

Drivers for International Innovation Activities in Developed and Emerging Countries

Anja Schmiele

ZEW- Centre for European Economic Research Mannheim, Germany

Research Questions

- Which role do

- internal firm ressources and capabilities
- the competitive environment
- (dis)advantages in the national innovation system

play as drivers to internationalize innovation activities of firms?

- How do these determinants differ by type of innovation activity performed abroad?
 - R&D
 - Design
 - Product innovation
 - Process innovation
 - Sales of new products
- How do these determinants differ by host country and countries with different levels of knowledge development?
 - Asian countries, Eastern Europe, Western Europe, North America, Advanced ~, Follower~ and Marginalized countries (Castellaci and Archibugi, 2008)

Internationalisation of R&D

- Motives for the Internationalisation of innovation processes (Granstrand et al., 1993; Dunning, 1994; Pearce 1999; Le Bas and Sierra, 2002)
 - Market / Knowledge / Efficiency seeking
- Role of foreign subsidiary in the global innovation process
 (Ito and Wakasugi, 2007; Kuemmerle, 1997; Nobel and Birkinshaw, 1998)
 - Support-oriented R&D; knowledge sourcing
 - Home-base exploiting, Home-base augmenting
- OLI-Model as theoretic concept for internationalisation (Dunning and Lundan, 1998)
 - Organisational, Locational, Internalisational advantages
- Ressource Based View / Knowledge Based View of the Firm (Barney, 1991; Conner, 1991; Peteraf, 1993; Wernerfelt, 1984; Grant, 1996)
 - Knowledge as competitive advantage and capability
 - In-house knowledge as requirement to absorb new knowledge (Cohen & Levinthal, 1990)

Geographic Scope of R&D abroad

- National path of innovation internationalisation (Ambos, 2005), moderated by cultural, technological and geographic distance (liabilities of foreignness)
- New markets and fast emerging countries change and foster the geographical scope of international R&D (Sachwald, 2008)
- Firms look for attractive market potential, qualified staff and cooperation partners (Thursby and Thursby, 2006)
- UNCTAD survey (2005) about future R&D locations of firms, 62% China,41% USA, 29% India
- Little empirical research about innovation activities in Developing countries.

Internal Ressources

- Absorptive Capacities
- International Experience
- Financial Ressources
- Experienced Usage of IPR
- Technological Advantage

Competitive Environment

- Competition Intensity
- Price Competition
- Competition due to New Market Entries

Innovation Barriers in Germany

• Lack of technical knowledge

ww.zew.de • www.zew.eu

- High innovation costs
- Lack of external financial sources
- Lack of Labour
- Lack of Innovation Partners
- Regulation as barrier
- Lack of customer response

Settart E Epapasisio of of In hovaviation ascrivitides ailor. oad

AcconcipationAcconcipationEuropeEuropeEuropeEuropeDeveloped Countries/ DevelopingCountries/ DevelopingCountriesDesignProductsProductsProcesses

Data

- Mannheim Innovation Panel (MIP), wave 2005 and 2006
- Model 1 Sample : Innovative Firms vs. innovative Firms with R&D abroad
- Model 2 Sample : Firms with R&D abroad vs. Firms with R&D in specific countries

Sample: Model 1~ 1.200 innovative firms | Model 2 = 705 innovative firms

	Planned	Planned Design/	Planned Manu-	Planned New	
Variables	Research Abroad	Conception Abroad	facturing Abroad	Processes Abroad	
Continuous Inhouse R&D	0.044 ***	0.034	0.009	0.011	
High skilled employees	0.056 **	0.016	0.044	-0.028	
Innovation coop. with intl. Partners	0.015	0.006	0.058 *	0.023	
Export experience	0.044 ***	0.087 ***	0.102 ***	0.057 ***	
Experienced usage of IPR	0.011	0.015	0.049 **	0.027 *	
Financial Ressources	0.009	0.016	0.044 **	0.005	
Technological advantage	0.026 *	0.034 *	-0.002	0.015	

No. of Observations	1196	1192	1194	1187	
Pseudo R-squared	0.21	0.12	0.19	0.29	

Model 2: Results

Variables	China	IndiaChina	Asia	EastEU	NA	WestEU	Advanced	Followers	Marginalized
Internal Ressources & Capabilities									
Continuous Inhouse R&D	-0.008	0.004	0.003	0.052 **	0.000	0.025	0.001	0.076 **	0.011
High skilled employees	-0.084 ***	-0.063 *	-0.048	-0.024	0.003	0.031	0.022	-0.059	-0.042
Innovation coop. with intl. Partners	0.045 *	0.056 *	0.068 *	-0.005	0.002	0.014	0.009	0.130 **	0.048
Export experience	0.018 *	0.032 **	0.037 **	0.020	0.009	-0.028	0.001	0.016	0.031 **
Experienced usage of IPR	-0.006	-0.011	-0.004	0.013	0.004	0.011	0.029 *	0.045	-0.008
Financial Ressources	0.007	0.008	0.001	-0.023	0.003	0.017	0.002	-0.004	0.019
Technological advantage	0.037 **	0.052 **	0.061 **	-0.031	0.032 **	0.001	0.029	0.046	0.045 **

No. of observations	705	705	705	705	705	705	705	705	705
Pseudo R-squared	0.26	0.22	0.20	0.07	0.21	0.12	0.11	0.09	0.18

Conclusions

- **Firm capabilities** show positive impact on the decision to perform different innovation activities abroad as well as they have influence on the location of the R&D labs abroad.
- International Experience is essential for firms deciding to innovate abroad.
- **Innovation barriers** in the home country only drive the decision to locate low R&D-intensive activities (manufacturing of innovative products abroad)
- Firm size effect R&D internationalisation and location decision positively.
- **R&D internationalisation is a sign of corporate strength** and a way to further capitalize and increase the technological advantage. There is no sign that firms move their innovation acitivities abroad to overcome innovation disadvantages in the home country