Capital Structure Decisions: Insights from Private Firms Kim P. Huynh Teodora Paligorova Robert J. Petrunia April 28, 2012 2012 Comparative Analysis of Enterprise (Micro) Data Disclaimer: The contents of this presentation have been subject to vetting and pass the Disclosure Rules & Regulations set forth by Statistics Canada. ## **Outline** - Introduction - 2 Data - Empirical Methodology - Results & Discussion - **5** Conclusions Introduction 2/19 # **Main Questions** - How does a firm's access to external equity markets affect its choice of financing? - Leverage of Private firms versus Public firms - 2 Do private and public firms have different levels of short-term and long-term leverage? - 3 What impact do industry conditions have on firm leverage? Introduction 3/19 # **Supply of Financing** #### Issues: - Aymmetric information - Uncertainty regarding quality of firm and manager's actions - More information available about public firms → fewer information asymmetry problems - Role of Banks - Specialize in acquiring information about borrowers - Reduce information asymmetries (Diamond (1984)) - More opaque firms rely on bank financing to mitigate asymmetric information problems - 3 Pecking-order theory - Myers and Majluf (1984) - Firms choose cheapest source of financing first - lacktriangleright Financing with greater information asymmetry ightarrow Higher cost Introduction 4/19 # **Sources of Financing** #### Pecking order: - Retained Earnings - 2 Debt: - Short-term - Long-term - 3 Public equity markets #### Short-term debt versus Long-term debt: - Short-term debt reduces information asymmetries due to continuous monitoring - Credit constraints - ightarrow Expect private firms to rely more heavily on short-term debt Introduction 5/19 ## **GIFI-T2LEAP** Database Statistics Canada merged two administrative datasets: - Revenue Canada General Index of Financial Information-Corporate Tax Return File (GIFI-T2), - 2 Longitudinal Employment Analysis Program (LEAP) T4s - Universe of firms filing tax return and hiring employees. - Information in database includes: - Balance sheet variables: Profit, total debt, short-term debt, long-term debt, equity, total assets, current assets, capital assets, tangible assets, sales - Industry: NAICS - Employment #### Coverage Period: ■ T2-LEAP: 1984-2008 ■ GIFI: 2000-2008 Most balance sheet variables come from GIFI \rightarrow 2000-2008 period Data 6/19 ## **Definition: Private versus Public Firms** - Canadian-controlled private corporation (CCPC): - Resident incorporated firm not directly or indirectly controlled by non-residents, a public corporation or any combination; or - 2 a private, resident corporation not directly or indirectly controlled by one or more public corporations or Federal Crown corporation - Public corporation: - Resident in Canada and having a class of shares listed on a prescribed Canadian stock exchange; or - 2 Any Canadian corporation controlled by a public corporation 7/19 Table 1: Distribution of Firms | Year | Public | Private | All | CompuStat | |-------|--------|-----------|-----------|-----------| | 2000 | 1,553 | 281,956 | 283,509 | 1,367 | | 2001 | 1,708 | 309,272 | 310,980 | 1,379 | | 2002 | 1,847 | 332,107 | 333,954 | 1,436 | | 2003 | 1,805 | 353,241 | 355,046 | 1,506 | | 2004 | 1,799 | 372,707 | 374,506 | 1,611 | | 2005 | 1,853 | 385,533 | 387,386 | 1,738 | | 2006 | 1,938 | 404,192 | 406,130 | 1,828 | | 2007 | 1,943 | 420,149 | 422,092 | 1,834 | | 2008 | 2,024 | 440,621 | 442,645 | 1,811 | | | | | | | | Naics | Public | Private | All | | | 11 | 167 | 241,356 | 241,523 | | | 21 | 2,528 | 43,802 | 46,330 | | | 22 | 169 | 2,804 | 2,973 | | | 23 | 591 | 516,153 | 516,744 | | | 31-33 | 3,300 | 295,868 | 299,168 | | | 41 | 1661 | 297,070 | 298,731 | | | 44 | 597 | 460,718 | 461,315 | | | 48 | 529 | 183,881 | 184,410 | | | 51 | 1,130 | 47,554 | 48,684 | | | 54 | 2,088 | 487,000 | 489,088 | | | 55 | 790 | 92,214 | 93,004 | | | 56 | 805 | 171,179 | 171,984 | | | 71 | 482 | 48,957 | 49,439 | | | 72 | 500 | 197,668 | 198,168 | | | 81 | 1,133 | 213,554 | 214,687 | | | Total | 16,470 | 3,299,778 | 3,316,248 | | ## Measures of Financial Structure Leverage: $$Lev_{it} = \frac{Total_debt_{it}}{Total_assets_{it}}$$ 2 Shortterm Leverage: $$Lev_{it} = \frac{Shortterm_debt_{it}}{Total_assets_{it}}$$ 3 Longterm Leverage: $$Lev_{it} = rac{Longterm_debt_{it}}{Total_assets_{it}}$$ Table 2: Descriptive Statistics | | | Public | Private | T-stat | |---------------------|--------|---------|---------|------------| | Leverage | Mean | 0.440 | 0.508 | -29.250*** | | | St.Dev | (0.295) | (0.293) | | | Long-term Leverage | Mean | 0.172 | 0.172 | -0.322 | | | St.Dev | (0.221) | (0.227) | | | Short-term Leverage | Mean | 0.262 | 0.331 | -36.056*** | | | St.Dev | (0.242) | (0.257) | | | Log Size | Mean | 14.802 | 13.029 | 89.392*** | | | St.Dev | (2.494) | (1.837) | | | Profitability | Mean | 0.027 | 0.120 | -47.49*** | | | St.Dev | (0.243) | (0.275) | | | Sales Growth | Mean | 0.513 | 0.188 | 27.639*** | | | St.Dev | (1.508) | (0.875) | | | Tangibility | Mean | 0.402 | 0.658 | -64.861*** | | | St.Dev | (0.494) | (0.684) | | Data 10/19 Figure 2: Long-term Leverage Figure 3: Short-term Leverage # **Determinants of Leverage** Regression specification: Leverage_{it} = $$\alpha Private_{it} + \beta X_{it-1} + \eta_i + \epsilon_{it}$$. (1) where: - lacktriangleq *Private* is a private/public indicator variable (*Private* = 1 ightarrow Private firm) - X_{it-1} includes measures of profitability $(\frac{profit_{i,t-1}}{total \ assets_{i,t-1}})$, log size $(sales_{i,t-1})$, tangibility $(\frac{tangible \ assets_{i,t-1}}{total \ assets_{i,t-1}})$ and sales growth $(Sales \ Growth_{t-1})$. - Interact Private with other variables Table 4: Fixed Effects regressions: Determinants of Leverage All Private Public Small Large Interact | Private | .02978
(.01127)*** | | | .02881
(.07063) | .03255
(.01131)*** | .00921
(.01096) | |---|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | $Size_{t-1}$ | .01168
(.00025)*** | .01168 | .00857
(.00250)*** | .00546
(.00030)*** | .01845
(.00070)*** | .01018 | | $Profitability_{t-1}$ | 10110
(.00096)*** | 10118
(.00096)*** | 09472
(.01572)*** | 07677
(.00111)*** | 15751
(.00192)*** | 08651
(.01523)*** | | $\Delta \ln \mathit{Sales}_{t-1}$ | .01477
(.00016)*** | .01497
(.00016)*** | .00140
(.00120) | .01231 | .01841 | .00038 | | $Tangibility_{t-1}$ | .02702
(.00056)*** | .02703
(.00056)*** | .02809
(.00861)*** | .02324
(.00071)*** | .02947
(.00092)*** | .03353 | | $\begin{array}{c} \textbf{Interactions} \\ \textit{Size}_{t-1} \end{array}$ | | | | | | .00152
(.00064)** | | $Profitability_{t-1}$ | | | | | | 01471
(.01526) | | $\Delta \ln \mathit{Sales}_{t-1}$ | | | | | | .01459
(.00123)*** | | $Tangibility_{t-1}$ | | | | | | 00653
(.00822) | | Const. | .34322
(.01171)*** | .37335
(.00332)*** | .31579
(.03662)*** | .29891
(.07060)*** | .19432
(.01520)*** | .36366
(.01139)*** | | Obs. R^2 | 3,172,601
.06741 | 3,156,743
.06778 | 15,858
.02577 | 1,586,301
.04964 | 1,586,300
.07728 | 3,172,601
.06751 | Results Table 5: Short and Long-Term Leverage | | Total | Long | Short | |-----------------------------------|----------------------|----------------------|----------------------| | Private | .02978 | 02827
(.00977)*** | .05406 | | $Size_{t-1}$ | .01168 | .00002 | .01150 | | $Profitability_{t-1}$ | 10110
(.00096)*** | 04824
(.00061)*** | 05237
(.00084)*** | | $\Delta \ln \mathit{Sales}_{t-1}$ | .01477 | .00074 | .01387 | | $Tangibility_{t-1}$ | .02702 | .00339 | .02740 | | Const. | .34322 | .21449 | .12877 | | Obs.
R ² | 3,172,601
.06741 | 3,172,601
.01796 | 3,172,601
.03395 | Results 15/19 ## **Industry Conditions** Capturing industry conditions: Two-stage procedure ■ First stage regression: Decomposition of firm sales growth into predicted and idiosyncratic components: $$\Delta \log(\textit{Size}_{it}) = \alpha_i + \beta_1 \log(\textit{Size}_{i,t-1}) + \beta_2 \log(\textit{Size}_{i,t-2}) + \phi_1 \log \textit{Age}_{it}(2)$$ $$+ \gamma d 1984_{it} + \phi_2[d 1984_{it} \times \log \textit{Age}_{it}] + \mu_{it}$$ where μ_{it} captures the idiosyncratic component to firm growth. 2 Second stage regressions: Capturing unexpected industry sales growth and growth volatility. $$\hat{\mu}_{it} = \sum_{i \in i} \sum_{t} \delta_{jt} + \varepsilon_{it}. \tag{3}$$ and $$\hat{\mu_{it}}^2 = \sum_{i \in I} \sum_t \gamma_{jt} + \varepsilon_{it}. \tag{4}$$ for firm i in industry j at time t. δ and γ are a full set of industry specific-time dummy variables. # **Industry Conditions** #### We have: - ${\color{blue} \bullet} \; \hat{\delta}$ capture average unexpected sales growth within an industry during a given year - $\hat{\gamma}$ capture variance of sales growth within an industry during a given year Include these measures of industry conditions in leverage regressions. Interact with private/public dummy variable Results 17/19 Table 6: Macroeconomic Conditions: Unexpected Industry Growth and Volatility | | Total | Long | Short | Total | Long | Short | |--------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------| | Private | .03417 | 02577
(.00977)*** | .05597
(.01012)*** | .11033 | .01813 | .09081
(.01637)*** | | $Size_{t-1}$ | .01169
(.00025)*** | .00004 (.00018) | .01149
(.00022)*** | .01167
(.00025)*** | -6.00e-06
(.00018) | .01152
(.00022)*** | | $Profitability_{t-1}$ | 10109
(.00096)*** | 04823
(.00061)*** | 05237
(.00084)*** | 10108
(.00096)*** | 04816
(.00061)*** | -0.05243
(.00084)*** | | $\Delta \ln \mathit{Sales}_{t-1}$ | .01476
(.00016)*** | .00071
(.00013)*** | .01389 | .01478
(.00016)*** | .00074
(.00013)*** | .01388 | | $Tangibility_{t-1}$ | .02701
(.00056)*** | .00338 | .02740
(.00049)*** | .02702
(.00056)*** | .00339 | 0.0274
(.00049)*** | | $\hat{\delta}$ | 19183
(.03330)*** | 08664
(.02769)*** | 10999
(.02788)*** | | | | | $\hat{\delta} imes$ Private | .21843
(.03352)*** | .12287 | .09685
(.02810)*** | | | | | $\hat{\gamma}$ | | | | .16221
(.03216)*** | .06103
(.02590)** | .10500
(.02904)*** | | $\hat{\gamma} imes extit{Private}$ | | | | 17418
(.03225)*** | 10038
(.02598)*** | -0.07945
(.02913)*** | | Const. | .33895
(.01171)*** | .21206
(.00999)*** | .12691
(.01051)*** | .26782
(.01922)*** | .18480
(.01648)*** | .08123
(.01655)*** | | Observations. R^2 | 3172601
.06744 | 3172601
.018 | 3172601
.03396 | 3172601
.06745 | 3172601
.01806 | 3172601
.03399 | Results 18/19 ## **Conclusions** - Leverage is higher for private firms - Exclusively: Higher leverage is the result of higher short-term leverage for private firms - 3 Industry Conditions: - High Growth - 1 Lowers leverage ratios for public firms - 2 Raises long-term leverage ratio for private firms - High Growth Volatility - Raises leverage ratios for public firms - 2 Raises short-term leverage ratios for private firms - 3 Lowers long-term leverage ratio for private firms \rightarrow Firms facing larger asymmetric information problems rely more heavily on debt financing, specifically short-term debt financing. Conclusions 19/19