THE URBAN DENSITY PREMIUM ACROSS ESTABLISHMENTS

April 2012

Jason Faberman, FRB Chicago Matthew Freedman, Cornell University

The views in this paper are our own and do not reflect the views or the Federal Reserve of Chicago, the Federal Reserve System, or the views of its staff members. In addition, research in this paper was conducted while the authors were Special Sworn Status researchers of the U.S. Census Bureau at the New York & Chicago Census Research Data Centers. Research results and conclusions expressed are those of the authors and do not necessarily reflect the views of the Census Bureau. This paper has been screened to insure that no confidential data are revealed.

INTRODUCTION

- Large literature on density premium afforded to workers' earnings and firms' productivity
 - Workers: Examines roles of sorting, skills, learning/spillovers
 Glaeser (1999), Glaeser and Mare (2010), Bacolod et al. (2009), Baum-Snew & Bayer (2010), 2010b), do to Base & Byre (2010), and others
 - Snow & Pavan (2010a, 2010b), de la Roca & Puga (2010), and others Firms: Examines productivity benefits of urban density
 - Ciccone and Hall (1996), Henderson (2003), Combes et al. (2008), Combes at al. (2010), and others

• Research finds

- For both workers and firms, density premium that exists after controlling for variety of factors
 - Evidence of positive returns to urban agglomeration
- For workers, evidence shows:
 - Premium that is increasing in worker skill
 - Steeper wage profiles w.r.t. city tenure (learning in cities)
 - Strong role for migration, sorting based on skills

RESEARCH QUESTION

- Are the same returns, dynamics related to urban density observed for workers also present for firms?
 - Examine role of:
 - Establishment characteristics
 - Differential returns to density across earnings distribution
- Does firm learning, sorting, or selection (through exit) play a role?
 - Density premium may rise with age (firm learning)
 - Density Premium may be due to selection of lowproductivity firms out of market in dense cities
 - Density premium may also be due to sorting of productive firms into dense cities

FINDINGS

- Controlling for establishment characteristics & local education, density premium for establishments is ~7.4%
 - Robust to endogeneity concerns; varies little across characteristics
 - Higher for high-earnings (more productive) establishments
- Premium independent of establishment age
 - Rejects role for firm "learning"
- Premium not driven by selection through exit
 - Exit rates similar in high, low density cities across earnings distribution
- Evidence suggests firm sorting works in opposite direction
 - Entrant earnings similar in high, low density cities (relative to incumbents)
 - Relocating establishments more productive, move to less dense cities
 - Relocation results suggest "nursery city" story (Duranton-Puga, 2001) may best describe relation between firm dynamics, urban agglomeration

DATA

- Longitudinal Business Database (LBD), U.S. Census Bureau
 - Micro data is virtual census of establishments in U.S.
 - Has annual payroll and employment data for each, as well as basic characteristics (location, industry, etc.)
 - Allows for reliable measure of establishment age
- Sample: All entering, exiting, continuing establishments in 1992 and 1997 within 363 CBSAs (~ older MSA definition)
 - 4.9m observations in 1992, 5.3m in 1997
- Main measure of interest: average establishment earnings
 - Generally payroll per employee, with adjustments made for timing, mismeasurement, entry, exit
 - Throughout consider avg. earnings \approx labor productivity (evidence consistent with interpretation)
 - Relate to population density (1990 pop. per square mile)
 - Also control for share of pop. w/ college degree

DENSITY PREMIUM, MICRO-LEVEL ESTIMATES

Establishment-Level Relations between Earnings and Density

(dependent = ln avg. earnings; instruments = geology, climate variables)

	Full-Sample (OLS)		IV Sa	ample
	(1)	(2)	OLS	IV
ln <i>Density</i>	0.102 (0.007)	0.074 (0.010)	0.098 (0.007)	0.100 (0.020)
College Share		0.883 (0.093)	0.898 (0.099)	1.588 (0.279)
Year effects?	Yes	Yes	Yes	Yes
Controls for establishment characteristics?	No	Yes	Yes	Yes
R^2	0.014	0.313	0.317	0.315
Number of Observations	10,256,604		7,761,264	

DENSITY PREMIUM, VARIOUS SUBGROUPS

	Entrants and Exits			Multi- & Single-Unit Firms		
	Entrants	Exits		Single	e-Unit	Multi-Unit
la Domoitu	0.076	0.079		0.0	80	0.058
	(0.011)	(0.013)	(0.0	10)	(0.009)
R^2	0.257	0.271		0.2	79	0.460
		By Establish	nmen	t Size ((Employees)
	1 to 9	10 to 99	100	to 249	250 to 999	1,000+
	0.079	0.064	0.064 0.06		0.075	0.071
In Density	(0.010)	(0.010)	(0.	.009)	(0.012)	(0.013)
R^2	0.270	0.521	0.	.539	0.517	0.521
		By Maje	or In	dustry	Group	
	Construction	Mfg.	Re	etail	Prof. Serv.	Local Serv.
In Donaita	0.084	0.072	0.	.064	0.101	0.056
In Density	(0.019)	(0.016)	(0.	.016)	(0.012)	(0.005)
R^2	0.154	0.279	0.	.254	0.219	0.280

• Estimates from replication of previous specification (4) (all controls & college share)

• Some variation in estimates for single vs. multi unit firms and industries, but not size classes, entrants and exits

DIFFERENTIAL RETURNS TO DENSITY: ACROSS THE EARNINGS DISTRIBUTION

	Lowest Quintile	Second Quintile	Middle Quintile	Fourth Quintile	Highest Quintile		
I. Within-Quintile Regression of Earnings on Density, Unconditional							
ln <i>Density</i>	0.080 (0.011)	0.083 (0.009)	0.096 (0.008)	0.110 (0.007)	0.144 (0.008)		
R^2	0.02	0.21	0.29	0.33	0.09		
III. Within-Quintil	e Regression	of Earnings	on Density,	Controls for	CBSA		
College Share and	<u>Establishme</u>	nt Character	ristics				
ln <i>Density</i>	0.067 (0.012)	0.063 (0.008)	0.071 (0.007)	0.083 (0.007)	0.102 (0.007)		
College Share	0.640 (0.107)	0.913 (0.099)	1.089 (0.104)	1.188 (0.116)	1.116 (0.133)		
R^2	0.10	0.30	0.41	0.45	0.28		

• Exercise comparable to examining whether density premium rises w/ worker skill

• Density premium rises with avg. earnings, even after controls are added (consistent with Combes et al. (2008)

EARNINGS, DENSITY AND ESTABLISHMENT AGE – FIRM "LEARNING"

- Research on worker earnings finds evidence of "learning" in cities
 - Worker earnings-tenure profiles steeper in larger cities

• Can test for similar evidence of learning by establishments

- Question: Do establishments have steeper earnings (productivity) profiles w.r.t. age?
- Establishment age ~ city tenure since relocation is order of magnitude less frequent than entry
 - Mean entry rate: 10.3%
 - Mean relocation rate: 1.0%

• Estimate density premium with age, age interactions

• Estimates likely an upper bound since it includes both establishment return in (increasing) worker return

THE DENSITY PREMIUM AND ESTABLISHMENT AGE

• Results show that density premium is constant w.r.t. establishment age

• Returns to agglomeration accrue at entry

EARNINGS DENSITY AND AGE, VARIOUS SUBGROUPS

IDENTIFYING FIRM SORTING AND SELECTION

• Density premium may stem from **firm selection**

- Selection causes exit of less productive firms, lower-truncation of productivity distribution
- Dense locations may be more competitive; implies exit threshold is higher and relatively more productive firms exit
- Premium may also stem from **firm sorting**
 - High-productivity firms may self-select into more dense locations
 - For firms, sorting can occur along two margins:
 - Sorting at entry hard to identify, but potentially large channel
 - Sorting through relocation can identify, though selected & small group
- Present evidence based on exit, entry, and relocation across establishment earnings distribution

SELECTION THROUGH EXIT

Exit Rates, Exits < 5 Yrs. Old

SORTING THROUGH RELOCATIONS ACROSS CBSAS

Relocation Rate, Low-Density CBSAs

High-Low Difference: Out-Migration

High-Low Difference: In-Migration

EARNINGS DISTRIBUTION DIFFERENCES AMONG ENTRANTS (CONDITIONAL ON ESTABLISHMENT CHARACTERISTICS & COLLEGE SHARE)

	Entrants		Difference.	Difference.	Diffin-	Diffin-
	Low- Density	High- Density	High – Low All	High – Low MU	Diff.: Entrants –	Diff.: MU – All
Statistic	CBSAs	CBSAs	Entrants	Entrants	Incumbents	Entrants
Mean (log) Earnings	9.640	9.852	0.212	0.163	0.013	-0.049
IQR	0.976	0.997	0.022	0.062	0.002	0.040
90 th Percentile	10.582	10.856	0.274	0.261	0.007	-0.013
50 th Percentile	9.756	9.936	0.180	0.139	0.000	-0.041
10 th Percentile	8.478	8.677	0.199	0.115	0.035	-0.084
90-10 Ratio	2.104	2.179	0.075	0.146	-0.028	0.071

• Examine differences among all entrants, and entrants of multi-unit firms only

• H₀: Multi-unit firms more likely to make location choice across several cities, where single-unit firms may choose location based on where entrepreneur lives

EARNINGS DISTRIBUTION DIFFERENCES AMONG ENTRANTS

(CONDITIONAL ON ESTABLISHMENT CHARACTERISTICS & COLLEGE SHARE)

	Entrants		Difference.	Difference.	Diffin-	Diffin-
	Low-	High-	High –	High – Low	Diff.:	Diff.: MU
	Density	Density	Low All	MU	Entrants –	-All
Statistic	CBSAs	CBSAs	Entrants	Entrants	Incumbents	Entrants
Mean (log)	0 6 1 0	0 859	0 919	0 169	0.019	0.040
Earnings	3.040	J. 0 J 4	0.212	0.100	0.013	-0.045
IQR	0.976	0.997	0.022	0.062	0.002	0.040
90 th Percentile	10.582	10.856	0.274	0.261	0.007	-0.013
50 th Percentile	9.756	9.936	0.180	0.139	0.000	-0.041
10 th Percentile	8.478	8.677	0.199	0.115	0.035	-0.084
90-10 Ratio	2.104	2.179	0.075	0.146	-0.028	0.071

SUMMARY

- Like workers, establishments exhibit a large, significant premium for being in a dense area
 - Robust to variety of controls, similar across groups
 - Rises with establishment earnings ("productivity-biased" returns to density)
 - Unlike workers, establishments exhibit a density premium independent of age (no evidence of greater "learning")
- Sorting and selection do not appear to account for density premium
 - No differences in exit rates across CBSA earnings distribution
 - Relocations tend to move to *lower*-density cities and involve most productive establishments
 - No difference in relative earnings of entrants
- If anything, evidence on relocations points to "nursery city" effect of denser locations

Additional Slides

Some Basic Facts

- Average establishment earnings behaves a lot like productivity
 - Check: replicate findings of Syverson (2004) using average earnings in lieu of TFP (for concrete industry)
 - Result: Earnings variation behaves very similar to TFP variation
- Age and entry vary with density; size and exit do not
 - Age positively related, entry rates negatively related

OLS regression on ln(Density) (controlling for college share, <i>N</i> = 10.26 million)						
	ln <i>Size</i> (employees)	Age (years)	Exit Rate (share of estabs.)	Entry Rate (share of estabs.)		
ln <i>Density</i>	-0.023	0.101*	0.002	-0.003*		
(alone)	(0.021)	(0.044)	(0.001)	(0.001)		
ln <i>Density</i>	-0.007	0.189*	0.000	-0.004*		
(w/ controls)	(0.012)	(0.052)	(0.002)	(0.001)		

DENSITY PREMIUM, AGGREGATE RELATION

DENSITY PREMIUM ACROSS THE EARNINGS DISTRIBUTION

- Figure graphs earnings distribution in top, bottom quartile of CBSAs ranked by pop. density
- Density premium at micro level reflected in higher mean, greater dispersion of earnings distribution

REPLICATION OF SYVERSON (2004)

	Estimate of Demand Density Elasticity				
	Estimate from				
Moment (dependent	Syverson (2004), using	Estimate from the LBD,			
variable)	TFP for	using avg. earnings for			
Interquartile range of	-0.015	-0.028			
distribution of $\ln y_{et}$	(0.004)	(0.013)			
Modion volue of ln u	0.018	0.095			
Median value of in y_{et}	(0.003)	(0.015)			
Cine mainhead many of u	0.024	0.081			
Size-weighted mean of y_{et}	(0.004)	(0.015)			
Tenth percentile of	0.056	0.080			
distribution of $\ln y_{et}$	(0.010)	(0.027)			
Moon plant size	0.211	0.065			
mean plant size	(0.012)	(0.016)			
Due due en demonduratio	-0.363	-0.680			
rrouucer-demand ratio	(0.015)	(0.033)			
Number of Observations	665	410			

EARNINGS, DENSITY AND ESTABLISHMENT AGE

• Earnings rise with establishment age; density premium only appears to have an effect on levels

DENSITY PREMIUM, ESTIMATES FROM RELOCATIONS

Establishment-Level Relations between Earnings and Density (dependent = d ln avg. earnings)

	Level Regressions		First-Difference Regressions	
	(1)	(2)	OLS	IV
(d) ln Density	0.101 (0.007)	0.072 (0.008)	0.008 (0.004)	0.007 (0.003)
(d) College Share		0.915 (0.091)		0.008 (0.030)
Year effects?	Yes	Yes	Yes	Yes
Controls for (changes in) establishment characteristics?	No	Yes	Yes	Yes
R^2	0.017	0.354	0.001	0.167
Number of Observations	7,881,354			