Southampton

Southampton Statistical Sciences Research Institute

Releasing Microdata: Disclosure Risk Estimation, Data Masking and Assessing Utility

Natalie Shlomo Southampton Statistical Sciences Research Institute University of Southampton N.Shlomo@soton.ac.uk

Southampton Statistical Sciences Research Institute

Topics for Discussion

- Introduction
- Disclosure Risk Assessment for Sample Microdata
- Some Disclosure Limitation Methods
- Information Loss Measures
- Example
- Discussion

Introduction

Statistical Agencies release sample microdata from social

surveys under different modes of access: Safe on-site datalabs Microdata under contract (MUC) Public Use File (PUF)

- Future dissemination strategies based on flexible table building software and remote access pose new challenges
- Microdata Review Panels (MRPs) need to make informed

decisions when releasing sample microdata:

- objective disclosure risk assessment
- tolerable risk thresholds
- modes of access

• Choosing an optimal SDL method is an iterative process:

 In social surveys, we assume that population is unknown (or

partially known through margins)

- Disclosure risk scenario:
 - linking microdata to external databases
 - spontaneous recognition, self-identification
- Identifying key variables usually discrete: place of residence, sex,

occupation, marital status, ethnicity, age, etc.

• Disclosure risk assessed on contingency table of sample counts

spanned by identifying key variables and is a function of both

sample and population counts

• Other methods for assessing disclosure risk in microdata

- heuristic based on special uniques (combinations of identifying

key variables that remain unique after aggregation and are

likely to be population uniques)

- probabilistic record linkage

Problems:

Disclosure Risk Assessment Probabilistic Modelling

- F_k population count and f_k sample count in cell
- Disclosure risk measures:= $\sum_{k} I(f_k = 1, F_k = 1)$ $\tau_2 = \sum_{k} I(f_k = 1) \frac{1}{F_k}$
- For unknown population counts, estimate from the conditional $F_k | f_k$ distributional $\hat{F}_k | f_k = 1$ $\hat{\tau}_2 = \sum_k I(f_k = 1)\hat{E}(\frac{1}{F_k} | f_k = 1)$

 $F_k \sim Poisson(\lambda_k)$

• Natural assumption: Bernoulli sampling: $f_k \sim Pois(\pi_k \lambda_k)$ $F_k \mid f_k \sim Poisson(\lambda_k (1 - \pi_k))$

It follows that: and where are conditionally independent

• Skinner and Holmes, 1998, Elamir and Skinner, 2006 use log $\{\lambda_k\}$

linear models to estimate parameters

 f_k

• Sample frequencies $\pi_k \lambda_k$ are independent Poisson distributed

with a mean of

$$\{\mu_k\}$$

• Log-linear model for estimating expressed as: **x**

where design matrix of key variables and their interactions $\sum_{k} [f_k - \exp(\mathbf{x}'_k \boldsymbol{\beta})] \mathbf{x}_k = 0$

• MLE's calculated by solving score function:

- Fitted values calculated $b_{k} = \exp(\mathbf{x}'_{k}\hat{\beta})$ $an\hat{\mathbf{x}} = \frac{u_{k}}{\pi_{k}}$
- Individual risk measures estimated by:

$$\hat{P}(F_k = 1 | f_k = 1) = \exp(-\hat{\lambda}_k (1 - \pi_k))$$
$$\hat{E}(\frac{1}{F_k} | f_k = 1) = [1 - \exp(-\hat{\lambda}_k (1 - \pi_k))] / [\hat{\lambda}_k (1 - \pi_k)]$$

 Rinott and Shlomo, 2007 develop confidence intervals for

global risk measures

$$\tau_1 = \sum_k I(f_k = 1, F_k = 1)$$

Example: sum of Bernoulli, random

variates

taking τa for $f_{k} = 1$ of $f_$

$$\hat{Var}(\tau_1 \mid f) = \sum_{k} I(f_k = 1) \exp(-\hat{\lambda}_k (1 - \pi) [1 - \exp(-\hat{\lambda}_k (1 - \pi)]]$$
 8

- Skinner and Shlomo, 2008 develop goodness of fit criteria which minimize the bias of risk estimates
- Define: $h(\lambda_k) = P(F_k = 1 | f_k = 1)$ for τ_1 and $h(\lambda_k) = E(\frac{1}{F_k} | f_k = 1)$ for τ_2
- Consider expression: $B = \sum_{k} E[I(f_k = 1)][h(\hat{\lambda}_k) h(\lambda_k)]$
- A Taylor expansion leads to an approximation

$$B \approx \sum_{k} \pi_{k} \lambda_{k} \exp(-\pi_{k} \lambda_{k}) [h'(\lambda_{k})(\hat{\lambda}_{k} - \lambda_{k}) + h''(\lambda_{k})(\hat{\lambda}_{k} - \lambda_{k})^{2} / 2]$$

and the relations: $Ef_k = \pi_k \lambda_k$ and $E[(f_k - \pi_k \hat{\lambda}_k)^2 - f_k] = \pi_k^2 E(\lambda_k - \hat{\lambda}_k)^2$ under the null hypothesis of a Poisson fit:

$$\hat{B} \approx \sum_{k} \hat{\lambda}_{k} \exp(-\pi_{k} \hat{\lambda}_{k}) [-h'(\hat{\lambda}_{k})(f_{k} - \pi_{k} \hat{\lambda}_{k}) + h''(\hat{\lambda}_{k})[(f_{k} - \pi_{k} \hat{\lambda}_{k})^{2} - f_{k}]/(2\pi_{k})]$$

For
$$\tau_1$$
:
 $\hat{B}_1 = \sum_k \hat{\lambda}_k \exp(-\hat{\lambda}_k)(1-\pi)\{(f_k - \hat{\mu}_k) + (1-\pi)[(f_k - \hat{\mu}_k)^2 - f_k]/(2\pi)\}$
9

• Method selects the model using a forward search algorithm which $\hat{B}_i / \sqrt{\hat{v}_i}$ $\hat{\tau}_i$, i = 1,2 \hat{v}_i \hat{B}_i minimizes for where variance of

Example: Population of 944,793 and sample size 9,448

Key: Area (2), Sex (2), Age (101), Marital Status (6), Ethnicity (17), Economic Activity (10) - 412,080 cells

Model Selection:

Starting solution: simple log-linear model which indicates under-fitting, i.e. minimum error statistics too large and add in higher interaction terms until minimum error statistics indicate fit

Model Search - Simple random sample of size 9,448 True values $\tilde{\tau}_2 = 159$ $\tilde{\tau}_3 = 355.9$

Area-ar, Sex-s, Age-a, Marital Status-m, Ethnicity-et, and Economic Activity-ec

	$\hat{ au}_2$	$\hat{ au}_3$	$\hat{B}_2/\sqrt{v_2}$	$\hat{B}_3/\sqrt{v_3}$
Independence - I	386.6	701.2	48.54	114.19
All 2 way - II	104.9	280.1	-1.57	-2.65
1: I + $\{a^*ec\}$	243.4	494.3	54.75	59.22
2: 1 + $\{a^*et\}$	180.1	411.6	3.07	9.82
$3: 2 + \{a,*m\}$	152.3	343.3	0.88	1.73
4: 3 + $\{s*ec\}$	149.2	337.5	0.26	0.92
$5a: 4 + \{ar^*a\}$	148.5	337.1	-0.01	0.84
$5b: 4 + \{s*m\}$	147.7	335.3	0.02	0.66
6b: 5b + {ar*a}	147.0	335.0	-0.24	0.56
$6c: 5b + {ar*m}$	148.9	337.1	-0.04	0.72
6d: $5b + \{m*ec\}$	146.3	331.4	-0.24	0.03
$7c: 6c + {m*ec}$	147.5	333.2	-0.34	0.06
$7d: 6d + {ar*a}$	145.6	331.0	-0.44	-0.03

Example

Preferred Model: {a*ec}{a*et}{a*m}(s*ec}{ar*a} True Global Risk: $\tilde{\tau}_2 = 159$ $\tilde{\tau}_3 = 355.9$ Estimated Global Risk $\hat{\tau}_2 = 148.5$ $\hat{\tau}_3 = 337.1$

Log-scale

Example

Preferred Model: {a*ec}{a*et}{a*m}(s*ec}{ar*a}

True Global Risk: $\tilde{\tau}_2 = 159$ $\tilde{\tau}_3 = 355.9$ Estimated Global Risk $\hat{\tau}_2 = 148.5$ $\hat{\tau}_3 = 337.1$

True Record	Estimated Record Level Risk Measures					
Measures	0 – 0.1	0.1 – 0.5	0.5 – 1	Total		
0 - 0.1	1,391	150	11	1,552		
0.1 – 0.5	162	253	76	491		
0.5 - 1	26	91	144	261		
Total	1,579	494	231	2,304		

- Skinner and Shlomo, 2008 address complex survey designs:
- Sampling clusters introduces dependencies key variables (such as: age, sex, occupation) cut across clusters

and assumption holds in practice in most household surveys

- Stratification strata id included in key to account for differential inclusion probabilities $\sum [\hat{F}_k - \exp(x'_k \xi)] x_k = 0$
- Incorporate survey weights in risk measure and goodness of fit $\pi_k = f_k / \hat{F}_k$ $\hat{F}_k = \sum_{i \in k} w_i$ criteria using pseudo maximum likelihood estimation score function modified to:

 Model assumes no misclassification errors (including perturbation from SDL methods)

•Skinner and Shlomo, 2007 address misclassification errors: Let: X

where cross-classified variables:

 \widetilde{X} in population fixed

in microdata subject to misclassification (perturbation)

• The per-record disclosure risk measure of a match with a sample $\frac{M_{kk}/(1-\pi M_{kk})}{\sqrt{1-\pi M_{kk}}} \leq \frac{1}{F_k}$ unique under measure of a match with a

$$\frac{M_{kk}}{\sum_{j} F_{j} M_{kj}} \qquad \frac{M_{kk}}{\widetilde{F}_{k}}$$

• For small misclassification \hat{T}_{k} at \hat{T}_{k} small sampling fractions: or $\hat{\tau}_{2} = \sum_{k} I(\tilde{f}_{k} = 1)M_{kk} \hat{E}\left(\frac{1}{\tilde{F}_{k}} \mid \tilde{f}_{k}\right)$

- Depending on disclosure risk assessment SDL methods may need to be applied
- Non-perturbative methods limit information released: recoding, subsampling, tabulations
- Perturbative methods alter the data: rounding, adding noise, misclassification

To minimise information loss:

preserve sufficient statistics and logical consistencies in the data

• Combine and optimize SDL methods

- Additive noise on a continuous variable:
- generate noise within small sub-groups such as within percentiles δ $d_1 = \sqrt{(1 \delta^2)}$
 - correlate g_2 noise: define parameter , calculate: and ε
- gen erate noise independently for each record with a mean d_2 d_2 d_2 d_2 d_2 d_3 d_4 d_4 d_4 d_4 d_6 $d_$

$$E(z') = d_1 E(z) + d_2 [\frac{1 - d_1}{d_2} E(z)] = E(z) \qquad Var(z') = (1 - \delta^2) Var(z) + \delta^2 Var(z) = Var(z)$$

and

 $\delta = 1$

For we obtain 'synthetic' data

- Additive noise on continuous variables (multivariate):
 - consider x, y and z where x + y = z
 - generate noise within percentiles $\boldsymbol{\varepsilon}_{x}, \boldsymbol{\varepsilon}_{y}, \boldsymbol{\varepsilon}_{z})^{T} \sim N(\boldsymbol{\mu}', \boldsymbol{\Sigma})$

$$\mu'^{\mathrm{T}} = (\mu'_{x}, \mu'_{y}, \mu'_{z}) = (\frac{1 - d_{1}}{d_{2}}\mu_{x}, \frac{1 - d_{1}}{d_{2}}\mu_{y}, \frac{1 - d_{1}}{d_{2}}\mu_{z})$$

 Σ original covariance matrix (generated noise preserves additivity)

- for each separate variable, $eg_{z_i} = d_1 \times z_i + d_2 \times \varepsilon_{z_i}$ same mean vector and covariance matrix and additivity exactly

perturbed

- Microaggregation records in groups of size each individual in group has value replaced by group average
- Reduces 'between' variance
- generate additive noise and add to microaggregated averages
- for multivariate setting and preserving additivity apply linear

programming techniques

$$res (x) = x - Floor (x)$$

• Unbiased random rounding Let be the largest multiple k of the basebb for an $(1-\frac{res(x)}{b})$ entry x Define x is rounded up) to $1-\frac{res(x)}{b} + (x-(Floor(ith+b)) + (x-(Floor(ith+b))))$

Selection Strategy:

- With replacement

Each cell rounded independently in the table, i.e. a random uniform number *u* between 0 and 1 is generated for $ea \underbrace{ch(g)}_{u < b}$ and 1 is generated to the entry is rounded up, otherwise rounded down

- Without replacement

Expected number of values to round up calculated based on probabilities, values selected (without replacement) to round up and the remainder rounded down

Method semi- controls totals (overall and/or rows (or columns)) while maintaining unbiased tables

20

- PRAM (Post-randomisation method)
 - L×L transition probability matrix P containing conditional probabilities p_{ij} for a categorical variable with L categories:
 p_{ij} = p(perturbed category is j|original category is i)
 - *T* vector of frequencies
 - On each record, category of variable changed or not changed according to *P* and the result of a draw of a random variate *u*

 T^*

vector of perturbed frequencies

$$\hat{T} = T^* P^{-1}$$

 Unbiased moment estimator of the original data: assuming P has an inverse (dominant on the diagon²als)

PRAM (Post-randomisation method) - cont.

- Invariant PRAM Define P such that T = T(vector of the original frequencies eigenvector of P)
- Perturbed data unbiased estimate of the original file
- Expected values of marginal distribution preserved
- Exact marginal distribution preserved using a without replacement selection strategy
- Carry out perturbation within sub-groups (block diagonal transition probability matrix) and compound correlated variables
- Post-editing to correct further inconsistencies

Information Loss Measures

- Utility measured by whether inference can be carried out on perturbed data similar to original data
- Use proxy information loss measures on distributions calculated from microdata:

- Distance Metrics:

$$\sum_{\substack{AAD(D_{orig}, D_{pert}) = \frac{c}{n_c}} \frac{\sum_{\substack{c \mid D_{pert}(c) - D_{orig}(c) \mid}}{n_c}}{n_c} \text{ where } n_c \text{ number of cells}$$

distribution

$$D_{orig}(t) = \sum_{c} I(c \le t) / n_c$$

Let: $KS(D_{orig}, D_{pert}) = nempire (a)$ distribution
 $\{t_j\}$ n_c
where values are jointly ordered original and
perturbed values

Also relative difference in means or variances

Information Loss Measures

- Relative difference in Cramer's V for 2-way table: $RCV(D_{pert}, D_{orig}) = 100 \times \frac{CV(D_{pert}) - CV(D_{orig})}{CV(D_{orig})}$
- Relative difference in 'Between' Variance:

a target proportion for a cell *c* in row $k_{r}^{P_{orig}^{k}(c)} = \frac{D_{orig}^{k}(c)}{\sum_{c} D_{orig}^{k}(c)}$

an overall proportion $P_{orig}^{k} = \frac{\sum_{c} D_{orig}^{k}(c)}{\sum_{c} D_{orig}(c)}$

Between variance: $BV(P_{orig}^{k}) = \frac{1}{n_{c}-1}\sum_{c}(P_{orig}^{k}(c)-P_{orig}^{k})^{2}$

$$BVR(P_{pert}^{k}, P_{orig}^{k}) = 100 \times \frac{BV(P_{pert}^{k}) - BV(P_{orig}^{k})}{BV(P_{orig}^{k})}$$

Example

- 1995 Israel Census Sample: N=753,711 with a 1:100 sample, n=7,537
- Key: K=476,850

Locality Code (single codes large localities above 10,000 and single combined code for small localities) (85) Sex (2) Age groups (15) Occupation (11) Income groups (17)

Compare the following:

- A. PRAM versus recoding geographic variable
- B. Correlated noise, microaggregation and additive noise, controlled
 random rounding to base 10 on income variable

Results

	Original Key	Recoded localities	PRAM (70% on			
	1025.7	(30 categories) 571.5	diagonal) 714.7			
Disclosure Risk						
test statistic) Sample uniques	1015.5 (1.94) 4005 25.3%	599.9 (1.32) 3376 17.8%	729.5 (1.42) 3479 20.9%			
	Utility	I	1			
AAD across 85 localities	-	7.22	3.88			
KS across 85 localities	-	1.53	0.46			
RCV for localities *occupation (true=0.1370)	-	-0.33	-0.08			
BVR for average income	-	-0.44	-0.09			

Resul

	Random Noise		Rounding to Base 10		Micro- aggregation		
	Uncorre- lated	Corre- lated	Random	Semi Controlle d	Without noise	With noise	
AAD across 17 income groups	26.9	22.4	2.4	2.0	4.7	20.3	
KS across 17 income groups	0.98	0.90	0.71	0.66	0.11	0.87	
Percent relative difference in variance	3.54	0.16	0.00	0.00	-1.47	-0.18	
RCV for income groups (17) & occupation (11) (true=0.1736)	0.63	1.15	0.00	-0.11	0.98	-0.29	
BVR average income between localities (85) (true=3.08 x 10 ⁹)	2.47	1.21	0.02	-0.01	-0.91	1.11	
Percentage of records switching income	10.8%	6.6%	0.4%	0.3%	0.8%	² 5 .3%	

Discussion

• Some conclusions from example:

- can objectively assess disclosure risk through probabilistic models

 recoding causes significant information loss compared to PRAM

but is more effective at reducing disclosure risks

- good practice to combine methods, i.e. recoding and then applying perturbative method to remaining high risk cells
- both recoding and PRAM attenuate the data
- adding noise has significantly more impact on distortions to distributions than random rounding where the "noise" is
 fixed

Discussion

- Statistical Agencies (MRP) need to:
 - assess disclosure risk objectively
 - set tolerable risk thresholds according to different access modes
 - optimize and combine SDL techniques
 - provide guidelines on how to analyze disclosure controlled datasets
- Future dissemination strategies presents new challenges:
 - synthetic data might be produced for web access before obtaining access to real data
 - need to develop online SDL techniques for flexible table generating software and remote access
 - need methods for auditing query systems

Bridge the Statistical and Computer Science literature on