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Introduction

♦ Information loss measures in SDC of microdata are
usually based on the relative discrepancy between
some statistics or models computed on the original
data X and on the masked/synthetic data X ′2

♦ A critique to the above measures is that, for
continuous attributes, relative discrepancies are
unbounded and difficult to combine with disclosure
risk, which is naturally bounded between 0 and 13

2E.g. Domingo-Ferrer and Torra (2001) “Disclosure protection methods and
information loss for microdata”. In Confidentiality, Disclosure and Data Access,
Elsevier, 91-110.

3Trottini (2003) Decision Models for Data Disclosure Limitation, Ph.
Thesis, Carnegie-Mellon Univ.
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Probabilistic information loss measures

♣ Probabilistic information loss measures yielding a
figure between [0, 1] which can be readily compared
to disclosure risk have been proposed 4.

♣ Let θ be a population parameter (on X ) and let Θ̂ be
the corresponding sample statistic (on X ′).

♣ If the size n′ of X ′ is large (> 100), then

Z =
Θ̂− θ√

Θ̂

can be assumed to follow a N(0, 1) distribution.
4Mateo-Sanz, Domingo-Ferrer and Torra (2005) “Probabilistic information

loss measures in confidentiality protection of continuous data”, Data Mining
and Knowledge Discovery 11(2):181-193.
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Probabilistic information loss measures (II)

A probabilistic information loss measure pil(θ) for parameter θ is
the probability that the absolute value of the discrepancy Z is ≤
the actual discrepancy in sample X ′:

pil(θ) = 2 · P(0 ≤ Z ≤ |θ̂ − θ|√
Var(Θ̂)

)

Clearly, the more different is Θ̂ from θ, the greater is pil(θ).
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Motivation for information-theoretic measures

Loss measures based on relative discrepancies are very easy to
understand, but rather difficult to trade off against risk
(unboundedness).

Probabilistic loss measures have the following strong points:

They can be applied to the same usual statistics θ (means,
variances, covariances, etc.) like measures based relative
discrepancies.
They are bounded within [0, 1], so they easily compare to
disclosure risk.

Both relative-discrepancy and probabilistic loss measures lack
an underlying theory to allowing to optimize their trade-off
with disclosure risk.
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Mutual information

The mutual information I (X ;Y ) between two random
variables X and Y measures the mutual dependence of the
two variables and is measured in bits.

Mutual information can be expressed as a function of
Shannon’s entropy:

I (X ;Y ) = H(X )− H(X |Y ) = H(Y )− H(Y |X )

= H(X ) + H(Y )− H(X ,Y )

where H(X ),H(Y ) are marginal entropies, H(X |Y ),H(Y |X )
are conditional entropies and H(X ,Y ) is the joint entropy of
X and Y .
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Mutual information and random Gaussian data

If U and V are random, jointly Gaussian vectors, and U ′ is the
best linear estimate of U from V , then U ′ is a sufficient
statistic, that is, I (U ′;V ) = I (U;V ).

If U and V are random, jointly Gaussian scalars with
correlation coefficient ρ, then I (U;V ) = − log

√
1− ρ2.

If U and V are random, jointly Gaussian vectors with matrix
correlation

P = Σ
−1/2
U ΣUV Σ

−1/2
V

then
I (U;V ) = −1/2 log det(I − PPt)

where Pt is the transpose of P, I the identity matrix and
det(·) is the determinant.
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Mutual information (II)

If mutual information can be used to express information loss
or/and disclosure risk, then the machinery of information theory
can be used to optimize the tradeoff between both quantities.
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Information-theoretic loss measures

Let X , Y be, respectively, the key and confidential attributes
in the original microdata set.
Let X ′ the key attributes in the masked microdata set (as in
k-anonymization, we assume that only key attributes are
masked).
If we focus on the damage inflicted to key attributes5, a
possible information loss measure is the expected distortion
E (d(X ,X ′)) where d(x , x ′) is a distortion measure, e.g.
d(x , x ′) = ||x − x ′||2.
A probably better option is to focus on how masking affects
the dependences between the key and confidential attributes.
A possible measure for this is I (X ;Y )− I (X ′;Y ).

5Rebollo-Monedero, Forné and Domingo-Ferrer (2008) “From t-closeness to
PRAM and noise addition via information theory”, in PSD 2008, LNCS 5262,
100-112.
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Mutual information vs MSE

The MSE E (d(X ,X ′)) = E (||X − X ′||2) seems better
adapted than I (X ;X ′) to measuring how well statistical
properties are preserved.

However, the MSE and the mutual information are not that
different, both belonging to the family of so-called Bregman
divergences6. 7

6Rebollo-Monedero (2007), Quantization and Transforms for Distributed
Source Coding, Ph. D. Dissertation, Stanford University.

7Bregman (1967), “The relaxation method of finding the common point of
conves sets and its application to the solution of problems in convex
programming”, USSR Comput. Math., Math. Phys., 7: 200-217
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Mutual information vs correlations

I (X ;Y )− I (X ′;Y ) bears some resemblance to the relative
discrepancy between correlation matrices proposed as a loss
measure by Domingo-Ferrer and Torra (2001).

However, mutual information measures the general
dependence between attributes, while the correlation measures
only the linear dependence, so the former is superior8.

It will be shown below that, under some assumptions,
preserving mutual information preserves the covariance matrix
up to a constant factor.

8Wentian Li (1990) “Mutual information functions vs correlation functions”,
Journal of Statistical Physics, 60: 823-837.
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Information-theoretic risk measures

The mutual information I (X ′;X ) between the released and
the original key attributes is a measure of identity disclosure 9.

The mutual information I (X ′;Y ) between the released key
attributes and the confidential attributes is a measure of
attribute disclosure.

Measuring risk as I (X ′;Y ) conforms to the t-closeness privacy
property 10 requiring that the distance between the
distribution of Y within records sharing each combination of
values of X ′ and the distribution of Y in the overall dataset
be no more than t.

9Note that I (X ′; X ) was previously regarded as a possible information loss
measure (which it is for key attributes).

10Li, Li and Venkatasubramanian (2007) “t-Closeness: privacy beyond
k-anonymity and l-diversity”. In ICDE 2007, 106-115.
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Loss-risk optimization

Several combinations of the above loss and risk measures can
be used when trying to optimize the tradeoff of information
loss and disclosure risk.

Two approaches:

Place an upper-bound constraint on the loss D and minimize
the risk R.
Place an upper-bound constraint on the risk R and minimize
the loss D (more natural in SDC).

Josep Domingo-Ferrer Information-Theoretic Risk and Utility Measures for Microdata



Introduction
Motivation

Information-theoretic loss measures
Loss-risk optimization

Conclusions and future work

Model 1

inf
pX ′|X

R(D) = I (X ′;Y )

subject to D = E (d(X ,X ′)) ≤ d

for a certain pre-specified maximum tolerable loss d .
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Model 1 and perturbation

Model 1 was related in Rebollo-Monedero, Forné and
Domingo-Ferrer (2008) to the rate-distortion function
optimization in information theory: the risk R was assimilated
to the rate and the loss D to the distortion.

An optimal random perturbation p(X ′|X ) key attributes was
obtained.

For the case of univariate Gaussian, real-valued X and Y , a
closed form of the minimum was obtained:

Rinf = −1

2
log(1− (1− d)ρ2

XY )

popt
X ′|X = N(µX , (1− d)σ2

X )
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Model 2 and perturbation

If we take the more natural approach of minimizing D for a
maximum tolerable risk r , we get

inf
pX ′|X

D(R) = E (d(X ,X ′))

subject to R = I (X ′;Y ) ≤ r

This problem could be related to optimizing the distortion-rate
function optimization in quantization (future work).

This again yields an optimal perturbation pX ′|X , which can be
heuristically computed.
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Risk-loss as Lagrangian rate-distortion optimization

D

R

Rate-Distortion Region

D = C − λR

R0

Rate-Distortion 
Optimal Point

Lagrangian 
Optimal Point
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Models 3 and 4

Model 3

inf
pX ′|X

R(D) = I (X ;X ′)

subject to D = I (X ;Y )− I (X ′;Y ) ≤ d

Model 4

inf
pX ′|X

D(R) = I (X ;Y )− I (X ′;Y )

subject to R = I (X ;X ′) ≤ r
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Model 4 and synthetic data generation

Synthetic data generation can be viewed as a form of
perturbation 11.

If we want to generate synthetic key attributes X ′ in such a
way that the connection between key attributes and
confidential attributes is minimally affected, we can use Model
4 to compute pX ′|X .

Synthetic X ′ can be generated by drawing from pX ′|X .

11Abowd and Vilhuber (2008) “How protective are synthetic data?”, in PSD
2008, LNCS 5262, 239-246.
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Mutual information vs covariance preservation

We justify that preserving mutual information (that is, achieving
D = 0 in Model 4) preserves the covariance matrix (up to a
constant factor):

Let X and Y be zero-mean, jointly Gaussian r.v, R- and
Rn-valued, respectively.

Let X ′ = aTY be the best linear MSE estimate of X given Y ,
for a ∈ Rk .

Then a = ΣXY Σ−1
Y
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Mutual information vs covariance preservation (II)

The covariance matrix is preserved when replacing X by X ′

ΣX ′Y = ΣXY Σ−1
Y ΣY = ΣXY

At the same time, X ′ is a sufficient statistic for X given Y ,
that is, I (X ′;Y ) = I (X ;Y )12.

12Rebollo-Monedero, Rane, Aaron and Girod (2006), “High-rate quantization
and transform coding with side information at the decoder”, Signal Processing
86:3160-3179, Prop. 15.

Josep Domingo-Ferrer Information-Theoretic Risk and Utility Measures for Microdata



Introduction
Motivation

Information-theoretic loss measures
Loss-risk optimization

Conclusions and future work

Conclusions

Information loss measures based on relative discrepancies are
awkward to combine with risk measures in order to optimize
the risk-loss tradeoff.

Probabilistic loss measures are a step forward, but lack a
theoretical framework.

We have explored here loss and risk measures based on
information theory, namely on mutual information.

Models for optimizing the information-theoretic risk-loss
tradeoff when perturbing data and generating synthetic data
have been presented.

It has been shown that preserving mutual information offers
covariance matrix preservation.
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Future work

The information-theoretic measures and models are just a first
step.

In the context of synthetic data generation,
information-theoretic loss measures should be devised whose
minimization is equivalent to preserving a given model.

Whenever possible, closed-form expressions for the optimal
pX ′|X transformations would be desirable.

If a closed form expression is not possible, a convex
optimization problem to be solved numerically is the next
most attractive option.
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