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Abstract

Statistical agencies that disseminate data to the public must protect the confiden-

tiality of respondents’ identities and sensitive attributes. To satisfy these requirements,

agencies can release the units originally surveyed with some values, such as sensitive

values at high risk of disclosure or values of key identifiers, replaced with multiple

imputations. These are called partially synthetic data. In this article, we empirically

examine trade offs between inferential accuracy and confidentiality risks for partially

synthetic data, with emphasis on the role of the number of released datasets. We also

present a two stage imputation scheme that allows agencies to release different numbers

of imputations for different variables. This scheme can result in lower disclosure risks
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and higher data utility than the typical one stage imputation with the same number of

released datasets. The empirical analyses are based on partial synthesis of the German

IAB Establishment Survey.

Key Words: Confidentiality; disclosure; multiple imputation; synthetic data.

1 Introduction

Statistical agencies and other organizations that disseminate data to the public are ethically,

practically, and often legally required to protect the confidentiality of respondents’ identities

and sensitive attributes. To satisfy these requirements, Rubin (1993) and Little (1993)

proposed that agencies utilize multiple imputation approaches. For example, agencies can

release the units originally surveyed with some values, such as sensitive values at high risk of

disclosure or values of key identifiers, replaced with multiple imputations. These are called

partially synthetic datasets (Reiter, 2003).

In recent years, statistical agencies have begun to use partially synthetic approaches to

create public use data for major surveys. For example, in 2007 the U.S. Census Bureau

released a partially synthetic, public use file for the Survey of Income and Program Par-

ticipation (SIPP) that includes imputed values of social security benefits information and

dozens of other highly sensitive variables (www.sipp.census.gov/sipp/synth data.html). The

Census Bureau also plans to protect the identities of people in group quarters (e.g., pris-

ons, shelters) in the next release of public use files of the American Communities Survey by

replacing demographic data for people at high disclosure risk with imputations. Partially

synthetic, public use datasets are in the development stage in the U.S. for the Longitudinal
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Business Database, the Longitudinal Employer-Household Dynamics survey, and the Amer-

ican Communities Survey veterans and full sample data. Statistical agencies in Australia,

Canada, Germany (Drechsler et al., 2007), and New Zealand (Graham and Penny, 2005) also

are investigating the approach. Other applications of partially synthetic data are described

by Kennickell (1997), Abowd and Woodcock (2001, 2004), Abowd and Lane (2004), Little

et al. (2004), Reiter (2004, 2005c), Mitra and Reiter (2006), An and Little (2007), and Reiter

and Raghunathan (2007).

Although these methods are being utilized, there has been little discussion of how many

multiply-imputed datasets to release. From the perspective of the secondary data analyst, a

large number of datasets is desirable. The additional variance introduced by the imputation

decreases with the number of released datasets. For example, Reiter (2003) finds nearly a

100% increase in variance of regression coefficients when going from fifty to two partially

synthetic datasets. From the perspective of the agency, a small number of datasets is desir-

able. The information available to ill-intentioned users seeking to identify individuals in the

released datasets increases with the number of released datasets. Thus, agencies consider-

ing the release of partially synthetic data generally are confronted with a trade off between

disclosure risk and data utility.

In this article, we examine the impact of the number of imputations, m, on data utility

and disclosure risk when releasing partially synthetic data. We do so by generating partially

synthetic datasets for a German establishment survey, the Establishment Panel of the In-

stitute for Employment Research (IAB). We find that, for the estimands we examine, the

disclosure risks increase more rapidly with m than the data utility does. This leads us to

examine an alternative approach to generating partially synthetic data based on imputation
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in two stages. We find that, compared to the equivalent number of datasets from a one stage

approach, this can reduce disclosure risks without sacrificing data utility.

The remainder of the paper is organized as follows. In Section 2, we describe the method-

ological background for one stage partially synthetic data, including the data utility and

disclosure risk measures we employ. In Section 3, we apply the risk and utility measures to

partially synthetic data generated from the IAB Establishment Panel. In Section 4, we apply

the two stage imputation approach and illustrate the potential improvement in risk-utility

profile. Finally, in Section 5, we conclude with some remarks on how agencies can go about

selecting the number of synthetic datasets to release.

2 Background on Partially Synthetic Data

We first outline the main ideas underpinning partially synthetic data, followed by discussions

of disclosure risk and data utility measures for partially synthetic data.

2.1 Inference with partially synthetic data

The partially synthetic data approach is similar to multiple imputation for missing data

(Rubin, 1987). There is a key difference, however: the imputations replace the originally

observed values rather than fill in missing values. This difference leads to different formulas

for combining the point and variance estimates from the multiple datasets.

Following Reiter (2003, 2004), let Zj = 1 if unit j is selected to have any of its observed

data replaced, and let Zj = 0 otherwise. Let Z = (Z1, . . . , Zs), where s is the number of

records in the observed data. Let Y = (Yrep, Ynrep) be the data collected in the original
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survey, where Yrep includes all values to be replaced with multiple imputations and Ynrep

includes all values not replaced with imputations. Let Y (i)
rep be the replacement values for

Yrep in synthetic dataset i. Each Y (i)
rep is generated by simulating values from the posterior

predictive distribution f(Y (i)
rep|Y, Z), or some close approximation to the distribution such

as those of Raghunathan et al. (2001). The agency repeats the process m times, creating

D(i) = (Ynrep, Y
(i)
rep) for i = 1, . . . , m. and releases D = {D(1), . . . , D(m)} to the public.

To get valid inferences, secondary data users can use the combining rules presented by

Reiter (2003). Let Q be an estimand, such as a population mean or regression coefficient.

Suppose that, given the original data, the analyst would estimate Q with some point esti-

mator q and the variance of q with some estimator v. Let q(i) and v(i) be the values of q and

v in synthetic dataset D(i), for i = 1, ..., m. The analyst computes q(i) and v(i) by acting as

if each D(i) is the genuine data.

The point estimate of Q is q̄m =
∑

i q
(i)/m. The estimated variance of q̄m is Tm =

b/m + v̄m, where bm =
∑

i (q
(i) − q̄m)2/(m − 1) and v̄m =

∑
i v

(i)/m. Inferences for scalar

Q can be based on t-distributions with degrees of freedom νm = (m − 1)(1 + r−1
m )2, where

rm = (m−1bm/v̄m). Methods for multivariate inferences are developed in Reiter (2005b).

2.2 Disclosure risk

To evaluate disclosure risks, we compute probabilities of identification by following the ap-

proach of Reiter and Mitra (forthcoming). Related approaches are described by Duncan and

Lambert (1989), Fienberg et al. (1997), and Reiter (2005a). Roughly, in this approach we

mimic the behavior of an ill-intentioned user of the released data who possesses the true
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values of the quasi-identifiers for selected target records (or even the entire database). To

illustrate, suppose the malicious user has a vector of information, t, on a particular target

unit in the population which may or may not correspond to a unit in the m released sim-

ulated datasets, D = {D(i), . . . , D(m)}. Let t0 be the unique identifier (e.g., establishment

name) of the target, and let dj0 be the (not released) unique identifier for record j in D,

where j = 1, . . . , s. Let M be any information released about the simulation models.

The malicious user’s goal is to match unit j in D to the target when dj0 = t0, and not to

match when dj0 6= t0 for any j ∈ D. Let J be a random variable that equals j when dj0 = t0

for j ∈ D and equals s + 1 when dj0 = t0 for some j 6∈ D. The malicious user thus seeks to

calculate the Pr(J = j|t,D, M) for j = 1, . . . , s + 1. He or she then would decide whether

or not any of the identification probabilities for j = 1, . . . , s are large enough to declare an

identification. Because the malicious user does not know the actual values in Yrep, he or she

should integrate over its possible values when computing the match probabilities. Hence, for

each record in D we compute

Pr(J = j|t,D, M) =
∫

Pr(J = j|t,D, Yrep, M)Pr(Yrep|t,D, M)dYrep. (1)

This construction suggests a Monte Carlo approach to estimating each Pr(J = j|t,D, M).

First, sample a value of Yrep from Pr(Yrep|t,D, M). Let Y new represent one set of simulated

values. Second, compute Pr(J = j|t,D, Yrep = Y new, M) using exact or, for continuous

synthesized variables, distance-based matching assuming Y new are collected values. This

two-step process is iterated R times, where ideally R is large, and (1) is estimated as the

average of the resultant R values of Pr(J = j|t,D, Yrep = Y new, M). When M has no

information, the malicious user can treat the simulated values as plausible draws of Yrep.
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To illustrate, suppose that region and employee size are the only quasi-identifiers in a

survey of establishments. A malicious user seeks to identify an establishment in a particular

region of the country with 125 employees. The malicious user knows that this establishment is

in the sample. Suppose that the agency releases m datasets after simulating only employment

size, without releasing information about the imputation model. In each D(i), the malicious

user would search for all establishments matching the target on region and having synthetic

employee size within some interval around 125, say 110 to 140. The agency selects the

intervals for employment size based on its best guess of the amount of uncertainty that

intruders would be willing to tolerate when estimating true employee sizes. Let N (i) be

the number of records in D(i), where i = 1, . . . , m that meet these criteria. When no

establishments with all of those characteristics are in D(i), set N (i) equal to the number of

establishments in the region, i.e., match on all non-simulated quasi-identifiers. For any j,

Pr(J = j|t,D, M) = (1/m)
∑

i(1/N
(i))(Y new,i

j = t), where (Y new,i
j = t) = 1 when record j is

among the N (i) matches in D(i) and equals zero otherwise. Similar computations arise when

simulating region and employee size: the malicious user exactly matches on the simulated

values of region and distance-based matches on employee size to compute the probabilities.

Following Reiter (2005a), we quantify disclosure risk with summaries of these identifica-

tion probabilities. It is reasonable to assume that the malicious user selects as a match for t

the record j with the highest value of Pr(J = j|t,D, M), if a unique maximum exists. We

consider two disclosure risk measures: the expected match risk and the true match risk. To

calculate these measures, we need some further definitions. Let cj be the number of records

in the dataset with the highest match probability for the target tj for j = 1, ..., s; let Ij = 1

if the true match is among the cj units and Ij = 0 otherwise. Let Kj = 1 when cjIj = 1
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and Kj = 0 otherwise. The expected match risk can now be defined as
∑

j (1/cj)Ij. When

Ij = 1 and cj > 1, the contribution of unit j to the expected match risk reflects the intruder

randomly guessing at the correct match from the cj candidates. The true match risk equals

∑
j Kj.

2.3 Data utility

It is important to quantify the analytic usefulness of the synthetic datasets. Research on

utility measures for synthetic data, and for disclosure limitation in general, is less developed

than research on risk assessment. Existing utility measures are of two types: (i) compar-

isons of broad differences between the original and released data, and (ii) comparisons of

differences in specific models between the original and released data. Broad difference mea-

sures essentially quantify some statistical distance between the distributions of the data on

the original and released files, for example a Kullback-Leibler or Hellinger distance. As the

distance between the distributions grows, the overall quality of the released data generally

drops.

In this paper, we focus on utility measures for specific estimands. We use the interval

overlap measure of Karr et al. (2006). For any estimand, we first compute the 95% confidence

intervals for the estimand from the synthetic data, (Ls, Us), and from the collected data,

(Lo, Uo). Then, we compute the intersection of these two intervals, (Li, Ui). The utility

measure is

I =
Ui − Li

2(Uo − Lo)
+

Ui − Li

2(Us − Ls)
. (2)

When the intervals are nearly identical, corresponding to high utility, I ≈ 1. When the
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intervals do not overlap, corresponding to low utility, I = 0. The second term in (2) is in-

cluded to differentiate between intervals with Ui−Li

(Uo−Lo)
= 1 but different lengths. For example,

for two synthetic data intervals that fully contain the collected data interval, the measure I

favors the shorter interval. The synthesis is successful if we obtain large values of I for many

estimands. To compute one number summaries of utility, we average the values of I over all

estimands.

There do not exist published, broad utility measures that account for all m synthetic

datasets. The U.S. Census Bureau has adapted the approach of Woo et al. (2007), which

is based on how well one can discriminate between the original and disclosure protected

data. In this approach, the agency stacks the original and synthetic datasets in one file and

estimates probabilities of being “assigned” to the original data conditional on all variables in

the dataset. When the distributions of probabilities are similar in the original and synthetic

data, the distributions of the variables are similar—this fact comes from the literature on

propensity scores—so that the synthetic data have high utility. This approach is especially

useful as a diagnostic for deficiencies in the synthesis methods (variables with significant

coefficients in the logistic regression have different distributions in the original and synthetic

data). It is not as useful for evaluating the impacts of increasing m, which is the objective

of our empirical investigations.

3 Application to the IAB Establishment Panel

To assess the impact of different numbers of imputations, we generate partially synthetic

datasets from the German IAB Establishment Panel. We first describe the survey and

9



synthesis plan, then evaluate the trade off between risk and utility as a function of m.

3.1 The IAB Establishment Panel

The IAB Establishment Panel, conducted since 1993, contains detailed information about

German firms’ personnel structure, development, and policy. Considered one of the most

important business panels in Germany, there is high demand for access to these data from

external researchers. Because of the sensitive nature of the data, researchers desiring direct

access to the data have to work on site at the IAB. Alternatively, researchers can submit

code for statistical analyses to the IAB research data center, whose staff run the code on

the data and send the results to the researchers. To help researchers develop code, the IAB

provides remote access to a publicly available “dummy dataset” with the same structure as

the Establishment Panel. The dummy dataset comprises random numbers generated without

attempts to preserve the distributional properties of the variables in the Establishment Panel

data. For all analyses done with the genuine data, researchers can publicize their analyses

only after IAB staff check for potential violations of confidentiality.

Releasing public use files of the Establishment Panel would allow more researchers to

access the data with fewer burdens, stimulating research on German business data. It also

would free up staff time from running code and conducting confidentiality checks. Because

there are so many sensitive variables in the data set, standard disclosure limitation methods

like swapping or microaggregation would have to be applied with high intensity, which would

severely compromise the utility of the released data. Therefore, the IAB decided to develop

synthetic datasets for public release.
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For this simulation study, we synthesize two variables in the Establishment Panel for

1997: the number of employees and the industry coded in 16 categories. For both variables,

all 7,332 observations are replaced by imputed values. Employment size and industry code

are high risk variables since (i) they are easily available in other databases and (ii) the

distribution for the number of employees is heavily skewed. Imputations are based on linear

models with more than 100 explanatory variables for the number of employees and on a

multinomial logit model with more than 80 explanatory variables for the industry. We use

large numbers of predictors in hopes of reducing problems from uncongeniality (Meng, 1994).

Some variables for the multinomial logit model are dropped for multicollinearity reasons.

3.2 Data utility for the panel

We investigate data utility for the (unweighted) average number of employees by industry,

since it is based solely on the two variables we synthesized. Tables 1 and 2 display the q̄m

and the interval overlap measures for different values of m. For most estimates, increasing

m moves point estimates closer to their original values and increases the overlaps in the

confidence intervals. Increasing m = 3 to m = 10 results in the largest increase in data

utility, as the relative confidence interval overlap averaged over all sixteen estimates increases

from 0.754 to 0.815. Increasing m = 50 to m = 100 does not have much impact on data

utility.

Each entry in Table 1 and 2 results from one replication of a partially synthetic data

release strategy. To evaluate the variability across different replications, we repeated each

simulation ten times. Table 3 presents the average confidence interval overlap over all sixteen

11



industry categories for the ten simulations. The variation in the overlap measures decreases

with m. This is because the variability in q̄m and Tm decreases with m, so that results

stabilize as m gets large. We believe most analysts would prefer to have stable results across

different realizations of the synthesis and hence favor large values of m.

We also estimated the coefficients in a probit regression that appeared in a paper by

Zwick (2005). The response is a binary variable indicating if firms offer vocational training.

There are twelve explanatory variables including number of employees and industry. The

results show similar trends: increasing m results in point estimates that are closer to the

observed data estimates, higher CI overlap, and lower variability between the replications.

Tables for this regression are omitted for brevity.

3.3 Disclosure risk for the panel

To assess disclosure risk, we assume that the intruder knows which establishments are in-

cluded in the survey and their true values for the number of employees and industry. This

is a conservative scenario but gives, in some sense, an upper bound on the risk for this level

of intruder knowledge. Intruders might also know other variables on the file, in which case

the agency may need to synthesize them as well.

The intruder computes probabilities using the approach outlined in Section 2.2. We

assume that the agency does not reveal the synthesis model to the public, so that the only

information in M is that employee size and industry were synthesized. For a given target

t, records from each D(i) must meet two criteria to be possible matches. First, the record’s

synthetic industry code exactly matches the target’s true industry code. Second, the record’s
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synthetic number of employees lies within an agency-defined interval around the target’s true

number of employees. Acting as the agency, we define the interval as follows. We divide the

transformed (true) number of employees into twenty quantiles and calculate the standard

deviation of the number of employees within each quantile. The interval is te ± sds, where

te is the target’s true value and sds is the standard deviation of the quantile in which the

true value falls. When there are no synthetic records that fulfill both matching criteria, the

intruder matches only on the industry code.

We use 20 quantiles because this is the largest number of groups that guarantees at least

some variation within each group. Using a larger number of quantiles results in groups with

only one value of employment, which forces exact matching for targets in those quantiles. On

the other hand, using a small number of quantiles does not differentiate adequately between

small and large establishments. For small establishments, we want the potential matches

to deviate only slightly from the original values. For large establishments, we accept higher

deviations.

We studied the impact of using different numbers of groups for m = 50. We found a

substantial increase in the risks of identifications, especially for the small establishments,

when going from exact matching to five quantiles. Between five and twenty quantiles, the

disclosure risk doesn’t change dramatically. For more than twenty quantiles, the number of

identifications starts to decline again.

Table 4 displays the average true matching risk and expected matching risk over the ten

simulation runs used in Table 3. There is clear evidence that a higher number of imputations

leads to a higher risk of disclosure. This is because, as m increases, the intruder has more

information to estimate the distribution that generated the synthetic data. It is arguable
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that the gains in utility, at least for these estimands, are not worth the increases in disclosure

risks.

The establishments that are correctly identified vary across the 10 replicates. For ex-

ample, for m = 50, the total number of identified records over all 10 replicates is 614. Of

these records, 319 are identified in only one simulation, 45 are identified in more than five

simulations, and only 10 records are identified in all 10 replications. For m = 10, no records

are identified more than seven times.

The risks are not large on an absolute scale. For example, with m = 10, we anticipate

that the intruder could identify only 83 establishments out of 7,332. This assumes that

the intruder already knows the establishment size and industry classification code and also

has response knowledge, i.e. he knows which establishments participated in the survey.

Furthermore, the intruder will not know how many of the unique matches (i.e. cj = 1)

actually are true matches.

We also investigated the disclosure risk for different subdomains for m = 50. None of

the industries had a percentage of identified establishments exceeding 4%. The percentage

of identified establishments was close to 5% for the largest decile of establishment size and

never went beyond 2.5% for all the other deciles. Four of the sixteen industry categories had

less than 200 units in the survey. For these categories, the percentage of identified records

ranged between 5% and almost 10%. For the remaining categories, the disclosure risk never

went beyond 2.3%. If these risks are too high, the agency could collapse some of the industry

categories.
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4 A Two Stage Approach for Imputation

The empirical investigations indicate that increasing m results in both higher data utility

and higher risk of disclosures. In this section, we present and investigate an alternative

synthesis approach that can maintain high utility while reducing disclosure risks. The basic

idea behind this approach is to impute variables that drive the disclosure risk only a few

times and other variables many times. This can be accomplished by generating data in two

stages, as described by Reiter and Drechsler (2008).

4.1 Inference for synthetic datasets generated in two stages

The agency first partitions Yrep = (Ya, Yb), where Ya are the values to be replaced in stage

1 and Yb are the values to be replaced in stage 2. The agency seeks to release fewer repli-

cations of Ya than of Yb, yet do so in a way that enables the analyst of the data to obtain

valid inferences with standard complete data methods. To do so, the agency first replaces

confidential values of Ya with draws from f(Ya | Y, Z). Let Y (i)
a be the values imputed in the

first stage in nest i, for i = 1, . . . , m. Second, in each nest, the agency generates Y
(i,j)
b by

drawing from f(Yb | Y, Z, Y (i)
a ). Each synthetic dataset, D(i,j), comprises (Y (i)

a , Y
(i,j)
b , Ynrep).

The entire collection of M = mr data sets, Dsyn = {D(i,j), i = 1, . . . , m; j = 1, . . . , r}, with

labels indicating the nests, is released to the public.

To get valid inferences from two stage synthetic data, new combining rules for the point

and variance estimate are necessary. Let q(i,j) and v(i,j) be the values of q and v in synthetic

dataset D(i,j), for i = 1, ..., m and j = 1, ..., r. The following quantities are necessary for
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inferences

q̄(i)
r =

∑
j

q(i,j)/r (3)

q̄m =
∑

i

q̄(i)
r /m =

∑
j

∑
i

q(i,j)/mr (4)

bm =
∑

i

(q̄(i)
r − q̄m)2/(m − 1) (5)

v̄m =
∑
ij

v(i,j)/mr (6)

The analyst can use q̄m to estimate Q and T2st = v̄m + bm/m to estimate the variance of

q̄m. Inferences can be based on a t-distribution with ν2st = (m − 1)(1 + mv̄m/bm)2 degrees

of freedom (Reiter and Drechsler, 2008).

4.2 Application for the IAB Establishment Panel

We impute the industry in stage one and the number of employees in stage two. Exchanging

the order of the imputation does not materially impact the results. We consider different

values of m and r. We run ten simulations for each setting and present the average estimates

over these ten simulations.

Table 5 displays the average confidence interval overlap over all industries and the two

disclosure risk measures for the different settings averaged over all ten replications. As with

one stage synthesis, there is not much difference in the data utility measures for different

M , although there is a slight increase when going from M = 10 to M ≈ 50. The two stage

results with M = 9 (average overlap of .819) are slightly better than the one stage results

with m = 10 (average overlap of .806). The two stage results with M ≈ 50 are always

slightly better then the one stage results for m = 50 (average overlap of .817).

The improvements in data utility when using the two stage approach are arguably minor,
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but the reduction in disclosure risks is more noticeable. The measures are always substan-

tially lower for the two stage approach compared to the one stage approaches with the same

number of synthetic datasets. For example, releasing two stage synthetic data with M = 9

carries an average true match risk of 67, whereas releasing one stage synthetic data with

m = 10 has a true match risk of 82. Risks also are lower for M ≈ 50 as compared to one

stage with m = 50.

The two stage methods have lower disclosure risks at any given total number of released

datasets because they provide fewer pieces of data about industry codes. This effect is

evident in the two stage results with M ≈ 50. The risks increase monotonically with the

number of imputations dedicated to the first stage.

5 Conclusion

Releasing partially synthetic datasets is an innovative method for statistical disclosure con-

trol. The released datasets can provide detailed information with high data quality without

breaking the pledge of confidentiality under which many of the data are collected. As with

most disclosure control methods the risk of disclosure is not zero however, since true values

remain in the released datasets and intruders can try to guess true values from the synthetic

values.

In this paper we demonstrated that both data utility and disclosure risk increases with

the number of synthetic datasets. Thus, agencies have to decide what level of disclosure risk

they are willing to accept to provide the highest data utility possible. In general, agencies

consider disclosure risks to be primary and so are inclined to release only a few number of
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synthetic datasets. This can be problematic for inferences, particularly when synthesizing

many values. As we have shown, it is possible to simultaneously reduce disclosure risks and

improve data utility by using a two stage imputation approach.

In our application, we found that a two stage approach can drive down the disclosure

risk while keeping the data utility at the same level. A topic for future research could be

to develop methods to identify the ”best” number of imputations without the need of time

consuming simulation studies. Another important issue is to develop measures that help to

decide which variables should be imputed on stage one and which can be imputed on the

second stage.
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Table 1: Average number of employees by industry for one stage synthesis.

original data m=3 m=10 m=50 m=100

Industry 1 71.5 84.2 84.2 82.6 82.4

Industry 2 839.1 919.4 851.2 870.2 852.9

Industry 3 681.1 557.7 574.5 594.4 593.1

Industry 4 642.9 639.9 644.8 643.5 649.6

Industry 5 174.5 179.8 176.0 183.5 187.4

Industry 6 108.9 132.4 121.8 120.8 120.7

Industry 7 117.1 111.6 112.9 117.1 119.6

Industry 8 548.7 455.3 504.3 514.2 513.0

Industry 9 700.7 676.9 689.4 711.8 713.4

Industry 10 547.0 402.4 490.3 499.3 487.7

Industry 11 118.6 142.7 130.2 132.1 131.0

Industry 12 424.3 405.6 414.9 424.5 425.2

Industry 13 516.7 526.1 549.1 550.2 551.9

Industry 14 128.1 185.8 167.1 160.0 159.0

Industry 15 162.0 292.8 233.4 221.9 238.1

Industry 16 510.8 452.8 449.9 441.5 439.3
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Table 2: Confidence interval overlap for average number of employees for one stage synthesis

m=3 m=10 m=50 m=100

Industry 1 0.778 0.770 0.777 0.782

Industry 2 0.844 0.893 0.853 0.874

Industry 3 0.730 0.776 0.797 0.800

Industry 4 0.983 0.992 0.995 0.971

Industry 5 0.920 0.935 0.863 0.817

Industry 6 0.605 0.749 0.764 0.767

Industry 7 0.809 0.820 0.863 0.876

Industry 8 0.692 0.862 0.894 0.890

Industry 9 0.926 0.966 0.968 0.963

Industry 10 0.660 0.876 0.897 0.871

Industry 11 0.609 0.804 0.773 0.792

Industry 12 0.903 0.912 0.916 0.918

Industry 13 0.946 0.814 0.809 0.799

Industry 14 0.408 0.589 0.655 0.664

Industry 15 0.586 0.639 0.654 0.638

Industry 16 0.666 0.645 0.583 0.566

Average 0.754 0.815 0.816 0.812
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Table 3: Average confidence interval overlap for average number of employees for 10 inde-

pendent simulations of one stage synthesis.

m=3 m=10 m=50 m=100

Simulation 1 0.754 0.815 0.816 0.812

Simulation 2 0.818 0.818 0.808 0.820

Simulation 3 0.812 0.813 0.820 0.816

Simulation 4 0.854 0.796 0.819 0.817

Simulation 5 0.823 0.808 0.808 0.824

Simulation 6 0.796 0.801 0.823 0.807

Simulation 7 0.787 0.778 0.819 0.819

Simulation 8 0.785 0.799 0.815 0.821

Simulation 9 0.770 0.829 0.823 0.821

Simulation 10 0.808 0.804 0.821 0.809

Average 0.801 0.806 0.817 0.817

Table 4: Averages of disclosure risk measures over ten repetitions of the simulation.

m=3 m=10 m=50 m=100

Expected match risk 67.8 94.8 126.9 142.5

True match risk 35.2 82.5 126.1 142.4
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Table 5: Average CI overlap and match risk for different two stage imputations (10 simulation

runs).

m,r Avg. overlap Expected match risk True match risk

m=3,r=3 0.819 83.1 67.6

m=3,r=16 0.819 98.0 91.8

m=3,r=33 0.822 99.8 96.3

m=5,r=10 0.823 106.1 101.2

m=10,r=5 0.824 113.8 109.4

m=16,r=3 0.824 119.9 116.4
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