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Abstract 
 

In this study, we perform a comprehensive theoretical evaluation of masking techniques 

for numerical microdata. The objective of this comparison is to establish the extent to 

which existing techniques can satisfy disclosure risk, data utility, ease of implementation, 

and ease of use requirements. This evaluation allows data providers to select from these 

techniques to account for the demands of the data subjects and data users. 

 

Introduction 
 

In recent years interest in tools and techniques used to mask data has grown considerably. 

Until recently, government agencies have been the primary providers of confidential data 

regarding subjects (individuals and other entities) and the development of data masking 

techniques had been driven by the specific requirements of such agencies. The recent 

explosion in the ability to gather, store, analyze, and disseminate data by non-

governmental organizations has given rise to the demand for new and innovative 

techniques for data masking. Recent legislative requirements have also increased the 

demand for such techniques.  

 

Not surprisingly, there has been a corresponding increase in the development of new 

methods and techniques for data masking. From a research perspective, this is an 

encouraging trend and has led to the development of several new techniques. However, 

this also creates the issue of evaluating the performance of the different techniques that 

have been developed. Often, a particular technique is developed and its performance is 

evaluated based on specific criteria selected by the researcher making it impossible to 

compare different techniques.  

 

The problem is further complicated by the fact that we now have researchers from 

different areas working on this problem. These include researchers at government 

agencies, statisticians, computer scientists, business, and social sciences. From a research 

perspective, this is an encouraging trend since this brings the nuances of these different 

areas to bear on the data masking problem. Unfortunately, the involvement of researchers 



from these different areas has also meant that new techniques are evaluated in different 

ways across these areas.  

 

In addition, there has been a recent trend to evaluate the performance of different 

techniques using only empirical data. We do not disagree with the use of empirical data 

to illustrate the application of a new technique. However, we vigorously disagree when a 

few data sets are used to “validate” or “prove” the superior performance of any 

technique. The superiority of a technique can only be established from a comprehensive 

theoretical comparison which can then be backed up by confirmation using simulated or 

empirical data.  

 

Thus, there is a need to develop a general framework that can be used to assess the 

theoretical performance of data masking techniques. In this paper, we attempt to develop 

such a framework for techniques used to mask numerical microdata from the traditional 

perspective of the literature in statistical disclosure limitation. In developing this 

framework, we attempt to take into account the interests of all the parties involved in the 

data. While we do not contend that this framework is appropriate for all situations, we 

believe that this framework represents the most general assessment of data masking 

techniques.  

 

The Stakeholders 
 

Generally, there are three stakeholders who are involved in this problem. The first are 

those individuals or organizations about whom the data has been collected (“The 

subjects”). The second is the organization or agency that collects the data and then 

analyzes, shares, or disseminates the data (“The provider”). Finally, there are the 

consumers of the data who actually use the data that is being made available (“The 

user”).  Obviously, the interests of each of these three stakeholders differ and in some 

cases conflict. The user would in fact prefer to get the original data without any 

modification while the data subjects may prefer that this data not be analyzed, shared or 

disseminated by anyone. In these cases, the data provider becomes the arbiter of the 

(utility) demands of the user versus the (confidentiality) demands of the source. One key 

assumption that we are making in this analysis is that the data is intended for aggregate 

analysis and not analysis involving individual records or observations.  

 

Data Subjects 
Data subjects are individuals (or organizations) about whom data has been gathered. This 

data could have been collected in a variety of ways. The data could have been collected 

in the ordinary course of business (such as when data is reported to the Internal Revenue 

Service) or for the specific purpose of gathering data regarding individuals (such as when 

data is gathered by the Census Bureau). The data subjects are aware that some analysis 

will be conducted on such data by a select group of individuals (by IRS officials or 

Census officials). In most cases, they are aware that their privacy and confidentiality is 

not assured when such analysis is conducted.  

 



The data subjects may also be aware that such data may be shared, or disseminated to 

other individuals. However, when the data is provided to individuals for whom the 

original data was not intended, the data subjects demand privacy and confidentiality 

guarantees. This is a completely reasonable requirement since in most situations they 

cannot “opt out” from their data being shared. Ideally the data subjects would prefer that 

the data is not analyzed, shared or disseminated beyond the restricted group of 

individuals for whom the data was intended. However, if the decision is made that the 

data will be available to outside individuals, then obviously they would like the data 

provider to take the utmost care to prevent disclosure of their identity and/or value of a 

confidential attribute.  

 

The Data User 

This group represents those individuals who actually use the confidential data. The data 

user could be an analyst within the organization in which the data resides. More 

commonly however, the user is outside the organization and is receiving the data because 

it is being shared or disseminated. Ideally, the user would like the data to be released 

unmodified since the user is not concerned with confidentiality of the data (unless of 

course the user also happens to also be a data subject). However, the user expects that 

some type of masking will be performed on the data. The primary interest of the user is 

the analytical validity of the data that is provided. A secondary interest of the user is the 

ease of performing analysis on the data. Ultimately, the data user expects the results of 

analysis of the masked data to yield the same results as the original data.  

 

The Data Provider 
The provider acts as the trusted intermediary between the data subjects and the data user. 

The provider has obligations both to the data subjects and the data user., The data 

provider is obligated to the data subjects to maintain both their privacy and 

confidentiality. To the data user, the data provider is obligated to provide assurance 

regarding the analytical validity of the data. In addition, the data provider is also 

interested in selecting the method that is “easy to implement”. However, when choosing 

between methods, if one method dominates the performance of another method (provides 

better performance characteristics on at least one criterion and the same benefits on all 

others), the data provider is obligated to choose the dominant method regardless of the 

ease of implementation.  

 

Criteria for Evaluating Performance of Data Masking Techniques 
 

Data Security 
The primary responsibility of the data provider is to assure the data subjects that the data 

will be protected to the fullest extent possible. The focus of this study is on numerical 

data. However, the framework described here should be applicable for non-numerical 

data as well. In protecting the data, it would be necessary to consider both identity and 

value disclosure. Identity disclosure refers to the situation where, using the released data, 

an intruder is able to identify a particular released record as belonging to a particular data 

subject. Attribute or value disclosure refers to the situation where, using the released data, 



an intruder is able to estimate the value of a confidential variable with a high degree of 

precision (Lambert 1993). 

 

Prior to releasing microdata, we assume that the data provider will release aggregate 

summary information regarding the variables (including but not limited to) the mean 

vector (for numeric variables), percentages (for non-numeric variables) and covariance 

matrix of the entire data set. Since the release of this information alone does not result in 

any disclosure regarding individual records, we believe that this is an appropriate first 

step for data release. Note that releasing this data could also serve as a benchmark for 

evaluating the analytical validity of the masked data.  

 

The data provider now has to assess whether any microdata should be released and if so, 

which variables are to be released. The data provider may decide that, because of high 

disclosure risk, no microdata will be released. On the other hand, if the data provider has 

decided to release microdata, the variables whose microdata will be released should be 

selected carefully. In this study, we assume that after careful assessment, the data 

provider has selected a set of non-confidential or categorical variables S and a set of 

numerical confidential variables X for n records are to be released. Let Y represent the 

masked values of the numerical confidential variables X.  

 

The set of variables S could comprise both of categorical variables and, in situations 

where identity disclosure is not an issue, of numerical confidential variables. However, in 

situations where identity disclosure is an issue (which is probably the general case), 

numerical confidential variables cannot be released unmodified since releasing just a few 

such variables will inevitably result in complete identity disclosure. Further, we assume 

that the appropriate masking techniques have been applied to categorical variables in 

order to prevent disclosure.  

 

Our specific objective is to assess the disclosure risk performance of a masking technique 

for numerical data. Hence, any disclosure that occurs as a result of the release of the non-

confidential information combined with the summary data should not be considered as a 

part of the disclosure risk resulting from the masking technique. With this in mind, we 

propose a two step process for evaluating the risk of disclosure. The first step involves 

the assessment of disclosure risk in the confidential variables X using the summary 

information and the non-confidential variables S. Recall that we always assume that at 

least summary information of the original data has to be released; otherwise, the data 

protection problem does not exist since no meaningful use of the confidential data can be 

presumed.  We will define the disclosure risk due to the release of summary data as 

DR(X|S). We then compute the disclosure risk from releasing the entire released 

(potentially, masked) data set DR(X|S,Y).  The disclosure risk attributable to the masking 

technique is the incremental risk of disclosure that occurs because of the release of the 

masked data Y in place of X which can be computed as DR(X|S,Y) – DR(X|S).  

 

There exists a class of data masking techniques for which the expected incremental 

disclosure risk can theoretically be shown to be zero. For these techniques, the masked 

variable Y is generated independent of the values of the confidential variable X and as a 



function only of the non-confidential variables S. Several authors including Fienberg 

(1998), Fuller (1993), and Muralidhar and Sarathy (2003) have shown that the methods in 

this class have an expected incremental disclosure of zero, thereby guaranteeing minimum 

disclosure risk when numerical microdata is released. The specific techniques which 

satisfy these requirements will be discussed in a later section.  

 

When masking techniques do not satisfy the minimum disclosure risk criterion, it would 

be necessary to assess the risk of disclosure using empirical techniques. A comprehensive 

discussion of these techniques is beyond the purview of this manuscript.  

 

Data Utility 
We use data utility to describe the extent to which results of analysis performed on the 

masked data is similar to the results using the original data. This criterion is also 

sometimes referred to as analytical validity, or conversely, information loss. A masking 

technique offers the highest level of data utility if for any ad hoc analysis, the results 

using the masked data are identical to that using the original data. Since we are 

considering any ad hoc analysis, it is possible that the analysis involves a single variable 

for a single record. Hence, the only way to satisfy this ideal requirement is to release the 

unmasked data. However, because the data consists of confidential variables, the data 

will be masked and consequently, no masking technique will satisfy the ideal data utility 

objective.  

 

In practice, it would be necessary to evaluate the masking techniques using specific 

criteria that describe different aspects of data utility. In this study, we assess both the 

marginal and the joint characteristics of the variables. The marginal assessment is 

relatively straightforward and can be answered by the question: “Is the marginal 

distribution of the masked variable(s) the same as that of the original confidential 

variable(s)?” 

 

The assessment of the joint distribution of the variables is far more difficult, with no 

single means of assessing the joint distribution. Hence, it is necessary to evaluate specific 

characteristics which when combined provide an assessment of the joint distribution. The 

specific characteristics include: 

 

(1) Is the mean vector of the masked variables the same as the mean vector of the 

original confidential variables? 

(2) Does the masking technique preserve linear relationships? 

a. Is the covariance matrix of the masked confidential variables the same 

as the covariance matrix of the original confidential variables? 

b. Is the covariance matrix between the masked confidential and non-

confidential variables the same as the covariance matrix between the 

original confidential and non-confidential variables? 

(3) Does the masking technique preserve monotonic non-linear relationships? 

(4) Does the masking technique preserve non-monotonic relationships between all 

the variables? 



(5) Does the masking technique preserve the above characteristics in subsets of 

the data defined by the categorical variables? 

 

There are four possible responses to the above questions. The first response is that the 

values of the estimates using the masked data are exactly the same as the original data. 

The second response is that the estimates from the masked data are unbiased and, 

asymptotically, the estimates from the masked data converge to the estimates using the 

original data. The third response is that the estimates from the masked data are biased 

compared to those derived from the original data. The final response is that the estimates 

are not maintained by the masked data at all.  

 

We do not contend that this is an exhaustive list of all possible characteristics that may be 

of interest in every situation. For example, if it is known that the joint distribution of the 

entire data set is multivariate normal, then the only relevant estimates are the mean vector 

and covariance matrix. However, the criteria listed allow us to evaluate the performance 

of any masking technique for any data set.  

 

Ease of Use 
Typically, data users would like to analyze the data in the same manner as the original 

data set without having to use special procedures to account for any differences between 

the original and masked data set. From the data user’s perspective, the extent to which the 

masked data facilitates this process is an important consideration. For some masking 

techniques, in order to achieve unbiased estimates, it would be necessary to modify the 

results obtained from the analyses performed on the data. Regardless of the nature of the 

modifications necessary, this imposes additional requirements on the data users which, if 

possible, should be eliminated. In addition, we cannot always assume that every user is 

capable of implementing and more importantly understanding the suggested 

modifications. 

 

Ease of Implementation 
From the perspective of a data provider, a masking technique that is easier to implement 

would be preferred over those that are more difficult to implement. While all techniques 

require some level of cleansing and preparation, some advanced procedures require more 

effort to implement than others. Given that all other criteria are equal, it is reasonable for 

the data provider to select a masking technique that is easier to implement than another. 

Winkler (2007) argues that this criterion seems to dictate the selection of the appropriate 

technique with simpler techniques being preferred over more complex techniques. This is 

unfortunate since Winkler (2007) clearly shows that simple to implement techniques 

usually have low data utility. 

 

 

An Evaluation of Common Masking Techniques for Numerical Data 
 

In this section, we attempt to evaluate the performance of most commonly used  data 

masking techniques for numerical data, using the criteria described above. In our 



evaluation, it must be understood that when the expected incremental disclosure risk is 

not zero, we say that disclosure risk is not minimized. 

 

Simple Noise Addition 
In simple noise addition, noise is added to each confidential variable independent of all 

other variables. From a multivariate perspective, this type of noise addition can be seen as 

using noise terms that are not only independent of the original values, but also 

independent of one another and can be described as follows: 

 

 Y = X + ε 

 

where ε is specified to have a mean vector of zero with a diagonal covariance matrix. In 

terms of disclosure risk, since the masked values are not generated independent of the 

original confidential values, the incremental disclosure is non-zero. The level of security 

provided is a function of the level of noise added (the variance of the noise term ε) and 

must be evaluated empirically. In terms of data utility, since the noise is being added to 

the original confidential variable the marginal distribution of Y is different from that of 

X. In addition, since noise is being added to each variable independently, the covariance 

matrix of Y is different from that of X. In addition, the covariance between Y and S is 

also different from that between X and S. The same is true for rank order correlation as 

well. No relationships are preserved either exactly or asymptotically and all relationships 

result in biased estimates. The extent of the bias is a function of the level of noise added. 

The procedure is easy to use and implement.  

 

Table 1. Performance characteristics of simple noise addition 

C
ri
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Disclosure Risk Not minimized 

Data 

Utility 

Marginal Distribution Not maintained 

Mean Vector Maintained asymptotically 

Variance Biased (higher) 

Linear 

Relationships 

X versus Y Biased (attenuated) 

(Y & S) versus (X & S) Biased (attenuated) 

Monotonic (non-linear) relationships Biased (attenuated) 

Non-monotonic relationships Biased (attenuated) 

Sub-set characteristics Not maintained 

Ease of Use Easy 

Ease of Implementation Easy 

 

Kim’s Method 
Kim (1986) proposed an important enhancement to the simple noise addition procedure. 

In Kim’s method, the covariance matrix of the noise terms ε is specified to be of the form 

(dΣXX) where d is a constant chosen by the data provider and ΣXX is the covariance 

matrix of X. A further enhancement was discussed by Kim (1986) and illustrated in 

Tendick and Matloff (1994). The advantage of this procedure is that the covariance 

matrix of the masked variables Y is the same as that of the original variables X. Apart 

from this enhancement, this procedure has similar characteristics to simple noise addition 



as summarized below. In terms of implementation, the only difference between this 

procedure and simple noise addition is the generation of ε.  

 

Table 2. Performance characteristics of Kim’s method 

C
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Disclosure Risk Not minimized 

Data 

Utility 

Marginal Distribution Not maintained 

Mean Vector Maintained asymptotically 

Variance Maintained asymptotically 

Linear 

Relationships 

X versus Y Maintained asymptotically 

(Y & S) versus (X & S) Biased (attenuated) 

Monotonic (non-linear) relationships Biased (attenuated) 

Non-monotonic relationships Biased (attenuated) 

Sub-set characteristics Not maintained 

Ease of Use Easy 

Ease of Implementation Easy 

 

Sufficiency Based Noise Addition Method 
Recently, Muralidhar and Sarathy (forthcoming) proposed a new noise addition 

procedure whereby the mean vector and covariance matrix of the masked data are exactly 

the same as that of the original data. In this procedure, the masked values are generated as 

follows: 

 

 Y = α + βX + γS + ε. 

 

The data provider specifies the structure of β from which the values of α, γ, and the 

covariance matrix of ε are derived. Using these derivations, the values of ε are generated 

in such a manner that the mean vector and covariance matrix of Y are exactly the same 

asX. Hence, for any statistical analysis for which the mean vector and covariance matrix 

of X are sufficient statistics, the estimates derived using the masked data are identical to 

that using the original data. In addition, this procedure can be easily implemented in such 

a manner that characteristics of subsets of X defined by S are maintained. However, like 

all noise addition procedures, this procedure does not minimize disclosure risk, and 

results in bias in other estimates. In terms of implementation, this procedure is 

computationally more difficult than the previous approaches. The summary of the 

performance characteristics are provided in Table 3.  

 

 



Table 3. Summary performance characteristics of sufficiency based noise addition 

C
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Disclosure Risk Not minimized 

Data 

Utility 

Marginal Distribution Not maintained 

Mean Vector Maintained exactly 

Variance Maintained exactly 

Linear 

Relationships 

X versus Y Maintained exactly 

(Y & S) versus (X & S) Maintained exactly 

Monotonic (non-linear) relationships Biased (attenuated) 

Non-monotonic relationships Biased (attenuated) 

Sub-set characteristics 

Mean vector and 

covariance matrix 

maintained exactly 

Ease of Use Easy 

Ease of Implementation Moderate 

 

Sufficiency Based GADP Method 

This procedure is a combination of the GADP method (Muralidhar et al, 1999, 2001) and 

the IPSO method (Burridge 2003). In the GADP method, using the available data, the 

intercept (α ) and slope coefficients (β) to predict the value of X using S is estimated, as 

is the error variance. The masked values of Y are then generated using these estimates as 

follows:  

 

 Y = α + γS + ε 

 

The mean vector and covariance matrix of (Y and S) are asymptotically the same as that 

of (X and S). The values of Y are considered synthetic since they are generated 

independent of the values of X. In this IPSO method, Burridge (2003) proposed a simple 

but very attractive modification where he showed that by generating the values of ε 

appropriately, the mean vector and covariance matrix of (Y and S) are exactly the same as 

that of (X and S), thereby maintaining the two sufficient statistics mean vector and 

covariance matrix. Note that this procedure is a special case of the sufficiency based 

noise addition method with the requirement that β = 0. The advantage of this method is 

that in addition to maintaining sufficient statistics, this procedure also minimizes 

disclosure risk since the masked values are generated independent of the original values. 

As with the previous method, it is also easy to adapt this method to provide sufficient 

statistics not just for the entire data set, but sub-sets as well. One important aspect of this 

procedure is that, since the values of Yare generated using a linear model, any non-linear 

relationship that exists in the original data set is not preserved in the masked data set. The 

performance characteristics summary is provided in Table 4.  

 

 

 



Table 4. Summary performance characteristics of the sufficiency based GADP 
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Disclosure Risk Minimized 

Data 

Utility 

Marginal Distribution Not maintained 

Mean Vector Maintained exactly 

Variance Maintained exactly 

Linear 

Relationships 

X versus Y Maintained exactly 

(Y & S) versus (X & S) Maintained exactly 

Monotonic (non-linear) relationships Not maintained 

Non-monotonic relationships Not maintained 

Sub-set characteristics 

Mean vector and 

covariance matrix 

maintained exactly 

Ease of Use Easy 

Ease of Implementation Moderate 

 

Multiple Imputation 
Originally proposed for missing data, multiple imputation was suggested as a possible 

mechanism for masking data by Rubin (1993). Since then, several researchers have 

investigated the effectiveness of multiple imputation for masking numerical microdata. In 

its basic form, multiple imputation essentially generates the perturbed values as in the 

synthetic data approach. Using the available data, the intercept, slope coefficients, and 

error variance are estimated. In the traditional linear model approach, a data set would be 

generated using the estimated coefficients. In other words, the estimated coefficients are 

treated as population parameters and the only variability arises from the error variance.  

In multiple imputation, additional variability is introduced by treating the intercept and 

slope coefficients as sample statistics. Further, several sets of masked data are generated 

(perhaps as many as 100). Each set of imputed values are based on newly generated 

values of intercept, slope, and error variance. The user is required to analyze each 

imputed set and finally aggregate the results (Raghunathan et al. 2003). The effectiveness 

of the procedure improves when the number of imputed data sets is larger.  

 

In terms of disclosure risk, in the original form of multiple imputation the values of Y are 

generated independent of the values of X. This synthetic nature of the approach assures 

that the disclosure risk is minimized. In terms of the data utility, the performance of 

multiple imputation  is very similar to that of the sufficiency based synthetic data method 

with one important exception. The sufficiency based synthetic data method guarantees 

that the mean vector and covariance matrix of the masked data set will be identical to the 

original data. Multiple imputation does not offer this guarantee. In addition, multiple 

imputation requires the user to analyze multiple data sets (perhaps as many as 100) and 

then aggregate the results. This imposes additional computational requirements on the 

user. By contrast, the sufficiency based GADP method provides the same results as the 

multiple imputation approach without the additional computational requirements 

(Muralidhar and Sarathy 2006a). In its original form, multiple imputation cannot 

maintain subset characteristics (since it may not even have the same subsets). Variations 



of the multiple imputation approach have been suggested and can be evaluated similarly. 

A summary of the performance of multiple imputation is provided in Table 5.  

 

Table 5. Summary Performance characteristics of multiple imputation 

C
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Disclosure Risk Minimized 

Data 

Utility 

Marginal Distribution Not maintained 

Mean Vector Maintained asymptotically 

Variance Maintained asymptotically 

Linear 

Relationships 

X versus Y Maintained asymptotically 

(Y & S) versus (X & S) Maintained asymptotically 

Monotonic (non-linear) relationships Not maintained 

Non-monotonic relationships Not maintained 

Sub-set characteristics Not maintained 

Ease of Use Difficult 

Ease of Implementation Moderate 

 

Micro-aggregation 
Micro-aggregation is often suggested as an attractive procedure for data masking because 

of its simplicity (Domingo-Ferrer et al. 2002). In its simplest form, micro-aggregation 

works as follows. A set of k observations are identified as the “closest” observations. The 

values of the confidential variables for these observations are aggregated. The aggregated 

values are released in place of the original values. The selection of the “closest” 

observations can be performed on a variable by variable basis (univariate micro-

aggregation) or for multiple variables (multivariate micro-aggregation). A summary of 

the characteristics of micro-aggregation is provided in Table 6.  

 

Table 6. Summary performance characteristics of micro-aggregation 

C
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Disclosure Risk Not minimized 

Data 

Utility 

Marginal Distribution Not maintained 

Mean Vector Maintained exactly 

Variance Biased (lower) 

Linear 

Relationships 

X versus Y Biased 

(Y & S) versus (X & S) Biased 

Monotonic (non-linear) relationships Biased 

Non-monotonic relationships Biased 

Sub-set characteristics Not maintained 

Ease of Use Easy 

Ease of Implementation Moderate 

 

In terms of disclosure risk, the masked values Y are not independent of the original 

values and hence, disclosure risk is not minimized. In terms of data utility, micro-

aggregation results in reduced variance for most data sets. The lower variance of the 

confidential variables results in an accentuation in the correlation between variables. 

However, micro-aggregation also results in attenuating relationships.  In some situations 



the attenuation in correlation is higher than the accentuation in correlation resulting from 

the reduction in variance and the overall result is correlation attenuation. Thus, micro-

aggregation always results in biased estimates of relationships, but the direction of the 

bias cannot be derived theoretically. In terms of implementation, univariate micro-

aggregation is relatively easy to implement while some forms of multivariate micro-

aggregation are difficult. This method does not require the user to make any modification 

in their analyses and hence is easy to use.  

 

Data Swapping 
Like micro-aggregation, data swapping is often proposed as an effective masking 

technique because of its simplicity. Originally proposed for categorical variables, data 

swapping has since been adopted for numeric variables (Moore 1996). In data swapping, 

values of a particular variable within a specified proximity are exchanged. The process is 

repeated for every observation and every variable. The resulting masked data set retains 

the same (univariate) marginal distribution as the original confidential variables. 

However, unless the swapping is performed randomly, data swapping does not minimize 

disclosure risk. In addition, data swapping also results in attenuation in the relationship 

between the variables (Moore 1996; Fienberg and McIntyre 2005). As indicated earlier, it 

is easy to implement and easy to use. Table 7 provides the summary characteristics for 

the data swapping method.  

 

Table 7. Summary performance characteristics of data swapping 

C
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Disclosure Risk Not minimized 

Data 

Utility 

Marginal Distribution Maintained exactly 

Mean Vector Maintained exactly 

Variance Maintained exactly 

Linear 

Relationships 

X versus Y Biased (attenuated) 

(Y & S) versus (X & S) Biased (attenuated) 

Monotonic (non-linear) relationships Biased (attenuated) 

Non-monotonic relationships Biased (attenuated) 

Sub-set characteristics Not maintained 

Ease of Use Easy 

Ease of Implementation Easy 

 

Data Shuffling 
Data Shuffling is a new patented procedure (US Patent # 7200757) developed by 

Muralidhar and Sarathy (2006b). It is a hybrid procedure where the original variables are 

first perturbed using the copula based perturbation approach (Sarathy et al. 2002). The 

resulting perturbed values are then reverse-mapped on to the original values, resulting in 

the shuffled data set. Superficially, data shuffling can be considered to be a multivariate 

version of data swapping since it is performed on the entire data set rather than on a 

variable by variable basis. Data shuffling is also a more general version of the LHS 

procedure suggested by Dandekar et al. (2002). 

 



Data shuffling does not use the original values of X in generating the values of Y and 

hence offers minimum disclosure risk. Since the original values of X are used in the 

masked values of Y, the marginal distribution is maintained exactly. In addition, data 

shuffling maintains both linear and (non-linear) monotonic relationships. But all non-

monotonic relationships in the original data are not maintained in the masked data. Table 

8 provides a summary of these characteristics.  

 

Table 8. Summary performance characteristics of data shuffling 

C
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Disclosure Risk Minimized 

Data 

Utility 

Marginal Distribution Maintained exactly 

Mean Vector Maintained exactly 

Variance Maintained exactly 

Linear 

Relationships 

X versus Y Maintained asymptotically 

(Y & S) versus (X & S) Maintained asymptotically 

Monotonic (non-linear) relationships Maintained asymptotically 

Non-monotonic relationships Not maintained 

Sub-set characteristics Not maintained 

Ease of Use Easy 

Ease of Implementation Difficult 

 

Tree-Based Data Perturbation Method 

Li and Sarkar (2006) recently proposed a new approach for data perturbation that is 

described by the authors is as follows: 

 

“To achieve this goal, we propose a kd-tree based perturbation method, 

which recursively partitions a data set into smaller subsets such that data 

records within each subset are more homogeneous after each partition. 

The confidential data in each final subset are then perturbed using the 

subset average.” (page 1278) 

 

The authors then proceed to illustrate the application of this method using 4 data sets. The 

authors also compare the performance of the tree based data perturbation method to noise 

addition and micro-aggregation and conclude, based on 4 data sets that the tree-based 

perturbation method performs better. Unfortunately, the authors provide no assessment of 

the general characteristics of the procedure.  

 

From the description of the procedure, it is easy to see that this procedure essentially is 

micro-aggregation with the specific records selected differently from traditional micro-

aggregation. Hence, the essential characteristics of this procedure should be similar to 

that of micro-aggregation. Using the framework we have suggested in this study, Table 9 

provides a summary of the performance characteristics of this method.  

 



Table 9. Summary performance of the tree-based perturbation method 

C
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Disclosure Risk Not minimized 

Data 

Utility 

Marginal Distribution Not maintained 

Mean Vector Maintained exactly 

Variance Biased (lower) 

Linear 

Relationships 

X versus Y Biased 

(Y & S) versus (X & S) Biased 

Monotonic (non-linear) relationships Biased 

Non-monotonic relationships Biased 

Sub-set characteristics Not maintained 

Ease of Use Easy 

Ease of Implementation Easy 

 

Comparative Evaluation of Different Data Masking Methods 
 

Comparison of Tree-based perturbation with other methods 

Li and Sarkar (2006) claim that tree-based perturbation method is “generally superior” to 

the other methods of data masking used in their study. The authors make no effort to 

theoretically evaluate the performance characteristics of their new approach. While an 

empirical evaluation can be a useful tool for illustrating the performance of a particular 

method, it must be preceded by a comprehensive theoretical evaluation of the 

performance of a particular technique. If Li and Sarkar (2006) had adopted the approach 

suggested in this study to evaluate performance, they would have come up with very 

different conclusions. Based on the framework suggested above, we compare the 

performance of the tree-based perturbation method, micro-aggregation, Kim’s method, 

and sufficiency based noise addition. The results are provided in Table 10.  

 

Based on the results in Table 10, if the data provider is to select the procedure based on 

theoretical characteristics, the sufficiency based noise addition method would be the 

preferred method since it provides better data utility characteristics than the other 

methods. Since all four methods fail to minimize disclosure risk, it would be appropriate 

to perform some empirical evaluation of the disclosure risk performance of the methods 

prior to making the final selection. However, given that all four methods allow for the 

specification of the security parameter, we should be able to achieve the desired level of 

security.  

 

What is interesting about the results in Table 10 is that, in terms of data utility, the 

performance of Kim’s method is actually superior to that of the tree-based perturbation 

method. In fact, in terms of data utility, the tree-based perturbation method does not 

provide better performance than any of the other techniques. Yet, in an empirical 

comparison involving four data sets, the authors claim that the tree-based perturbation 

method is “generally superior”. A theoretical evaluation of the performance of the 

techniques shows otherwise. 

 



Table 10. Comparison of the Tree-based perturbation method with other methods 

        Method 

        

Tree Based  

Perturbation 

Micro- 

Aggregation 

Kim's 

Method 

Sufficiency  

Based noise  

addition 

C
ri
te
ri
a
 

Disclosure Risk 
Not  

minimized 

Not  

minimized 

Not  

minimized 

Not  

minimized 

D
a
ta
 U
ti
li
ty
 

Marginal  

Distribution 

Not  

maintained 

Not  

maintained 

Not  

maintained 

Not  

maintained 

Mean  

Vector 

Maintained 

exactly 

Maintained 

asymptotically 

Maintained 

asymptotically 

Maintained 

asymptotically 

Variance 
Biased 

(lower) 

Biased 

(lower) 

Maintained  

asymptotically 

Maintained  

exactly 

L
in
ea
r 

R
el
at
io
n
sh
ip
s X 

versus 

Y 

Biased Biased 
Maintained 

asymptotically 

Maintained  

exactly 

(Y & S) 

versus  

(X & S) 

Biased Biased 
Biased 

(attenuated) 

Maintained  

exactly 

Monotonic  

(non-linear) 

relationships 

Biased Biased 
Biased 

(attenuated) 

Biased 

(attenuated) 

Non-monotonic  

relationships 
Biased Biased 

Biased 

(attenuated) 

Biased 

(attenuated) 

Sub-set  

characteristics 

Not  

maintained 

Not  

maintained 

Not  

maintained 

Mean vector 

and 

covariance 

matrix 

maintained 

exactly 

Ease of Use Easy Easy Easy Easy 

Ease of  

Implementation 
Easy Easy Easy Moderate 

 

Comparison of noise addition methods 
As the first illustration, we choose to compare the different noise addition methods. This 

is a rather straight-forward assessment that can be done just from the summary provided 

in Tables 1, 2, and 3. The summary of all 3 methods is provided in Table 11.  

 



Table 11. Comparison of noise addition methods 

        Method 

        

Simple Noise 

Addition 

Kim's 

Method 

Sufficiency  

Based noise  

addition 

C
ri
te
ri
a
 

Disclosure Risk 
Not  

minimized 

Not  

minimized 

Not  

minimized 

D
a
ta
 U
ti
li
ty
 

Marginal  

Distribution 

Not  

maintained 

Not  

maintained 

Not  

maintained 

Mean  

Vector 

Maintained 

exactly 

Maintained 

asymptoticall

y 

Maintained 

asymptotically 

Variance 
Biased 

(lower) 

Biased 

(lower) 

Maintained  

exactly 

L
in
ea
r 

R
el
at
io
n
sh
ip
s X 

versus 

Y 

Biased Biased 
Maintained  

exactly 

(Y & S) 

versus  

(X & S) 

Biased Biased 
Maintained  

exactly 

Monotonic  

(non-linear) 

relationships 

Biased Biased 
Biased 

(attenuated) 

Non-monotonic  

relationships 
Biased Biased 

Biased 

(attenuated) 

Sub-set  

characteristics 

Not  

maintained 

Not  

maintained 

Mean vector 

and covariance 

matrix 

maintained 

exactly 

Ease of Use Easy Easy Easy 

Ease of  

Implementation 
Easy Easy Moderate 

 

The comparison of the three approaches clearly shows that none of the methods minimize 

disclosure risk. However, it is possible to select the specification for each of the methods 

such that the resulting disclosure risk for all three methods is comparable. Hence, the 

methods can be evaluated based on the extent to which the methods satisfy the data utility 

criteria. From the table, it is evident that the performance of the sufficiency based method 

dominates the performance of the other two methods since it provides the same or better 



performance on every criterion. From the perspective of the data user, all three methods 

are equally easy to use. However, the sufficiency based approach is, in relative terms, 

more difficult to implement than the other two methods.  

 

Thus, if the objective of data masking was to protect the privacy and confidentiality of 

the respondents and to provide data that is of high analytical value, the sufficiency based 

noise addition should be preferred over the other noise addition approaches. 

 

Comparison of synthetic data perturbation approaches 
In this case, we compare the two synthetic data approaches of multiple imputation and 

sufficiency based GADP. For a comprehensive (theoretical and empirical) evaluation of 

the two methods, please see Muralidhar and Sarathy (2006a). The summary of the 

comparison is provided in Table 12. The summary results easily show that the 

performance of the sufficiency based GADP is superior to that of or equal to the 

performance of multiple imputation. Hence, sufficiency based GADP should be preferred 

to multiple imputation.  

 

Table 12. Comparison of multiple imputation and sufficiency based GADP 

        Method 

        
Multiple Imputation 

Sufficiency based 

GADP 

C
ri
te
ri
a
 

Disclosure Risk Minimized Minimized 

D
a
ta
 U
ti
li
ty
 

Marginal  

Distribution 
Not maintained Not maintained 

Mean  

Vector 

Maintained 

asymptotically 
Maintained exactly 

Variance 
Maintained 

asymptotically 
Maintained exactly 

L
in
ea
r 

R
el
at
io
n
sh
ip
s 

X versus Y 
Maintained 

asymptotically 
Maintained exactly 

(Y & S) 

versus (X & S) 

Maintained 

asymptotically 
Maintained exactly 

Monotonic (non-linear) 

relationships 
Not maintained Not maintained 

Non-monotonic  

relationships 
Not maintained Not maintained 

Sub-set  

characteristics 
Not maintained 

Subset mean vector and 

covariance matrix 

maintained exactly 

Ease of Use Difficult Easy 

Ease of Implementation Moderate Moderate 



 

Comparison of data swapping and data shuffling 

As a final illustration, we compare the performance of data swapping and data shuffling. 

The unique advantage of both these approaches is that they are data masking techniques 

that do not require modifying the original confidential values. Hence, the marginal 

distribution of the masked variable is exactly the same as the original confidential 

variable. While both methods have this performance characteristic in common, they 

differ considerably in other characteristics. The comparative evaluation of the two 

approaches is provided in Table 13. For a comprehensive theoretical and empirical 

comparison of the two methods, please refer to Muralidhar et al. (2006c). 

 

Table 13. Comparison of data swapping and data shuffling 

        Method 

        Data Swapping Data Shuffling 

C
ri
te
ri
a
 

Disclosure Risk Not minimized Minimized 

D
a
ta
 U
ti
li
ty
 

Marginal  

Distribution 
Maintained exactly Maintained exactly 

Mean  

Vector 
Maintained exactly Maintained exactly 

Variance Maintained exactly Maintained exactly 

L
in
ea
r 

R
el
at
io
n
sh
ip
s 

X versus Y Biased (attenuated) 
Maintained 

asymptotically 

(Y & S) 

versus (X & S) 
Biased (attenuated) 

Maintained 

asymptotically 

Monotonic (non-linear) 

relationships 
Biased (attenuated) 

Maintained 

asymptotically 

Non-monotonic  

relationships 
Biased (attenuated) Not maintained 

Sub-set  

characteristics 

Marginal characteristics 

maintained exactly; all 

other relationships are 

attenuated 

Marginal characteristics 

maintained exactly; 

linear and monotonic 

relationships maintained 

asymptotically 

Ease of Use Easy Easy 

Ease of Implementation Easy Difficult 

 

As is evident from the above table, data shuffling dominates the performance of data 

shuffling in every category except “ease of implementation”. As observed earlier if the 

objective of the data masking technique is to provide lowest level of disclosure risk and 

highest level of data utility data shuffling would be the preferred method. The only 

reason that data swapping would be preferred over data shuffling would be if the data 



provider makes the selection based exclusively on ease of implementation. Unfortunately, 

such a selection would have an adverse impact on both the respondents who provided the 

data and the users.  

 

Comparison of sufficiency based noise addition and data shuffling 

In this example, we selected two methods where the performance of one method does not 

necessary dominate that of the other. The performance summary for the two methods is 

provided in Table 14.  

 

Table 14. Comparison of sufficiency based noise addition and data shuffling 

        Method 

        

Sufficiency based  

noise addition 
Data Shuffling 

C
ri
te
ri
a
 

Disclosure Risk Not minimized Minimized 

D
a
ta
 U
ti
li
ty
 

Marginal  

Distribution 

Not 

maintained 

Maintained 

exactly 

Mean  

Vector 

Maintained 

exactly 

Maintained 

exactly 

Variance 
Maintained 

exactly 

Maintained 

exactly 

L
in
ea
r 

R
el
at
io
n
sh
ip
s 

X 

versus Y 

Maintained 

exactly 

Maintained 

asymptotically 

(Y & S) 

versus (X & 

S) 

Maintained 

exactly 

Maintained 

asymptotically 

Monotonic  

(non-linear) 

relationships 

Biased 

(attenuated) 

Maintained 

asymptotically 

Non-monotonic  

relationships 

Biased 

(attenuated) 

Not  

maintained 

Sub-set  

characteristics 

Mean vector and 

covariance matrix are 

maintained exactly 

Marginal characteristics 

maintained exactly; 

linear and monotonic 

relationships maintained 

asymptotically 

Ease of Use Easy Easy 

Ease of Implementation Moderate Difficult 

 

From the above table, it is difficult to determine which of the two methods would be 

preferred. From the perspective of disclosure risk, data shuffling would be preferred. 

Data shuffling also provides the ability to maintain the marginal distribution as well as 

preserving (asymptotically) linear and monotonic relationships. However, using data 

shuffling will not maintain non-monotonic relationships. By contrast, the sufficiency 



based noise addition method maintains the mean vector and covariance matrix exactly 

which provides some significant advantages to the user. Furthermore, unlike data 

shuffling which will not maintain non-monotonic relationships, sufficiency based noise 

addition will attenuate the relationship but will not completely eliminate these 

relationships. The selection of the appropriate procedure in this case should be based on 

the specific context and perhaps an empirical evaluation of both methods.  

 

Conclusion 

 

Several new data masking techniques have been proposed in recent years allowing data 

providers many alternatives to choose from. However, in selecting the most appropriate 

technique, the data provider must carefully consider the theoretical performance of the 

procedure. Recently, there has been a disturbing trend towards relying simply on 

empirical assessments to evaluate the performance of a procedure.  

 

Consider the case of the Tree-based perturbation method. It is easy to see that this 

approach is essentially a variation of the traditional micro-aggregation method. For 

micro-aggregation, it is well known that the relationship estimates using the masked data 

are biased estimates of the original relationship. The authors evaluate the performance of 

the tree-based perturbation method along with two types of micro-aggregation, simple 

noise addition, and multiplicative noise addition. We can theoretically show that all of 

these approaches result in bias in measuring the correlation between the masked variable 

and all other variables. Hence, if the primary purpose for which the data will be used is 

for traditional regression analysis, these approaches would not be considered as good 

alternatives. However, based on applying the techniques to 4 data sets, the authors 

conclude that “indicating that all five methods perform very well for regression for these 

data sets.”  Such a conclusion is meaningless and misleading. 

 

The empirical data approach for evaluating the performance of data masking techniques 

also does not allow us to generalize the results observed for a limited number of data sets 

to all data sets. Such a general conclusion can come only from evaluating the 

performance characteristics theoretically. This study provides a general framework for 

such a theoretical evaluation. Using a structured framework like the one described in this 

study allows us to evaluate the performance of different techniques from the perspective 

of all the stakeholders, namely, the data subjects, data users, and data providers.  

 

Finally, such an evaluation serves another important purpose. As a part of the data 

release, it allows the data provider to state explicitly the performance characteristics of 

the data masking method, which provides specific assurances to the data subjects 

regarding disclosure risk and specific assurances to the data user regarding data utility. 

For instance, when the sufficiency based GADP is used as the data masking tool, the data 

provider to make the following very specific statement: 

 

“In order to protect the privacy and confidentiality of the data, the original 

data has been masked. The masking approach assures the highest possible 

level of security. In addition, the masking has been performed in such a 



manner that, for any traditional statistical analyses for which the mean 

vector and covariance matrix are sufficient statistics (such as simple 

hypothesis testing, ANOVA, regression, MANOVA, basic principal 

components, canonical correlation analysis), the estimates using the 

masked data will yield exactly the same estimates as the original data. 

However, the marginal distribution of the individual variables has been 

modified. The procedure also does not maintain non-linear relationships.” 

 

We believe that every masked data should be accompanied by such a statement and a 

comprehensive description of the data masking procedure and, where appropriate, the 

parameters of the data masking procedure.  
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