CAED conference, Nuremberg, April 27, 2012

Measuring dynamic market selection: the case of EU business services

Henk L.M. Kox

joint work with George van Leeuwen

CPB Netherlands Bureau for Economic Policy Analysis

Structure

European business services: large industry with a productivity problem

□ is deficient competition the cause?

Quantifying dynamic selection in markets

- □ market as moving firm distribution
- □ without and with scale economies

Environment factors that affect market selection

- □ Regulation affecting entry/exit costs and firm growth
- □ Market contestability (entry, imports)

<u>käk</u>

European business services as case study

- Large industry
 - □ fabulous employment growth between 1990-2005
 - □ now: employment share close to manufacturing or even larger
 - □ about 50% of employment is in knowledge-intensive sub-sectors
 - one of the largest providers of intermediary inputs for the rest of the economy
- But: ... with stagnating productivity growth since 1980
 - single largest contribution to the 1995-2007 gap in labour productivity growth between EU25 and the USA
 - □ knowledge-intensive business services did not perform better
 - country pattern is fairly similar in most countries, but some USA and UK performed better (positive productivity growth)
 - several sub-sectors with zero or negative TFP growth: may indicate <u>badly functioning markets</u>

Effectiveness of competitive selection

Market process itself is too complex to quantify

- □ constant turbulence: market reallocation, entry, exit
- many dimensions of firm behaviour
- $\hfill\square$ actions by individual fims cannot or at best partly be observed
- causality problems in behaviour: independent actions, reactions, anticipations, inertness
- external shocks for the market (macroeconomics, regulation, globalisation, technology)
- Better to focus on <u>outcomes</u> of the market process: characteristics of changes in firm distribution between to and t₁
- Theory : average efficiency in effective markets should increase over time (perfect competition, monopolistic competition)

Mickey Mouse market model

Suppose the ONLY observables of firms in a market are:

- □ firm identity
- □ an efficiency parameter of each firm (e.g. productivity, TFP) at *to* and *t*¹

This allows:

- 1. ranking of performance
 - □ frontier (frontier group, sub-frontier group)
 - □ size frontier gap
- 2. comparing performance at t and t+1

Market = firm distribution moving over time

1st dynamic: shift in frontier group share

frontier gap change: additional dimension

2nd dynamic: change in frontier gap distribution

Both dynamics combined: EMSI (indicator)

Quantifying competitive selection

- Effective competitive selection in a market should increase general efficiency performance through:
 - 1. Larger groups of firms at the efficiency frontier, and/or
 - 2. Smaller median frontier gap of non-frontier firms, and/or
 - 3. Upward shift of frontier itself (possibly effect of competition)
- EMSI is a simple measure for effectiveness of market selection between to and t1 :

$$EMSI = q_{t0}. \Delta q + (1 - q_{t0}) (-\Delta w)$$

with initial frontier group share q_{t_0} as a plausible weight \Box correction for frontier shift is necessary if Δt is large

Data

Microdata for international comparative research

- □ always a problem
- □ mostly : no good representation of small firms (often 90-95%)
- Use Eurostat panel data by data cell {country x industry x sizeclass x year}

includes sales, value added, depreciation, employment, number of firms per cell

- □ 13 EU countries, 1999-2005
- □ 5 size classes, 8 industries (homogenised)
- □ (n = 2696)

allows to calculate representative firms by data cell

□ but also tells something about <u>intra-cell distribution</u> using finding that Zipf distribution characteristics apply (cf. Axtell 2001)

'Zipf'-like size distribution of BS firms in EU, 1999 (size measured by employed persons, log-log scale)

EMSI calculated for EU business services 13 countries, 8 sub-sectors (3-digit), 1999-2005

Industry	share frontier group in 1999	Δ share frontier group	Δ median frontier gap	EMSI for period 1999-2005
Computer/IT services	0.036	+0.018	-0.069	+0.067
Legal, auditing, accounting, consultancy	0.077	-0.015	+0.134	-0.125
Architectural, engineering, technical services	0.092	-0.046	+0.200	-0.186
Marketing services	0.035	+0.035	-0.037	+0.037
Labour recruitment	0.077	+0.046	-0.072	+0.070
Industrial cleaning	0.095	-0.016	-0.037	+0.032
Security services	0.154	-0.031	-0.065	+0.050
Miscellaneous bus. services	0.031	+0.047	-0.166	+0.162

First results on competion effectiveness

EMSI indicates largest problems in sub-sectors

- □ K741 (legal, administrative, accounting, consulting)
- □ K742-2 (architects, engineering services)
- Both are also sub-sectors with worst productivity growth performance
- Requires further investigation:
 - □ refined market demarcation (e.g. 5-digit) : no data.....!!
 - □ possible role for scale effects :
 - non-homogeneous technology across size classes?
 - role growth barriers between size classes?

Scale economies matter in business services

Time persistence of scale inefficiencies (I)

- 1. <u>Thought experiment</u>: consider steady state in a competitive industry with a homogeneous product and scale economies:
 - □ firms grow or shrink until they reach optimal scale Q
 - result of selection: only firms close to the optimal scale Q will survive (this is our benchmark)

Time persistence of scale inefficiencies (II)

- 2. Now consider the same market if barriers to market selection are operative:
 - not all firms achieve minimal optimal scale: many will remain too small
 - other firms will remain too large despite having diseconomies of bureaucracy / weak internal efficiency
 - result: persistence of scale diseconomies between size classes
- 3. <u>X-inefficiency</u>: due to shielded sub-markets, some firms always operate below efficiency frontier of own size class

Decomposing the relation between size and productivity in an industry with scale economies: frontier / actual

- steady state, competitive market
- imperfect competition, possible lower threshold of actual distribution

<u>==></u>

Empirical strategy

1. Assess per industy the persistence of:

- □ scale-inefficiency (<u>between</u> size classes)
- □ X-inefficiency (efficiency gaps <u>within</u> size classes)
- 2. Use DEA to construct *X-efficiency* and *scale-efficiency* indicators
 - □ inefficiencies are implied

Average <u>scale efficiency scores</u> by size class, across sectors, countries and years (13 EU countries, 1999-2005)

Size class	Scale efficiency scores (frontier = 1)
1. (1-9 employees)	0.49 !!
2. (10-19 employees)	0.93
3. (20-49 employees)	0.97
4. (50-249 employees)	0.99
5. (≥ 250 employees)	0.98

Note: scale-efficiency gap between size class 4 (frontier) and size class 1 is >50%! Small firms must have a huge cost disadvantage ==> weak competitive selection or market segmentation?

Average X-efficiency scores by size class, across sectors, countries and years (13 EU countries, 1999-2005)

Size class	X-efficiency scores (frontier = 1)
1. (1-9 employees)	0.93 !!
2. (10-19 employees)	0.61
3. (20-49 employees)	0.62
4. (50-249 employees)	0.66
5. (≥ 250 employees)	0.81

The high X-efficiency in the smallest size class indicates strong competition within this size class (among smallest firms)

Finding: inefficiencies persistant and growing

- 1. <u>Scale efficiency</u> deteriorated in most BS industries, in almost all countries and in almost all size classes
- 2. Average efficiency gap between best- and worst-performing size classes became wider in most countries ==> no convergence to an optimal firm size ==> weak competitive selection between size classes
- 3. <u>X-efficiency</u> diminished in half of the BS industries. Similar for the average size of the gap.

==> weak competitive selection <u>within</u> size classes

Role of external shocks

- Policies may hamper market selection:
 - **creating entry barriers (e.g. start-up costs new firms)**
 - □ creating exit barriers (e.g. bankruptcy laws, labour protection)
 - obstacles for <u>post-entry growth and shrinking</u> of firms (like sizerelated legal and administrative burdens, size-related tax breaks or subsidies)
 - Policy-related obstacles to <u>import competition</u> (e.g. policies that create sunk entry costs for foreign firms, VAT differences)
- Non-contestability: market power incumbents not enough challenged
 - □ by imports
 - □ by domestic start-ups and innovating firms

Quantifying role of shocks

- Indicators regulatory environment (World Bank)
 - □ WB Cost of starting a business (entry costs);
 - □ WB Cost of closing a business (exit costs)
 - WB Costs of changing employment contracts (costs of growth / shrink)
- Indicators market contestability:
 - import share in domestic use of business services (net of exports) : calculated from national IO-tables
 - □ firm entry-exit ratios (per industry and country, EUKLEMS)
- Estimated with RE Tobit panel model
 - **bootstrapped SE (cope with non-normal distributed SE)**
 - □ fixed effects by country and industry

Factors that explain scale-related efficiencies

A 10% increase in the following variables	gives a% effect on scale-efficiency	gives a% effect on X-efficiency
regulatory start-up costs (entry)	-	-0.8%
regulation-caused labour inflexibility (growth-shrink costs)	-0.5%	-1.3%
regulatory exit costs	-1.5%	-3.1%
import penetration	-	+1.0%
domestic firm start-up ratio	-	-

(with controls for industry and size class, bootstrapped SE, n=2063,

Conclusions

- EMSI indicates weak market selection in some large subsectors of EU busines services
- Accounting for scale effects shows a persistence of scaleinefficiencies and - to a lesser extent - also a persistence of X-inefficiencies y
- Policy shocks (entry/exit, labour contract inflexibility) and weak market contestability (imports) significantly explains the persistnce of inefficiencies over time

Thanks for your attention

paper online in *Economic Dynamics and Structural Change*

Average scale-efficiency scores for Architectural, Engineering and Technical Services (K742-3)

Average X-efficiency scores for Architectural, Engineering and Technical Services (K742-3), 13 EU countries, 1999-2005

