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1. This presentation

OnTheMap provides residence distributions across 
roughly 8 million blocks conditional on workplace 
and other characteristics
Traditional disclosure avoidance methods are not 
applicable to data that are sparsely distributed 
across sensitive attributes
Version 3 of OnTheMap is based on a Bayesian 
synthetic data anonymization algorithm that offers 
formal privacy guarantees in terms of ε-differential 
privacy
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2. Overview of OnTheMap



2. OnTheMap – Overview of Online 
Application

OnTheMap is an interactive mapping 
application that shows in high geographic 
resolution where people reside and work 
along with characteristics of home and work 
areas 
Valuable tool for transportation planning, 
emergency planning, and economic 
development purposes

http://lehdmap3.did.census.gov/themap3/



The map shows 
where “high-wage”

workers in Sausalito, 
CA are employed 

throughout the Bay 
Area



2. OnTheMap – Features 

Analysis capabilities include:
– Selection of work or home area by geographical 

layers or by freehand 
– Selection of year (2002-2006), of 4 job types 

(primary jobs vs. all jobs in the private vs. all 
sectors) and segmentation possibilities by 
earnings, age or industry groups

Commute and Labor Shed 
Area Characteristics Reports 



2. OnTheMap – Public Use Micro Data

The micro data that feed the application are 
available for download (unrestricted access)
An observation is a unique Origin Block-
Characteristic*-Destination Block combination with 
information on the 4 different job counts, 
See http://lehd.dsd.gov for more information about 
application and access
*a characteristic is defined by a combination of 3 industry groups, 3 
earnings and 3 age categories 



2. OnTheMap – A Brief History

Beta/proof of concept version (~2004)
– Limited scope: one state and one year of data (2004)
– Limited geographical precision: block group
– Limited usefulness: cell suppression used to protect 

confidentiality

Version 1 (2006, First official release)
– 11 states, additional years of data (2002-2003)
– Online application
– First ever synthetic data product released by a statistical 

agency



2. OnTheMap – A Brief History (cont.)

Version 2 (2007)
– 42 states, additional years of data (2002-04)
– Increased geographical precision: block
– Additional features in online application
– Replicates of synthetic data available from Cornell virtual 

research data center
Version 3 (2008)

– All 48 states in production, additional years of data (2002-06)
– Additional features in online application
– Segmented data: O/D by age, earnings and industry
– Refined disclosure avoidance methodology, including formal 

privacy guarantees



3. The Synthetic Data Anonymization
Algorithm



3. Modeling Objective

Goal is to create residence distributions across 
blocks for each population defined by employment 
block and other characteristics
To maximize analytical validity in terms of: 

1. Completeness of estimates, i.e. no suppression 
2. Preservation of key properties of micro data, e.g. commute 

patterns

Subject to confidentiality restrictions in terms of 
residence block information that needs protection 



3. Synthetic Data Model

Bayesian approach: Each population has a likelihood and prior 
that describes the conditional residence distribution
Synthetic data sampled from the posterior predictive distribution 
that combines information from likelihood and prior
Size of synthetic population based on disclosable estimates
Likelihood from confidential micro data 
Design of prior is the result of combining information from public 
use data with restrictions to ensure formal privacy definition



4. Formal Privacy Guarantees



4. Epsilon-Differential Privacy

Privacy audit is based on posterior transition 
matrix
For any two potential confidential data sets 
generated from the anonymization algorithm 
that differ in exactly one row, if the probability 
that the log odds favoring one data set over 
another is less than ε the algorithm is said to 
provide ε-differential privacy



4. Differential Privacy - Example

Population: 10 workers distributed across 3 
residence locations
Consider an attacker that has complete 
information about: 
– all the data except one observation
– all aspects of the anonymization algorithm, except 

for the seeds used in the randomization process



4. Privacy Audit
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4. Example of Infinite Differential 
Privacy
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4. Search algorithm

Algorithm to find minimum prior support to guarantee 
ε-differential privacy developed in Machavajjhala et 
al. (2008)
We rely on the concept of (δ,ε)-differential privacy, 
where the search algorithm guarantees ε-differential 
privacy with 1- δ confidence
In particular, our anonymization algorithm 
guarantees ε-differential privacy protection of 8.99 
with 99.999999% confidence (δ = 0.000001)



5. Implementation



5. Main Complication

Dimensionality of problem
– Outcome domain has support across 

approximately 8 million blocks 
– Recall each point in the domain has to have 

minimum support in prior
For any model with acceptable formal privacy 

guarantees this will adversely impact the 
analytical validity of data



5. Measures to improve analytical 
validity

To maximize analytical validity s.t. privacy 
guarantee:
– Use of informative priors
– Coarsening of the outcome domain
– Restricting the outcome space
– Pruning the prior



5. Informative priors

In year 2002: Public use CTPP data
In year 2003-2006: Public use year-1 
OnTheMap data
alfa = max[min_alfa, f(prior density)]  



5. Coarsening of the outcome space

“The marginal difference in commute 
distances of two candidate locations has less 
predictive power in allocating workers the 
farther away the locations are”
For each work tract: 
– if distance > 90th pctile of the CTPP commmute

distribution, then collapse into Super-PUMAs
– else if distance >50th pctile, then PUMAs
– else Census Tracts



5. Support points in domain

519486508373300343412361389- 500-high
2332980238151181206119139- 100-500
1691554296451212892385- 25-100
60116612131957948127- 10-25
4911543811888781265- low-10

By distance  (in miles) between centroids
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194107974773939- PUMA
539535537539518526538519526- Super-PUMA
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MaxMinMeanMaxMinMeanMaxMinMeanSupport points:
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5. Fraction of points in the domain with 
support in CTPP data 

0.400.340.230.140.280.18All
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SDMeanSDMeanSDMeanDistance (in miles)
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5. Restricting the outcome space

For each work tract: 
– if point in domain has zero support in prior data the do:

eliminate point with p=0.98 if distance>500 miles
eliminate point with p=0.9 if distance>200 miles
eliminate point with p=0.5 if distance>100 miles
do not eliminate if distance<100 miles

– else do not eliminate

Note: contribution of any likelihood data in eliminated 
points also eliminated



5. Fraction of points in the domain with 
support in CTPP data after eliminating 
extremely unlikely commute patterns

0.390.360.230.150.270.21All
0.080.030.120.060.130.07- 500-high
0.140.080.060.030.090.06- 100-500
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0.290.630.190.190.260.30- 10-25
0.180.920.320.400.370.47- low-10

SDMeanSDMeanSDMeandistance (in miles)
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5. Pruning the prior

For each likelihood:
– Do for each support point in domain:

Let alfa=max[alfa_min, prior density]
Set alfa*=0 with probability 1-p, where p=max[alfa,min_p], e.g. 
a high value of min_p will result in little pruning and vice versa 
else alfa*=alfa
Calculate posterior data as y+alfa*

Pruning comes with a cost in terms of privacy 
protection ε=f(ε*,min_p), where ε* is the “Nominal 
epsilon”
Note: pruning does not depend on likelihood data



5. Creation of synthetic data

1. Sample support point in outcome domain 
from posterior

2. Conditional on coarsened geographical 
area, sample block-level residence 
locations based on 2000 Decennial block-
level population estimates



6. Tradeoffs between Analytical 
Validity and Privacy Protection



6. Benchmark case

Choice parameters in the model:
– Parameters in domain coarsening algorithm
– Parameters in domain restriction algorithm
– Nominal epsilon, delta and the pruning function

[ε *,δ, min_p] = [4.6,0.000001,0.025] ε < 9 in all 
cases with 99.99999% confidence
We evaluate effects by changing one parameter at 
the time around benchmark case



6. Analytic validity metric

As a metric for divergence between posterior and 
likelihood for a population we calculate the Kullback-
Leibler Divergence index over a 29 point grid defined 
by the cross product of:

– 8 commute distance categories (in miles: 0, (0-1), [1-4), [4-
10), [10-25), [25-100), [100,500), [500+]

– 5 commute direction categories (NW, NE, SW, SE, “N/A”)
DKL= 0 if identical; DKL=-∞ if no overlap
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)(
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6. DKL by ε*: All Populations
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6. DKL by ε*: Small Populations
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6. Varying ε* - Summary

Figures show the population-weighted DKL for all and 
small (<10) populations for ε* = 2, 4, 4.6, 10 and 25
DKL close to zero for values of ε* > 4
Significant gains in analytical validity for small 
populations as we increase ε* further to 4.6
The marginal improvements in analytical validity 
from even higher values of ε* hard to justify in terms 
the costs in privacy protection loss



6. Varying δ - Summary

We evaluate δ = 0.001, 0.0001, 0.00001 and 
0.000001
Only very marginal improvements in 
analytical validity as we decrease confidence 
from 1 in a million to 1 in a 1000. 
No reason to consider values of δ > 
0.000001



6. DKL and ε vs. min_p: All populations
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6. DKL and ε vs. min_p: Small populations
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6. Varying min_p - Summary 

Figures show the population-weighted DKL for all and 
small (<10) populations and ε for min_p = 0.1, 0.05, 
0.025 and 0.001
Large gains in analytical validity as min_p is 
decreased from 0.1 to 0.05 for all populations and 
further large gains for small populations as min_p is 
decreased to 0.025. 
The marginal improvements in analytical validity 
from even lower values of min_p hard to justify in 
terms the costs in privacy protection loss



7. Summary



7. Summary

Synthetic data as an anyonymization algorithm promising 
alternative to traditional disclosure avoidance methods, 
especially when data representation is sparse  
Hard to quantify degree of disclosure protection – synthetic 
data methods may leak more information than intended
OnTheMap version 3 demonstrates the successful 
implementation of formal privacy guarantees based on the 
concept of ε-differential privacy
To achieve acceptable analytical validity results s.t. privacy 
guarantees requires experimentation


