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Abstract

Applied researchers often face the challenge to estimate a competing risks model without

having knowledge about the marginal distributions of the competing variables. While the

Kaplan-Meier estimator requires independent censoring, copula based estimators are also

consistent in presence of dependent competing risks. In this paper we suggest a convenient

implementation for a multivariate Archimedean copula based estimator. We analyse the

applicability of this estimator by means of simulations and real world unemployment duration

data from Germany. Our results suggest that a copula model yields nice results if the

dependence structure is known. Moreover, it is a useful tool for the assessment of (in-

)dependence assumptions in applied duration research.
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1 Introduction

Applied economic research usually faces the challenge to model an empirical problem in such a

way that it is not too complex but still realistic. With regard to duration analysis, the complexity

of the underlying problem often requires a competing risks structure. As an example, we may

want to study the effects of cutting unemployment benefits on the duration of unemployment.

The model would be too narrow if it focuses on transitions to employment only because the policy

can have multiple effects. There may be also impacts on the transitions to other risks such as the

timing of early retirement or assignment into active labour market programmes. A multivariate

competing risks model is in this case more appropriate for the empirical analysis. Unfortunately,

observed data alone is not sufficient to identify the marginal distributions of the latent variables if

the dependence structure between risks is unknown. This well known fundamental identification

problem cannot be resolved (Cox, 1962, Tsiatis, 1975). If one is not willing to impose identifying

assumptions or to make use of information provided by covariates, it is only possible to determine

bounds for the marginal distributions (Peterson, 1976). Parametric or semiparametric versions of

the proportional hazard (PH) model or the mixed proportional hazard model (MPH) are popular

in applied economic research. These approaches have well explored properties and they are rather

convenient to apply. These models are identified if among other things the covariate structure

possesses certain properties (Heckman and Honoré, 1989, Abbring and van den Berg, 2003). By

using these models one imposes implicit assumptions on the marginal distributions of the latent

variables and their dependence structure. For instance, the factor-loading specifications are often

used to estimate the MPH model. See Van den Berg (2001) for a detailed discussion. Canals-Cerdá

and Gurmu (2007) propose a rather different estimation technique to approximate the dependence

structure of a frailty model in a nonparametric way. Another popular approach in applied work

is to assume independence of latent variables. In this case, the famous product limit estimator

(Kaplan and Meier, 1958) is consistent. The popularity of this estimator is certainly to a large

extend that it does not require strong assumptions on the marginal distributions of the latent

variables. Alternatively, if one wants to avoid the independence assumption one can also model

the joint dependence structure by means of a copula function.

Copula based models represent a wide model class and one can show that popular duration

models are in fact special cases of the copula model. As there are many different families of

copulas (Nelson, 2006), the model allows for flexible specification of the dependence structure

between competing random variables. Identification and estimation are already analysed in several

contributions. Zheng and Klein (1995) prove identification of the marginal distributions for a

model with two risks and a known copula function with known parameters. Their nonparametric

estimator is known as the Copula Graphic Estimator. Carrière (1995) proves identification in
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presence of more than two risks. Although, his nonparametric copula approach is valid under fairly

mild conditions, it has an important practical limitation. By solving a system of simultaneous

differential equations, the computation time increases substantially with the number of competing

risks. The need for substantial computational resources to implement multivariate copula models

is a general difficulty and not specific to duration models. See Joe (1994) and Zimmer and

Klein (2006) for more details. Rivest and Wells (2001) suggest a martingale approach under the

additional assumption that the copula is Archimedean and that failure times are distinct for all

observations. They derive a closed form solution and thus the implementation is rather convenient.

Unfortunately, their implementation does not work in applications with non distinct observations.

The same applies to a recent extension of this estimator suggested by Braekers and Veraverbeke

(2006).

While the research about copulas is mainly driven by new developments in biometrics and

mathematical statistics, we are not aware of an application to duration data in economics or

social sciences alike. The purpose of this paper is therefore to explore the benefits of copulas for

applied economic research. As an example we choose unemployment duration analysis because of

good data availability and a large potential user group in economics and social sciences. We aim

at providing new insights to the reader whether the use of copulas can be a step forward for the

empirical analysis of policy reforms.

We see the following contributions in this paper:

• We suggest a convenient implementation of an Archimedean copula model in presence of

several competing risks and non distinct observations. We reason that our risk pooling

method substantially decreases computational efforts to obtain the estimates.

• We examine the applicability and the finite sample properties of our estimation procedure

with the help of simulations.

• We illustrate the framework by analyzing the effect of a reduction in unemployment benefit

entitlements on the duration of unemployment in Germany.

Our simulation results show that the copula based approach has nice finite sample properties.

Our application to real world data explores the case of an unknown dependence structure. In

particular, we check the sensitivity of empirical results with respect to the assumed dependence

structure. We confirm that our proposed method is an interesting alternative to the Kaplan-Meier

estimator if the researcher has doubts about the validity of the independence assumption. We

also explore the situation when a policy reform affects both the marginal distributions of the

competing variables and the dependence structure between them.
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The paper is structured as follows. Section 2 presents our estimation framework. Section 3

presents results of the simulation study, followed in the next section by an empirical illustration.

The last section contains some conclusions.

2 Model

2.1 Framework

Let (T1, . . . , TJ) ∈ IRJ
++ be latent duration times of risk j = 1, . . . , J in a J-dimensional competing

risks model. We can only observe Tj if Tj < Ti for all i 6= j. All other Ti are not observed.

(T1, . . . , TJ) could depend on each other. We assume that Tj is an unknown continuous function

of X and Uj:

Tj = ψj(X, Uj). (1)

X is a k-dimensional vector of observable variables. Uj is an unobservable variable and is usually

called unobserved heterogeneity. X and Uj are independent. U1, . . . , UJ can be dependent. If

Ui ≡ Uj for all i 6= j, it implies a correlation of +1 between all the unobservables and the

conditional joint distribution of durations is therefore degenerate.

Let Sj : R++ → [0, 1] be the unknown continuous and strictly decreasing marginal survival

function of Tj:

Sj(tj) = Pr(Tj > tj) = rj. (2)

rj ∈ Rj is defined as the relative position or rank order of tj ∈ Tj. Rj = Sj(ψ(X, Uj)) is therefore

a uniformly distributed variable in [0, 1]. Conditional on X = x, Sj(tj|x) is also continuous and

strictly decreasing. The conditional rank of Tj is then

Rj|x = Sj(ψj(x, Uj)) = (Sj ◦ ψj)(x, Uj)

= Gj(Uj),

where Gj : IR → [0, 1] is a continuous function which is independent of X. As a special case,

if ψj is monotone in Uj then Gj is the survival function of Uj and the conditional rank of Tj is

determined by the rank of Uj only. In the following, we focus our discussion on the case without

conditioning on X, unless it is necessary.

We assume that the basic dependence structure of Tj is generated by a known copula, which

is a joint distribution of the ranks of the duration variables. The J-copula, CJ : [0, 1]J → [0, 1] is

defined by

CJ(r1, . . . , rJ) = Pr(R1 ≤ r1, . . . , RJ ≤ rJ). (3)
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The copula relates only the ranks of different duration variables. Specification of the copula does

not require a known functional form for the marginal survival function. The copula determines

therefore the basic dependence structure between the variables Tj. Note that this does not rely

on the marginal distribution of the risks. Conditioning on X = x, the copula is denoted as CJ
x .

If the marginal survival functions are given by (2), the joint survival function, S(t1, . . . , tJ) =

Pr(T1 > t1, . . . , TJ > tJ), is uniquely determined by substituting (2) into (3)

CJ(S1(t1), . . . , SJ(tJ)) = Pr(S1(T1) ≤ S1(t1), . . . , S1(TJ) ≤ SJ(tJ))

= S(t1, . . . , tJ). (4)

Equivalently, given any S(t1, . . . , tJ) and Sj(tj), there is a unique CJ such that (4) holds. Unique-

ness is proved by Sklar’s theorem (Schweizer and Sklar, 1983).

Given the copula and the marginal survival functions, the joint survival function S(t) =

S(t, · · · , t) and the cause specific cumulative incidence curve (CIC), Qj(tj) are given by

S(t) = P (T1 > t, . . . , TJ > t)

=

∫ rJ (t)

0

. . .

∫ r1(t)

0

dCJ(r1, . . . , rJ) (5)

Qj(tj) = P (Tj ≤ tj, Tj < mini6=j{Ti})

=

∫ ζJ (rj)

0

. . .

∫ ζj+1(rj)

0

∫ 1

rj(tj)

∫ ζj−1(rj)

0

. . .

∫ ζ1(rj)

0

dCJ(r1, . . . , rJ), (6)

where ζk(rj) = Sk(S
−1
j (rj)) for all k 6= j. Note that the inverse exists since Sj is continuous and

strictly decreasing.

In an application, we face the reversed problem as usually estimates for S(t) and Qj(tj) for

all j are available only. Our aim is then to determine the unknown marginal survival functions

{S1(t1), . . . , SJ(tJ)} using {S(t), Q1(t1), . . . , QJ(tJ), CJ}. While S(t) and Qj(tj) can be estimated,

the true copula function CJ has to be known or to be assumed. There are many different classes of

copulas describing different basic dependence structures of the variables. Nelson (2006) provides

a comprehensive overview over different families. Copulas can differ in their functional form and

in their parameter(s). Both determine the dependence degree between the Tj’s. One can also

show that there is a direct link between the copula model under additional assumptions and the

popular duration models of applied economic research. We now present several important copula

functions.

If Ti is independent of Tj for all i 6= j, any copula reduces to the product copula

CJ(r1, . . . , rJ) =
J∏

j=1

Gj(Uj). (7)
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The Kaplan-Meier estimator requires independence.

The Archimedean copula is defined by

CJ(r1, . . . , rJ) = φ−1(φ(r1) + . . . + φ(rJ)), (8)

where φ(r) : [0, 1] → IR+ is the so called copula generator, a strictly decreasing and twice dif-

ferentiable continuous function with φ(1) = 0. The Archimedean class is important as it covers

a wide range of families. Moreover, Archimedean copulas are easy to construct and have nice

properties as they are symmetric (i.e. C2(r1, r2) = C2(r2, r1) for J = 2) and they are associative

(i.e. C2(C2(r1, r2), r3) = C2(r1, C
2(r2, r3)) for J = 2). As a result CJ can be constructed step by

step from a 2-copula by

CJ(r1, . . . , rJ) = C2(CJ−1(r1, . . . , rJ−1), rJ)

= C2(CJ−2(r1, . . . , rJ−2), rJ−1, rJ)

= . . .

= C2(C2(r1, r2), r3, . . . , rJ).

Schweizer and Sklar (1983) denote this procedure as serial iteration of the Archimedean 2-copula

which implies that the dependence structure between all rj is the same. When we condition on

X = x, (8) becomes

CJ
x (r1, . . . , rJ |x) = φ−1(φ(G1(u1)) + . . . + φ(GJ(uJ))). (9)

The Archimedean class has many different sub-classes and families. One special subclass is

the frailty model (Oakes, 1989). Suppose that the following conditions hold:

1. ψj(X, Uj) = ψ̃j(X)Uj, such that Uj is monotone in ψj;

2. All Tj have an exponential marginal survival distribution as Sj(tj|x) = exp[Λj(tj)ψ̃j(x)uj]

where Λj(tj) is the integrated baseline hazard function;

3. The copula generator from an Archimedean copula is a Laplace transformation of a joint

distribution function of the Ujs, denoted by G(u) with u = [u1, . . . , uJ ].

Then, the joint survival function is a mixed proportional hazard model of the form

S(t, . . . , t|x) = CJ(r1, . . . , rJ |x)

=

∫
exp[Λ1(t)ψ̃1(x)u1 + . . . + ΛJ(t)ψ̃J(x)uJ ]dG(U). (10)

One important subfamily of the Laplace transformation is the Clayton copula (Clayton, 1978).

In this case G(u) is a gamma distribution, U ∼ Γ(1/θ, 1) and the copula generator is φ(s) =
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s−1/θ− 1, with θ > 0. See also Table 1 which lists several common bivariate Archimedean copulas

with a single parameter θ. For more copulas see Nelson (2006). The Frank copula is often used

in applied work because of its capability to incorporate all possible degrees of dependence.

Table 1: One parameter families of Archimedean copulas 1

Family C̃(u, v) φ−1(s) Laplace

Transform

Clayton
[
max(u−θ + v−θ − 1, 0)

]−1/θ ( 1
1+θs)

1/θ yes

Ali-Mikhail-Haq uv
1−θ (1− u)(1− v) 1−θ

es−θ yes

Frank −1
θ ln(1 + (e−θu−1)(e−θv−1)

e−θ−1
) −1

θ ln(1 + e−s(e−θ − 1)) yes

Unknown max(1 + θ/ln[eθ/(u−1) + eθ/(v−1)], 0) 1
θ ln(s) + 1 no

1 C̃(u, v) is defined here as C̃(H1(t1),H2(t2)), with Hj(tj) as the marginal distribution. The copula C can

be obtained from C̃ by the equation C(S1(t1), S2(t2)) = S1(t1) + S2(t2)− 1 + C̃(1− S1(t1), 1− S2(t2)).

2.2 Identification and Estimation

Zheng and Klein (1995) and Carrière (1995) prove identification of the marginal survival functions

Sj(tj) if the copula is known. While Carrière’s model can have several competing risks, Zheng and

Klein’s proof applies to the case of two risks only. Given equation (6), Carrière’s approach is based

on the fact that the derivative of the conditional marginal survival functions can be identified by

solving a system of J nonlinear differential equations

d

dt
Qj(t) =

d

dt
Sj(t)× ∂CJ(S1, . . . , SJ)

∂Sj

∣∣∣∣
t1=...=tJ=t

, (11)

for j = 1, . . . , J . Starting with the initial condition Sj(0) = 1, Sj(t) can be recursively determined.

However, the practical implementation of this approach can be rather difficult if there are several

risks. For instance, let d be the number of numerical steps required to obtain rj(t) given rk(t) for

k 6= j. Then we need dJ steps at each t to solve simultaneously for the J unknowns. This can be

rather demanding if J is large. Moreover, his numerical algorithm determines Sj(t + ∆) − Sj(t)

from Qj(t + ∆)−Qj(t) with ∆ > 0. Then Sj(t + ∆) is computed by adding the estimate for the

difference to Sj(t). This approximation is imprecise if the observed failures for each risks are not

close to each other, i.e. ∆ is not small. Moreover, the approximation error increases with t.

As a more practical solution, we suggest an extension of the implementation proposed by Zheng

and Klein (1995). For the case J = 2, Zheng and Klein determine Sj(t) by solving equations (5)

and (6) directly. We suggest for the case J > 2, that Sj(t) can be computed by pooling all other
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risks k 6= j. The numerical algorithm proposed by Zheng and Klein for a two risks model can

then be directly applied to determine Sj(t). Repeating this pooling procedure we can compute all

Sj(t) separately. To solve for the J unknowns at each t, we need J × d2 steps only.

In order to keep things simple, we now illustrate our risk pooling method for the case J = 3.

The idea is to pool the variables T2 and T3 to form a new variable T23 = min{T2, T3}. The marginal

survival function of T23 is defined as S23(t) = Pr(T23 > t). If there is a survival copula between

the variables T1 and T23:

C2
1(S1(t1), S23(t23)) = S(t), (12)

we can directly apply Zheng and Klein’s approach to compute S1(t1) and S23(t23). This is done

by solving the following two equations

S(t) =

∫ r23(t)

0

∫ r1(t)

0

dC2
1(S1, S23)

Q1(t) =

∫ ζ23(r1)

0

∫ 1

r1(t)

dC2(S1, S23),

where r23(t) = S23(t) and ζ23(r1) = S23(S
−1
1 (r1)). The first equation holds because

∫ r23(t)

0

∫ r1(t)

0

dC2
1(S1, S23) = Pr(S1 ≤ r1(t), S23 ≤ r23(t))

= Pr(T1 > t, T23 > t)

= Pr(T1 > t, T2 > t, T3 > t) = S(t)

by noting that T23 = min{T2, T3}. And thus we have T23 > t if and only if T2 > t and T3 > t.

Similarly, the second equation holds because
∫ ζ23(r1)

0

∫ 1

r1(t)

dC2
1(S1, S23) = Pr(S1(t) > r1(t), S23 ≤ ζ23(r1))

= Pr(T1 ≤ t, T23 > T1)

= Pr(T1 ≤ t, T2 > T1, T3 > T1) = Q1(t).

S2(t) and S3(t) can be obtained in a similar way by plugging in the relevant functions in equation

(12). For this purpose we need the variables T13 = min(T1, T3) and T12 = min(T1, T2) and we need

the copulas C2
2(S2(t2), S13(t13)) and C2

3(S3(t3), S12(t12)) respectively. This risk pooling method

can be easily extended to the case of J > 3.

Unfortunately, a pooled 2-copula is generally inconsistent with the non-pooled 3-copula of

T1, T2, T3. This means the copula C2
1(S1(t1), S23(t23)) in (12) may not exist (Genest et al., 1995).

There are, however, necessary conditions such that (12) holds: For a known 3-copula C3(r1, r2, r3),

there exist all 2-copulas Cij(ri, rj) = Sij(t) such that

C3(r1, r2, r3) = C2
1(r1, C23(r2, r3)) = C2

2(r2, C13(r1, r3)) = C2
3(r3, C12(r2, r3)).
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In this case Cij is compatible with C3 (Nelson, 2006). While we are not aware of general conditions

for the compatibility of copula functions, it is evident that any symmetric and associative copula

is compatible. For this reason, the Archimedean class satisfies the required properties for the risk

pooling method.

We can now carry over the identification strategy of Zheng and Klein (1995) to a model with

more than two risks: the marginal distributions Sj for j = 1, . . . , J can be identified by the risk

pooling method as outlined above, if the copula of the pooled variable is compatible. This is for

example the case if

(C1) at least J − 2 variables Tj, j = 1, ..., J , are independent and the copula between the two

dependent variables is known; or

(C2) the J-copula is known and belongs to the Archimedean class.

Note that we cannot show identification of the Zheng and Klein approach for the general case in

presence of more than two risks. Although Carrière (1995) proves identification for the general

case, his implementation has disadvantages in an application as outlined above. We see our risk

pooling approach as an interesting implementation for applied research as it is computationally

more convenient and does not rely on specific requirements on the data structure. The model is

convenient because it permits the focus on the estimation of the relevant risk. All the other risks

can be pooled to decrease the computing time. The model therefore still allows for dependence

on the other risks, but it assumes that this dependence structure has some regularities.

We finish this section by elaborating the estimation of the risk pooling approach, which is in

fact a multivariate version of Zheng and Klein’s Copula-Graphic Estimator. Suppose we have

i = 1, . . . , n observations. The data generating process yields Tij with i = 1, ..., n and j = 1, ..., J .

Due to the competing risks model only minj{Tij} for all i can be observed. Let Sn and Qjn be

estimators for S(t) = P (T1 > t, ..., TJ > t) and Qj(t) = P (Tj ≤ t, Tj ≤ T1, . . . , Tj ≤ Tn) for

j = 1, ..., J . Then the estimator for Sj(·) is the solution to

rjn(t) = argmin (An + Bjn) , (13)

where

An =

(
Sn(t)−

∫ rJ (t)

0

. . .

∫ r1(t)

0

dCJ(r1, . . . , rJ)

)2

Bjn =

(
Qjn(t)−

∫ ζJ (rj)

0

. . .

∫ ζj+1(rj)

0

∫ 1

rj(t)

∫ ζj−1(rj)

0

. . .

∫ ζ1(rj)

0

dCJ(r1, . . . , rJ)

)2

.

Sjn(·) is therefore a function of Sn(·), Q1n(·), . . . , QJn(·) and the copula C. Given that the es-

timates for the marginal distributions are the solution to well behaved objective functions, it is
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straightforward that the consistency of Zheng and Klein’s Copula-Graphic Estimator carries over

to the multivariate case.

Corollary 1 Let Sn and Qjn be consistent estimators for S and Qj. Then if one of the conditions

C1 or C2 are met, Snj as given by the solution to problem (13) is a consistent estimator for Sj

for j = 1, ..., J .

The proof of Corollary 1 can be based on Theorem 4.1.2 of Amemiya (1985) applied to objective

function (13) provided that the estimators converge to nonstochastic functions and provided that

the solution is unique. Moreover, the support of rj(t) is compact and the objective function is

continuous. Similar tools could be applied to derive more asymptotic properties of the estimator

but this is out of scope of this paper.

2.3 Covariate Effects

Using the above framework we can also estimate the effect of a covariate change on the marginal

distributions. For the purpose of illustration, we consider a treatment effect setting. We define

a treatment dummy as D = 1 when an individual receives treatment and D = 0 otherwise. For

simplicity we assume that the treatment is independent of all other observables and unobservables

(X,U). Then, the conditional treatment effect, ∆j(t|x), on Sj(t|x) is simply

∆j(t|x) = Sj(t|x, D = 1)− Sj(t|x,D = 0)

for j = 1, . . . , J . Sj(t|x,D = 1) and Sj(t|x,D = 0) can be estimated using the above framework

using the conditional copulas CJ
{x,D=1} and CJ

{x,D=0}. Note that independence between X and Uj

does not imply that the joint distribution of (U1, . . . , UJ) is also independent of X. This follows

from the fact that copula functions can depend on X. This implies that the latent variables Ti

and Tj do not necessarily have the same dependence structure conditional to D = 0 and D = 1.

However, applied research often ignores this possibility since the Kaplan-Meier estimator requires

that the copula is independent of the covariates. The copula model is therefore compatible with

empirical settings in which the treatment has not only an effect on the marginal distributions but

also on the dependence structure. This includes the special case where there is just a change in the

dependence structure without any change in the marginal distributions. In this case we observe a

change in the joint survival function and in the CIC’s. A correctly specified copula model would,

however, identify that the marginal distributions are invariant. In contrast, the Kaplan-Meier

estimator would suggest a change in the marginal distribution due to the treatment.

In the next section we explore how our suggested implementation of the copula based estima-

tor performs in a simulation study. We pay special attention to the estimated treatment effect
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under different dependence structures and use a model with independent risks as a comparison

benchmark.

3 Simulations

In order to investigate the finite sample properties of our risk pooling method, we simulate a model

with three risks and an independent treatment dummy with Prob(D = 0)=1-Prob(D = 1)=0.5.

The data is simulated by using a Frank copula and the copula parameter is chosen such that the

correlation between the ranks of all risks is 0.5. Risk 1 is generated by a logistic distribution, risks

2 and 3 follow exponential distributions (see table 2). The parameters of the marginal distributions

(Hj(t)) are chosen to produce different degrees of censoring. We repeat the simulations for three

different sample sizes (50, 500, 1000) and we draw 500 independent samples for each sample size.

Note that in this simulation design, the joint survival curve is 0.77, 0.51 and 0.09 at t = 0.07, 0.24

and 1.2, respectively. This means that at t = 1.2, there are only about 9% of the observations

remaining in the risk set. In our simulation we want to estimate the six marginal distributions

and the treatment effect for each risk.

Table 2: Simulation design.

Distribution Parameters

Control Group Treatment Group

Risk 1 Logistic (0.6, 1.4) (0.9, 1.2)

Risk 2 Exponential 1.0 1.5

Risk 3 Exponential 0.8 0.8

As already discussed by Zheng and Klein (1995) the reliability of the Copula Graphic Estimator

is affected by the degree of censoring in the data. In order to illustrate this further we report

both the amount of censoring and the finite sample bias of the estimated marginal distributions

in Table 3. The third and the fourth column of Table 3 present the degree of non-censoring for

the three risks j which is defined by %Qj = Qj(t)/Hj(t). These numbers are reported for the

treatment (D=0), the control group (D=1) and for three different durations (t=0.07, 0.24, and

1.20). It is apparent that the degree of censoring is not constant and note that
∑

j %Qj(∞) = 1

as Hj(∞) = 1 for all j. This also explains why the sum is not equal to one for shorter durations.

In order to see how censoring and the properties of estimates are related, we compute the finite

sample bias of the marginal survival functions defined by Bn(Snj(t)) = En(Ŝj(t)−Sj(t)) using the

500 estimates for the case of 500 observations. The bias is reported in columns 6 and 7 in Table

3. It generally increases with the share of censored observations.
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Table 3: Degree of non-censoring and finite sample bias of the estimated marginal

survival curves with 500 observations.

Non-censored data D = 0 D = 1 Finite sample bias D = 0 D = 1

t = 0.07 %Q1 0.92 0.89 Bn(Sn1(t)) 0.0018 -0.0002

%Q2 0.73 0.87 Bn(Sn2(t)) 0.0010 -0.0003

%Q3 0.72 0.81 Bn(Sn3(t)) 0.0009 0.0015

t = 0.24 %Q1 0.85 0.73 Bn(Sn1(t)) 0.0023 -0.0025

%Q2 0.57 0.72 Bn(Sn2(t)) 0.0055 0.0036

%Q3 0.54 0.63 Bn(Sn3(t)) 0.0081 0.0001

t = 1.20 %Q1 0.67 0.46 Bn(Sn1(t)) 0.0118 0.0257

%Q2 0.41 0.56 Bn(Sn2(t)) 0.0224 0.0068

%Q3 0.35 0.33 Bn(Sn3(t)) 0.0347 0.0383

In applications we are often interested in the marginal effect of covariates. For this reason we

compute the difference between the estimate for the marginal survival curve of the treatment group

and the control group as an estimate for the treatment effect. Figure 1 shows the true treatment

effect, the mean estimated treatment effect and the 5% and 95% quantiles of the distribution of

estimated treatment effects for the three risks obtained from the 500 samples with 500 observations.

It is apparent that the treatment effect varies across three risks and it is not constant with elapsed

duration.

The figure shows that the correctly specified copula based estimator is close to the true values,

however, there is a small bias in some cases. As a benchmark comparison, we also report the

mean estimate of the treatment effect if we assumed independence of risks. In an application the

results with assumed independence are very similar to the Kaplan-Meier (KM) estimator. For

this reason we refer to this as the KM equivalent estimator in what follows. It is apparent from

the figure that the KM equivalent estimator is more biased for risks 1 and 2 than the correctly

specified estimator. As the reported quantiles of the distributions of estimates are wide, the figure

also shows that the second moment of the distribution is by means not negligible. This is partly

because the estimated treatment effect is a sum of two estimates. To get a better understanding

of the finite sample properties, we compute the mean squared error (MSE) of the estimator for

the treatment effect. Table 4 presents the MSE for different samples sizes and different durations.

There is strong evidence that the MSE decreases with the sample size, which is mainly driven by

the decrease in the variance. We also observe that the small systematic bias does not vanish at the

same speed as the variance tends to zero. A similar finite sample bias is also observed by Zheng

and Klein (1995) and it may be due to some numerical approximations in the implementation
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Figure 1: Results of simulations with 500 observations: true treatment effect (solid line); mean

estimated treatment effect (dashed line); 5% and 95% quantiles (grey lines); mean estimated

treatment effects with assumed independence (dotted line).
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of the estimator. In our implementation of our estimator, we have made a further simplification

by using the fact that (5) can be explicitly solved in case of the Frank copula. The resulting

computing time for one estimation with 121 time points and sample size 50, 500 and 1000 is

about 48 seconds, 7.4 minutes and 14.4 minutes respectively. These numbers are obtained with a

Quad-Core Xeon 2.66 GHz with Matlab for Linux. This gives further evidence for the complexity

of the underlying numerical problem.

Table 4: Mean squared error of the estimated treatment effect

Sample Size 50 500 1000

Bias Var MSE Bias Var MSE Bias Var MSE

Risk 1 t = 0.07 0.0015 0.0051 0.0051 0.0001 0.0005 0.0005 0.0006 0.0002 0.0002

t = 0.24 0.0106 0.0096 0.0097 0.0023 0.0010 0.0010 0.0030 0.0005 0.0005

t = 1.20 0.0280 0.0252 0.0260 0.0121 0.0026 0.0027 0.0126 0.0013 0.0015

Risk 2 t = 0.07 0.0013 0.0035 0.0035 -0.0011 0.0003 0.0003 -0.0011 0.0002 0.0002

t = 0.24 -0.0034 0.0106 0.0106 -0.0023 0.0010 0.0010 -0.0047 0.0006 0.0006

t = 1.20 -0.0165 0.0169 0.0171 -0.0152 0.0017 0.0019 -0.0117 0.0008 0.0009

Risk 3 t = 0.07 0.0009 0.0023 0.0023 -0.0007 0.0002 0.0002 -0.0007 0.0001 0.0001

t = 0.24 -0.0013 0.0093 0.0093 -0.0009 0.0010 0.0010 -0.0015 0.0004 0.0004

t = 1.20 0.0032 0.0422 0.0422 0.0077 0.0034 0.0035 0.0034 0.0018 0.0018

This section has demonstrated the applicability of the risk pooling method with simulated

data. The results of our simulation study confirm the nice statistical properties of the copula
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based estimator. As a next step we put the estimator to real world data.

4 Application

The last section has shown that the copula based estimator produces good results for a model

with more than two risks. It has also shown that a misspecified dependence structure between

competing risks can produce rather biased result patterns. In this section we apply the copula

based estimator to real world unemployment duration data from Germany to check the robustness

of empirical results with respect to the assumed dependence structure. We analyse the effects of

a policy reform conducted in the year 1997 which decreased the entitlement length for unemploy-

ment benefits (UB) for older unemployed. Younger unemployed were not directly affected by the

reform and our statistical evaluation concept assumes the absence of indirect effects as they are

supposedly small. The reform was therefore a natural experiment and we apply a difference in

differences (DID) approach for the estimation of the treatment effect on survival probabilities in

unemployment. Our control group consists of the younger unemployed (aged 36-41), while the

older unemployed (aged 42-44) build the treatment group. As a result of the policy change, the

UB entitlement lengths for the latter group decreased from up to 22 months to 12 months. We

take the period 1995-1996 as pre-reform and 1999-2000 as post reform period. For the estimations

we use a sample of the IAB employment sample 2001 of the Institute for Employment Research

(IAB), Nuremberg. The data is a 2% random sample of the German workforce subject to social

security contributions in the period 1975-2001. It contains daily information about periods of

dependent employment and claim periods for unemployment benefits. Moreover, it contains basic

information about the individual, job, employer and regional characteristics. For more details

about this data see Hamann et. al. (2004). In a recent paper Arntz et al. (2007) already analyse

the effect of the above mentioned reform using this data. Their analysis estimates the difference

in differences changes in nonparametric risk specific CIC’s. Their model allows for transitions to

three risks: local employment, distant employment and unknown exit. Distant employment is

usually linked with an inter-regional migration decision of the unemployed. With this model it is

therefore possible to analyse the theoretical question whether unemployment benefits simply de-

crease the job finding hazard or whether they provide resources for the unemployed to migrate to

distant areas and thus increases the hazard of distant job finding. In their paper it is argued that

the theoretical predictions for the effect of UB entitlement lengths on distant employment timings

are unclear and their work aims to analyse this empirically. Given the non-identifiability of the

competing risks model, they face the problem that they can only consistently estimate the joint

survival function and the risk specific CICs as they are not willing to impose further identifying
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assumptions. For this reason they cannot estimate the DID changes in the marginal distributions.

As an additional complication, the true unemployment duration is not observed in the IAB data.

For this reason they use an upper bound and a lower bound of the true unemployment duration

which can be determined by the data. They bound the estimated policy effect on the risk specific

CICs by exploiting that the nonparametric estimates posses a monotonic relation between the

bounds of the duration. We are ignoring the partial identification of unemployment duration in

our following analysis by using one bound of the unemployment duration only. This helps us in

focusing on the applicability and benefits of the copula model, although an incorporation of the

partial identification problem would be generally possible. In particular, we use their sample of

lower bounds of the true unemployment duration. Moreover, we restrict our analysis to the group

of higher skilled males because we are expecting that the decrease in UB entitlement lengths has

a stronger financial effect for this group. Our sample consists of 2,095 observations.

As we are not aware of any economic theory which suggests a dependence structure between

competing risk under plausible assumptions, we are facing the problem that it is unknown to us.

For this reason we are not able to identify the true treatment effect of the reform for the given

definition of unemployment. Although it is impossible to break up the fundamental identification

problem, we reason that by using the copula based estimator, we obtain valuable information

for assessing the sensitivity of empirical result patterns with respect to the assumed dependence

structure. If the empirical results are robust one can conclude that a simple Kaplan-Meier esti-

mator would make a good job. If the sign of the estimated treatment effect is not robust, one can

probably not draw any causal conclusions for the changes in the marginal distributions in absence

of knowledge about the dependence structure. When putting the estimator to data, we observe

similar to Zheng and Klein (1995) that the choice of the copula is less relevant for the results than

the choice of its parameter. For this reason we report results for the one copula with different

parameter values only. In particular, we choose the Frank copula with parameter τ , the so called

Kendall’s τ , which measures the dependence degree between the competing risks.

Figure 2 presents the estimated marginal survival functions for the risks local employment and

distant employment. Since the distribution for unknown exit is not meaningful, we do not report

results for it. We compare the copula based estimator with three different parameters to the

KM estimator and the Peterson bounds. As the KM estimator is very close to the copula based

estimator with assumed independence (τ = 0), we do not report the latter. In both cases, the

estimated marginal survivors strongly vary with the assumed dependence structure. They differ

by up to 40 percentage points after two years of unemployment. Knowledge of the true dependence

structure seems to be important for the interpretation of the resulting estimates. However the

shape of the marginal survivors is similar for different assumed dependence structures. As a next

15



Figure 2: Estimated marginal survival functions with different dependence structures: KM Esti-

mator(solid line); τ = -0.8 (upper dashed line); τ = 0.8 (lower dashed line); 95% and 5% bootstrap

quantiles (grey dashed lines); Peterson bounds (dotted line)

Aged < 42, before 1997

(a) Local employment (b) Distant employment

0 100 200 300 400 500 600 700 800
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

duration of unemployment (in days)

pp

0 100 200 300 400 500 600 700 800
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

duration of unemployment (in days)

pp

step we estimate the difference in differences treatment effect on these marginal survival functions.

First we assume that the dependence structure is the same for all groups, i.e. it does not

change in response to the reform. Figure 3 presents the estimated treatment effect for different

copula parameter values. It shows that the estimated treatment effects have a similar shape. The

estimates are more similar for short durations, while the shape of the estimated treatment effect

is more sensitive to the specification of the dependence structure for long durations. This is in

particular the case for distant employment. Since the reform is likely to affect longer durations

(between days 365 and 600), the specification of the dependence structure seems to be a relevant

issue for the evaluation of the reform effect. However, the sign of the effect is in most cases

independent of the dependence structure. Also note that the KM estimator does not necessarily

lie between the other estimates.

As a next step we explore the results in case the dependence structure varies in response to the

reform. Figure 4 presents the results for a constant dependence structure in pre-reform period and

different dependencies after the reform. As in the previous case, the KM estimator does not lie

between different copula based estimates. The sign of the estimated treatment effect now depends

more often on the assumed dependence structure, but it is quite robust.

The results with constant dependence structure are reported on the diagonal of Table 5. The

lower triangle of this table corresponds to the case when the reform decreases τ , while the entries

above the diagonal refer to the case when τ increases in response to the reform. The results

suggest that the KM estimator differs in some cases considerably from the results obtained with
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Figure 3: Estimated treatment effect with different dependence structures. KM Estimator (dark

line); estimate with τ ∈ [−0.8, 0.8] (grey dashed line in different darkness)
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other dependence structures. There is no apparent systematic pattern when the KM estimator

under- or over-estimates the reform effect.

Our application shows that the KM estimator is able to produce a quite robust estimate for

the sign and the general pattern of the treatment effect, while the magnitude is often rather

misleading. The empirical results suggest that the marginal distributions of both risks shifted

to the right in response to the reform. This is also confirmed when we repeat the estimations

for the upper bound of the true unemployment duration. Our empirical exercise has shown that

the copula based estimator is applicable to applied economic problems. It is very powerful if one

has information about the dependence structure in an application. Even in the case when such

information is not available, it is a helpful tool to check the sensitivity of results with respect to

the assumed dependence structure.
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Figure 4: Estimated treatment effect with changing dependence structure. Before the reform, τ0

= -0.4. After the reform, τ1 ∈ [−0.8, 0.8]. KM Estimator (τ0 = τ1 = 0, dark line); estimates with

different post reform τ1 (grey dashed line in different darkness)
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Table 5: Sensitivity analysis of estimated treatment effect with different dependence structure

before (rows) and after (columns) the reform. Dependence is measured by Kendall’s tau.
(a) Local

t=180, KM=-0.0868

-0.8 -0.4 0.0 0.4 0.8

-0.8 -0.0444 -0.0448 -0.0490 -0.0561 -0.0576

-0.4 -0.0533 -0.0536 -0.0579 -0.0649 -0.0665

0.0 -0.0889 -0.0892 -0.0935 -0.1005 -0.1021

0.4 -0.0994 -0.0998 -0.1040 -0.1111 -0.1126

0.8 -0.0747 -0.0750 -0.0793 -0.0863 -0.0879

t=360, KM=-0.0856

-0.8 -0.4 0.0 0.4 0.8

-0.8 -0.0368 -0.0354 -0.0404 -0.0453 -0.0458

-0.4 -0.0542 -0.0529 -0.0578 -0.0627 -0.0632

0.0 -0.0861 -0.0847 -0.0896 -0.0945 -0.0950

0.4 -0.0779 -0.0766 -0.0815 -0.0864 -0.0869

0.8 -0.0675 -0.0661 -0.0711 -0.0760 -0.0765

t=550, KM=-0.1743

-0.8 -0.4 0.0 0.4 0.8

-0.8 -0.0567 -0.0620 -0.0734 -0.0764 -0.0784

-0.4 -0.1077 -0.1130 -0.1244 -0.1274 -0.1294

0.0 -0.1599 -0.1652 -0.1765 -0.1795 -0.1816

0.4 -0.1323 -0.1376 -0.1490 -0.1520 -0.1540

0.8 -0.0970 -0.1023 -0.1137 -0.1167 -0.1187

(b) Distant

t=180, KM=-0.0084

-0.8 -0.4 0.0 0.4 0.8

-0.8 -0.0031 -0.0008 0.0115 0.0252 0.0177

-0.4 -0.0061 -0.0038 0.0084 0.0221 0.0146

0.0 -0.0250 -0.0227 -0.0105 0.0032 -0.0043

0.4 -0.0560 -0.0537 -0.0414 -0.0277 -0.0352

0.8 -0.0714 -0.0692 -0.0569 -0.0432 -0.0507

t=360, KM=-0.0913

-0.8 -0.4 0.0 0.4 0.8

-0.8 -0.0319 -0.0265 -0.0088 -0.0027 -0.0140

-0.4 -0.0499 -0.0445 -0.0268 -0.0207 -0.0320

0.0 -0.1282 -0.1229 -0.1052 -0.0991 -0.1104

0.4 -0.1941 -0.1888 -0.1710 -0.1649 -0.1762

0.8 -0.1661 -0.1608 -0.1430 -0.1369 -0.1482

t=550, KM=-0.0635

-0.8 -0.4 0.0 0.4 0.8

-0.8 -0.0181 -0.0111 0.0036 -0.0049 -0.0262

-0.4 -0.0366 -0.0296 -0.0149 -0.0234 -0.0446

0.0 -0.0960 -0.0889 -0.0743 -0.0828 -0.1040

0.4 -0.1055 -0.0985 -0.0838 -0.0923 -0.1135

0.8 -0.0621 -0.0551 -0.0404 -0.0490 -0.0702
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5 Conclusion

This paper presents an approach to the estimation of a nonparametric competing risks duration

model based on an assumed dependence structure. Originally developed in biometrics and mathe-

matical statistics (Zheng and Klein, 1995 and Carrière, 1995), we are not aware of any application

to duration data in economics. The paper therefore aims in delivering new insights on copula

based estimation from a practical viewpoint. We adapt the Copula Graphic Estimator of Zheng

and Klein to the case of more than two risks if the copula function belongs to the Archimedean

family. Our implementation works with common data structures as it is for example compatible

with non-distinct observations. Our paper thus delivers a practical implementation for a rather

general model class.

The suggested copula based estimator is an interesting alternative to the Kaplan-Meier esti-

mator. An important advantage of both approaches is that they do not require knowledge about

the functional forms of the marginal distributions and therefore they are nonparametric. More-

over, the risk specific marginal distributions can have rather different shapes. In contrast to the

Kaplan-Meier estimator, the copula based estimator does not require independence of competing

risks but it requires knowledge about the basic dependence structure between competing risks.

Unfortunately, the latter cannot be estimated without additional assumptions and therefore it

has to be assumed. The choice of the dependence structure between competing risks is therefore

a non-testable identifying assumption. Depending on this, the resulting marginal distributions

can attain basically any point within the nonparametric Peterson bounds. If one is not willing

to impose identifying assumptions or does not have an idea about the dependence structure, one

cannot do anything against this as it is due to the fundamental non-identification of competing

risks models. The identification of other popular models such as the proportional hazard model

or mixed proportional hazard model is also achieved at the expense of stronger assumptions. One

can for example show that a special case of the copula based approach is a mixed proportional

hazard model.

We reason that, even when the dependence structure is unknown, this approach can be still

used to check the sensitivity of empirical result pattern with respect to the assumed dependence

structure. For this reason it is a highly relevant approach to investigate the relevance of the

assumed dependence structure for empirical results. We also reason that the suggested approach

incorporates enough flexibility for applications with different or changing dependence structures.

This is for example relevant for the evaluation of the effect of policy reforms if the reform also

aims at changing the dependence structure. We illustrate the applicability of the estimator with

simulations and an application to German unemployment duration data. In our simulation we

show that Kaplan-Meier estimates for a treatment effect on the marginal distributions can be
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rather misleading. In our application, we show that different assumed dependence structures

yield rather different point estimates. However, in this specific application the sign and the

general pattern of the estimated treatment effect are quite robust with respect to specification of

the dependence structure but this needs not to be the case in other applications.
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