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Additive Models for Data Perturbation

» Simple additive noise
> Kim'’s additive noise
» General Additive Data Perturbation (GADP)

» Information Preserving Statistical Obfuscation
(IPSQO)

» Sufficiency Based Additive Noise



Running Example

»We will use the following running example
to illustrate the differences between the
techniques.

» The example has 25 observations and two
variables (one non-confidential and one
confidential). Both variables have zero
mean and unit variance. The data has a
bivariate normal distribution.
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Simple Additive Noise

» Independent noise with mean 0 and a
specified variance is added to the original
confidential variable

Y=X+e
The variance of e dictates the level of
perturbation

The procedure is then repeated for every
confidential variable.

The variables are perturbed independent of
one another



Additive Perturbation
(Variance of e = 0.10, 0.25, 0.50, 1.00)

S X Yy Y> Ys Yy
-2.2314 06972 0.7913 0.8459 09075  0.9947
-0.6940 -1.7339 -1.7386 -1.7413 -1.7444 -1.7488
1.2790  1.1636 1.3211 1.4127 1.5158  1.6617
0.4442 -0.4836 -0.1338 0.0695 0.2987 0.6227
-1.5884 0.1432  0.7453 1.0952 1.4895  2.0472
1.0069 08774 06616 05362 0.3948  0.1949
-0.2114  0.7093 0.7665  0.7997  0.8371 0.8901
0.8827 09078 06490 0496  0.3291 0.0893
0.4523 09337  0.9351 0.9359 09367 0.9380
-1.0557 -2.7687 -2.8979 -2.9730 -3.0577 -3.1773
0.0808 0.1185 04247 06026  0.8032 1.0868
0.0v29 02172 01377 00916 0.0395 -0.0340
-0.3407  -1.7221  -21020 -2.3228 -2.5717 -2.9236
0.7820 03549 -0.3915 -0.8253 -1.3141 -2.0054
0.4765 1.5159 1.0617 079786  0.5003  0.0796
0.8657 -0.2492 -0.3693 -0.4392 -0.5179 -0.6292
-0.0043 05429 0.7193 08218 09374 1.1008
0.5420 -0.0771 -0.5383 -0.8063 -1.1083 -1.5354
-1.1997 -0.3667 -0.4418 -0.4855 -0.5347 -0.6042
1.8372 06342 07205 07707 0.8272  0.9072
-1.0015  -1.3335 -1.4381 -1.4989 -1.5674 -1.6643
0.7178  -0.2504  0.2281 0.5061 0.8195 1.2626
0.3491 0.2160 06636  0.9236 1.2167 1.6313
0.1329 -0.1370 -0.0596 -0.0147 0.0360 0.1076
-1.5850 0.0904 02857 03992 0.5271 0.7080

Variance 1.0000 | 1.0000 | 1.1203 12828 15473  2.0688
Correlation with S | 0.4000 | 0.3157 02612  0.2031 0.1332




Result

» The result of the application of noise addition is

obvious

As the noise variance increases, the variance of the
perturbed variable increases and the correlation
between S and Y is attenuated

The results are asymptotic. The variance of the
perturbed data will approach (Var of X + Var of e) as
the size of the data set increases. For small data sets
such as this one, we will see small differences between
the expected variance and the actual variance



Impact on Data Analysis
(Var(e) = 0.10) (S on x-axis (X or Y) on y-axis)
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Impact on Data Analysis
(Var(e) = 0.25) (S on x-axis (X or Y) on y-axis)
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Impact on Data Analysis
(Var(e) = 0.350) (S on x-axis (X or Y) on y-axis)
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Impact on Data Analysis
(Var(e) = 1.00) (S on x-axis (X or Y) on y-axis)
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Summary

»Not surprisingly, when the level of noise is
small, the results using the perturbed data
are very similar to that using the original
data.

»As the level of noise increases, the results
using the perturbed data diverge from the
results using the original data.

12



Kim’s Method

» For a single confidential variable, the application
of Kim’s method is the same as simple additive
noise.

13

When there are multiple confidential variables, Kim’s
method uses a noise term with covariance matrix of the
form d2,, where 2, is the covariance matrix of the
confidential variables

By contrast, simple additive noise terms would have a
covariance matrix that is diagonal



General Additive Data Perturbation
(GADP) ***

» In GADP, the perturbed values are generated as
follows:

Yi=Bo+BiS+e
The values of B,, B4, and the characteristics of the noise
¢ are estimated from the original data

This is the equivalent of generating a set of values Y
from a linear approximation to the conditional
expectation of X|S. Asymptotically, the mean vector and
covariance matrix of (S, Y) is the same as (S,X)

Asymptotically, this model maximizes security

f(X|S,Y,T) = {(X|S,T) where T represents information available
from the release of summary information on the first 2 moments
regarding X

14



Perturbation Parameter

> |n noise addition, the variance of the noise
term represents the “perturbation
parameter” since it dictates the extent of
perturbation

»No such parameter is required in the
GADP method. The entire perturbation is
based on the relationships between the
variables in the data set

15



Estimating the model parameters

>Bo = My — Zxs(Zss) 'Ms

>By = Zxs(Zss)

>€ ~ MVN(0, Zyy — Zxs(Zss) 'Zsx)
> For the current example

Bo=0

B, = 0.4000

¢ ~ Normal(0, 0.84)

16



GADP Applied to Example
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Results

»For small data sets, the results from the
application of the GADP procedure would
be slightly different from the original data.
As the size of the data set increases, the
values of the perturbed data approach the
values of the original data

We see a small difference in the mean,
variance, and correlation when GADP is
applied to this relatively small data set

18



Impact on Data Analysis

(S on x-axis (X or Y) on y-axis)
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Summary

» Compared to the noise added methods,
the results from GADP more closely
resemble the original data

As sample size increases, the estimates from
the GADP data will approach the original data

20



Information Preserving Statistical
Obtuscation (IPSO) (Burridge 2003) ***

» IPSO can be viewed as a GADP model with the
additional requirement that the mean vector and
covariance matrix of the perturbed data are
exactly the same as the original data even for

small datasets

Ensures that the perturbed data has the some
“sufficient statistics” as the original data for a sample of

any size
The sufficient statistics that are being maintained are
the mean vector and covariance matrix

21



Sufficient Statistics

» A sufficient statistic is a particular kind of statistic
that contains all the information about 0, the
population parameter for which it is the
estimator, that is contained in the sample.

It is important to note that it is assumed that the density
of the distribution is known. The sufficient statistic
cannot be used to check the validity of the assumption
that the density is of a particular form

(Mood, Graybill, Boes, “Introduction to the Theory of
Statistics,” McGraw Hill, New York, 2001)

22



General Linear Models

»Assume that we are attempting to estimate
the parameters of a linear model.

> It is well known that the sufficient statistics
for estimating the parameters of the
General Linear Model with normality
assumptions, are the mean vector and
covariance matrix.

» These two statistics contain as much
information regarding the parameters of
the GLM as the entire sample data

23



Mean vector and Covariance Matrix
as Sufficient Statistics

» The mean vector and covariance matrix
serve as the sufficient statistics for many
parametric statistical analysis including but
not limited to

Simple hypothesis testing
Analysis of variance
Regression analysis

Multivariate analysis (MANOVA, principal
components analysis, canonical correlations)

24



[PSO

»Burridge (2003) essentially argues that if
we are able to generate a perturbed data
set with exactly the same mean vector and
covariance matrix as the original data set,
for statistical analyses for which the mean
vector and covariance matrix are sufficient
statistics such as the GLM, the results of
the analysis using the perturbed data will
be exactly the same as that using the
original data

25



But ...

> It Is Important to remember that there is no
guarantee regarding the results for other
types of analyses (non-parametric, data
mining, etc.)

> |n addition, the results of tests of
underlying assumption (such as normality,
outliers, etc.) will not be the same using
the perturbed data as they are using the
original data

26



Implementing IPSO

» The IPSO model is the same as the GADP
model
Yi=Bo+ BS te
The values of 3, B4, and the characteristics of the
noise € are estimated from the original data

> The only difference between GADP and IPSO is
in the generation of the noise terms

Generate the noise terms orthogonal to the original
data

Standardize the noise term to have mean vector
exactly 0 and covariance matrix exactly equal to 2y —

2xs(Zss) ' Zsx
(Note that this is a refinement of the IPSO presented by
Burridge)

27



[PSO Applied to Example
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Impact on Data Analysis

(S on x-axis (X or Y) on y-axis)
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» Only one line is visible in the above chart because the regression lines using
the original and perturbed data are exactly the same as are all other
estimates from this regression analysis
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Disclosure Risk

»We will provide an extensive discussion of
disclosure risk later in the presentation.

» At this time, suffice it to say that IPSO
produces microdata with the lowest level of
disclosure risk.

30



[IPSO versus Noise Addition

> Data utility

For many traditional statistical analyses, IPSO provides
exactly the same estimation results as the original data.
Noise addition methods do not.

> Disclosure risk

Releasing IPSO perturbed microdata results in the
lowest level of disclosure risk. Noise addition methods
do not.

» IPSO provides better utility and lower disclosure
risk than noise addition methods

31



[PSO — A Complete Solution?

»|PSO is a complete solution to the
perturbation problem if the joint distribution
of the original data set is multivariate
normal

It is an almost complete solution even when the
non-confidential variables are categorical and
the joint distribution of the confidential variables
IS multivariate normal

32



Issues with IPSO

» The IPSO approach uses a linear model to
generate perturbed data. Consequently,
when the confidential variables do not
have a joint multivariate normal distribution

Marginal distribution is significantly altered

May see negative values in the perturbed data when
the original data is all positive

Non-linear relationships are not maintained

The perturbed data may be considered
“synthetic”

33



A Different Example

> In this example, we consider a situation
where the marginal distribution of X is
skewed. In addition, the relationship
between X and S is non-linear

»We have perturbed this data using the
IPSO approach

34



Impact on Marginal Distribution of the
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Impact on Marginal Distribution of X

» T'he marginal distribution of the perturbed
variable is significantly different (less
skewed) from the original variable

> The original variable did not have negative
values while the perturbed variable has
negative values

36



Original Relationship between S and X

Original (S on x-axis and X on y-axis)
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Perturbed Relationship between S and Y

Perturbed (S on x-axis and Y on y-axis)
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Relationships

»Linear regression results using the
perturbed data are exactly the same as the
original data

>But ...

Perturbation results in completely changing the
relationship between the variables. The original
relationship is non-linear while after
perturbation, the relationship is almost linear

39



“Synthetic” Data

» The IPSO perturbed values are generated
only as a function of the non-confidential
variables S and independent of the values
of X ... often referred to as "synthetic” data

» Some researchers and users are hesitant
to use synthetic data because it is not
“related” to the original data

40



Statistical versus Practical Perspective

» From a statistical perspective, we can argue that
IPSO delivers exactly what it promises. We can
also argue that most users will be analyzing the
data only using traditional statistics and so IPSO
offers a good solution

» From a practical perspective, the problem is that
iIf providers and users are not willing to use the
procedure, then its statistical effectiveness is
moot

41



What is the alternative?

» The alternative that is often suggested is to use
simple noise addition

Alternative approaches such as copula based
perturbation and data shuffling can also be considered.

» With simple noise addition, when the perturbed
values are in “proximity” to the original values we
can

maintain the marginal distribution to be “close” to the
original
maintain most relationships to be “close” to the original

42



Perturbing the data with noise addition

> Assume that the confidential variable X
was perturbed using noise addition with
variance of noise term equal to 10% of the
variance of the confidential variable.

»\What is the impact?

43



Impact on Marginal Distribution
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Impact on Relationships

Even with small noise addition, the results are different

Scatter Plot of S versus Original X Scatter Plot of S versus Noise Added Y
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Comparison

> With noise addition

The marginal distribution of the perturbed variable is better than
that of the IPSO variable

The (non-linear) relationship is maintained better than IPSO

> But

46

The variance of the noise added variable (1.4285) is higher than
the variance of the original variable (1.2762) and the IPSO
perturbed data

The correlation between the noise added variable and the non-
confidential variable (0.7122) is lower than the correlation between
the original variables (0.7578) and the IPSO perturbed variables

The results of linear regression using the noise added data is
different than that using the original data and the IPSQO perturbed
data



Can we ...

»Add noise but also maintain the mean
vector and covariance matrix of the
perturbed data to be the same as the
original data?

> |n other words, can we use the noise

addition approach while also retaining the
benefits of IPSO?

YES!

47



Sufficiency-Based Noise Addition

> Model:

y; =Y +ax; + fBs; + €

» The only parameter that must selected is the “proximity
parameter” q.

» All other parameters are dictated by the selection of this
parameter

» “Sufficiency-based” means that we will maintain the mean
and covariance matrix exactly, and therefore any linear
model constructed with the perturbed data will be exactly
the same as the original data.

48



The Proximity Parameter

» The parameter a (0 < a < 1) dictates the
strength of the relationship between X and

Y

49

Whena=1,Y =X
When a = 0, the perturbed variable is
generated independent of X (the IPSO model)

We provide the ability to specify a to achieve

any degree of proximity between these two
extremes



Other Model Parameters

> B =(1-a)(oys/0%ss)
sYy=(1-axX -F
> £ ~Normal(0, (1 — 02)(0yg)%025g

» € orthogonal to X and S

50



Note that ...

»|n order to maintain the mean and
covariance exactly, it is NECESSARY that
the model for generating the perturbed
values MUST be specified in this manner

Other "model based” approaches CANNOT
maintain the mean and covariance exactly

51



Univariate Case
» For thiscase, 0 <a <1

> When a = 1, the model will reduce to y, = x

> When a = 0, the model will reduce to
Y. =y +Bs +¢ ... the IPSO model

»> 0 < a < 1represents intermediate cases

When a is close to 1, the correlation between X and Y
will be close to 1

When a is close to 0, the correlation between X and Y
are conditionally independent given S.

52



Equivalence to Noise Addition

» The selection of a is the same as selecting
the variance of the noise term in noise
addition

»For any given data set and a specific value
of a, we can derive the effective level of
noise that is added

» Conversely, If we wish to add a specified

level of noise, we can determine the value
of a based on this

53



Example Data

>a =0.90

» From this specification
y = 0.0767
B = 0.000296
Var(g) = 0.10322

» This is the equivalent of implementing noise
addition with approximately 8% noise
Var(e)/Var(X) = 0.10322/1.2761 = 0.0809

» To get exactly 10% noise, a = 0.8747

54



Marginal Distribution
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Relationships

Scatter Plot of S versus Original X Scatter Plot of S versus Sufficiency Based Y
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Summary

> The sufficiency based approach allows the
data provider all the flexibility of noise
addition while also preserving the mean
vector and covariance matrix

There is no reason to implement simple noise
addition

o7



Multivariate Case

» The sufficiency based approach can be
extended to multiple confidential variables

» Two possible cases
Equal proximity
Unequal proximity

58



Equal proximity

> In this case, we assume that the proximity of
every perturbed variable to the original variable
IS the same

>ai=afori=1,2,...,k
Where k is the number of confidential variables
(00 00..0
B O v0..0
o 0<as<1
_O 00 o

59



Unequal Proximity

»In this case, the proximity of one or more
confidential variables is different from
others

0, 00..0 |
<q <
g 0 @,0..0 0=<ai="
a:
000.. 0o

»In this case, it would be necessary to verify
that the resulting covariance matrix of the
noise term ¢ is positive definite

60



Multivariate Example

> A data set with 2 non-confidential and 2
confidential variables. All variables have
mean O and variance 1. The data set has
25 observations

We chose a small data set to show that
regardless of the size of the data set, the
procedure will work effectively

61



Original data
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First Perturbed Example:

a = 0.90 for both variables
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Results of Regression
to Predict X, given S; & S,

ORIGINAL DATA

Regression Statistics

PERTURBED DATA

Regression Statistics

Multiple R 0.403115 Multiple R 0403115
R Square 0.162501 R Square 0.162501
Adjusted R Square  0.086365 Adjusted R Square  0.086365
Standard Error 0.955844 Standard Error 0.955844
Observations 25 Observations 25
ANOVA ANOVA
df S§ MS F Significance F drf S5 MS F Significance F

Regression 2 390005 195002 213435 0.14218  Regression 2 390005 195002 213435 0.14218
Residual 22 20.10004 091364 Residual 22 2010004 091364
Total 24 2400008 Total 24 24 00008

Coefficients Coefficients
Intercept 0.00000 Intercept 0.00000
51 -0.06250 51 -0.06250
52 0.43750 52 0.43750

64




First Perturbed Example:

a = 0.90 for first variable and a = 0.20 for second variable

» The resulting covariance
matrix of the noise terms
IS shown.

» We can show that this
covariance matrix is not
positive definite and
hence we must re-specif
the values of a
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Alternative Specification

o = 0.80 for first variable and a = 0.30 for second variable

» We can verify that this
covariance matri.
positive definite

» The perturbation
performed with tt
values
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Perturbed data

=1 S22 =1 o2
-0 3793 0. 5233 -0, 2353 O. 5124
-0 1618 03718 2. TFATOD 06557
-1. 4152 -0 4553 - 4189 O.0167F
-0 407 7T 0O_3951 -1 . 7539 -1.3I6552
02739 - . 8532 -0 OS0S 0.38391
1 1063 2 0839 18246 - 3132
218318 0. 9395 —0. 4430 0. 3477
-1 73 -2 3853 - 4345 0. 2958
09358 1.0781 -1.3258 -1. 830183
0. 1139 - 2034 0. 2942 -0 5151
0. 4142 - . 8983 - 3442 -0 . 2562
-0 8580 03205 1. 1242 1. 7454
Q2773 . 4921 -O0.3ITGE -1. 4787
06457 -0 1180 00981 0. 45193
- 19203 O &S411 - 2113 O 4001
-0 . BF 7S 01346 -0 5433 0.3189
-0. 79241 -1 . ME53 - 0322 20751
-1. 1311 -1. 7683 -0 9724 1. 1834
-0 73239 0. 83343 -0 18355 -0 . 5428
0.2944 1. 3029 1. 1571 1. 4588
-0.0638 00855 -0 5562 . 3392
2. 1286 1. 3500 1 68608 - 0101
-1.0319 . 3042 - OF 1S -0 D457
1. 5504 0. 3104 - 5016 -0.56148
-0 8059 - 0989 0. 1646 -0 9752

Wariance padialelng 1 CHOHOC)

Correlation with S1 O 200000 —I0 3000

Correlation with S22 O _A000 —0 . 2000
Correlation {1 & X2) O 4000
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Results of Regression to predict S1

using the other 3 variables

ORIGINAL DATA

Regression Stalistics

PERTURBED DATA

Regression Stalistics

Multiple R 0.63081 Multiple R 0.63081
R Square 0.39792 R Square 0.39792
Adjusted R Square 0.31191 Adjusted R Square 0.31191
Standard Error 0.82951 Standard Error 0.82951
Observations 25 Observations 25
ANOVA ANOVA
df 5SS MS F Significance F df 55 MS F Significance F

Regression 3 955006 318335 462633 0.01232  Regression 3 955006 318335 462633 001232
Residual 21 14.44998 0.68809 Residual 21 14.44998 0.68809
Total 24 24 00004 Total 24 24 00004

Coefficients Coefficients
Intercept 0.00000 Intercept 0.00000
52 0.52084 52 0.52084
X1 0.08333 Y1 0.08333
X2 -0.22916 Y2 -0.22916

68




Third Example

»In this perturbation, the value of a was
specified as O for both variables. The
resulting model is the IPSO model.
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Third Example Data
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“Wariance

Correlation with =1
Correlation withh S22
Correlation {31 & 22
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Principal Components Analysis using
original and perturbed data

Eigenvalues of the Correlation Matrix Eigenvalues of the Correlation Matrix
Eigenvalue Difference Proportion Cumulative Eigenvalue Difference Proportion Cumulative
1 1.8489 0.4321 0.4622 0.4622 1 1.8489 0.4321 0.4622 0.4622
2 1.4167 1.0002 0.3542 0.8164 2 1.4168 1.0002 0.3542 0.8164
3 0.4165 0.0987 0.1041 0.8205 3 0.4165 0.0987 0.1041 0.9205
4 0.3179 0.0795 1.0000 4 0.3179 0.0795 1.0000
Eigenvectors Eigenvectors
Prinl Prin2 Prin3 Prind Prinl Prin2 Prin3 Prind
sl 0.6249 -0.1695 0.7304 -0.2173 sl 0.6249 -0.1695 0.7304 -0.2172
s2 0.6606 0.0317 -0.3625 0.6567 s2 0.6606 0.0317 -0.3625 0.6567
x1 0.3613 0.6551 -0.3286 -0.5765 vyl 0.3613 0.6551 -0.3286 -0.5765
x2 -0.2062 0.7356 0.4766 0.4350 y2 -0.2062 0.7356 0.4766 0.4350
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Assessment of Disclosure Risk

» The disclosure risk resulting from the
sufficiency based approach is directly
proportional to a

When a = 1, disclosure risk = 1

When a = 0, the disclosure risk is that resulting
from the use of the non-confidential variables
only
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Information loss versus Disclosure Risk

»As a approaches 1, information loss
decreases and disclosure risk increases

»As a approaches 0, information loss
Increases and disclosure risk decreases
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An Assessment of Disclosure Risk

»\We assessed disclosure risk as the
proportion of variability in the original
confidential variables using the non-
confidential variables and the perturbed
variable for the 3 models described above
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Value Disclosure Risk

Proportion of Variability
S e Explained in
al G2 Variables P
X1 X2
0.90 0.90 S1,82,Y1,Y2 0.840875 0.827219
0.80 0.30 S1,82,Y1,Y2 0.783402 0.264656
0.00 0.00 S1,82,Y1,Y2 0.162501 0.090624
N/A N/A S1, S2 0.162501 0.090624
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Summary

> The table shows that disclosure risk is
directly proportional to the value of a

» The table also shows that the IPSO model
offers the highest level of protection

All the information regarding the confidential
variables is available from the non-confidential
variables

The perturbed values do not provide any
additional information
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Conclusions

»We can implement additive noise methods
while simultaneously preserving sufficient
statistics

» There is no reason to implement noise
addition without this important
enhancement
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Assurance to Users

“The data has been perturbed to preserve the privacy and
confidentiality of individual data points. The perturbation
has been performed in such a manner that, for most
traditional statistical analyses (see list below), the results
of the analyses performed on this data will be exactly
the same as that using the original data. It is important
to note however that form (marginal distribution) of the
confidential variables will be different from that of the
original variables. In addition, this assurance does not
extend to non-parametric analysis and non-traditional
(data mining) analyses. If you have any questions
regarding this data, please contact Mr. Joerg Drechsler
for further information.”
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Implementation in J-Argus

» The sufficiency based noise addition
approach is available on py-Argus (or will
soon be)
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