multiple suppliers
- ullet and firms of different efficiency z and complexity K

- On the labor market side, adding one bargaining parameter to an export model goes a long way in relating firms' wages and exports.
- Strong evidence that the Pareto distribution of heterogeneity in sales (efficiency) translates into wages.
- Unobserved individual skills are not accounted for
- Looks like a promising base for structural estimation