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Outline

* Privacy and confidentiality

— Focus individual data (not establishment data)

* Three examples and two problems:

1. Bounds for cell counts in contingency tables given
marginals.

2. Maximum likelihood estimation for log-linear
models.

* How are they interrelated?
* What are the mathematical tools? (No details!)

* Scaling up computations for large sparse tables.
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AND WHOS BEEN TRAWLING
THROUGH MY PERSONAL
INFOR MATION ?
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Issues and Linkages

Confidentiality

Obligations
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Ex. 1: Risk Factors for
Coronary Heart Disease

Syst. BP

e 1841 Czech auto workers
Edwards and Havanek (1985)
[ 26 table Phys. work Lipo rat

, <
* population data

— “0” cell
— population unique, “1”

— 2 cells with “2”
Aental Work W Anamne

Smoke (Y/N) 5
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Ex. 1: The Data

B no ' ves
F_E_ D _C A_no_yes_no_yes
“; <3 <140 no 44 40 112 67
yes 129 145 12 23
=140 no 35 12 80 33
yes 109 67 7 9
>3 <140 no 23 32 70 66
yes 50 80 7 13
=140 no 24 25 73 57
yes 51 63 7 16
pos <3 <140 no S 7 2 9
yes 9 17 | 1 4
=140 no 4 3 11 8
yes 14 17 5 2
=3 <140 no 7 3 1 14
yes 9 16 2 3
=140 no 4 0 13 11
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Original Data.

Disclosure Risk

No Data ¢

Data Utility
(Duncan, et al. 2004)



R-U Confidentiality Map

Original Data.

Disclosure Risk

No Data ¢

Data Utility
(Duncan, et al. 2004)



R-U Confidentiality Map

Disclosure Risk

No Data

Data Utility
(Duncan, et al. 2004)



R-U Confidentiality Map

Original Dat

=z

Iﬂ

f, Released Dat

| .

=

7

L=

@)

Iﬂ

Q No Data

>

Data Utility
(Duncan, et al. 2004)



Disclosure Limitation for

Sparse Count Data

* Uniqueness in population table <> cell
count of “1”:

— Uniqueness allows intruder to match characteristics
in table with other data bases that include same
variables to learn confidential information.

 Utility typically tied to usefulness of
marginal totals:
— Other types of sensible summary statistics?

* Risk concerned with small cell counts.
— Assess using bounds given marginal totals.
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Ex. 2: Genetics Linkage

 Data come from a barley milkdew
experiment.
— Edwards (1992). CDSA.

« 37 binary variables (genes) and 81 cases
(5% missing data).

* Subset of 6 genes that appear closely
linked on basis of marginal distributions?

e On same chromosome?
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* 10-dimensional highly sparse contingency
table extracted from 1981 Australian
population census (10 million people):

Variable

BPL

SEX

AGE

REL

MST

DUR

QAL

INC

FIN

TIS

# Categ.

102

2

11

27

S

62

11

15

16

18

* 892,533,945,600 cells!

August 2007
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Collapsed Tables

e Collapsed 5-way table with 105,600 cells

of which 65% are zero
Variable | BPL | MST | QAL | INC | FIN

# Categ. 8 5 11 15 16

* Collapsed 6-way table with 48,000 cells of
which 41% are zero

Variable | BPL | SEX | AGE | REL | MST | QAL
# Categ. 8 2 11 5 5 11
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Two-Way Fréchet Bounds

* For 2x2 tables of counts{x;} given the

marginal totals {x, ,x,,} and {x,,x,,}:
X11 X12 | X1

-+

X1 X2 | X7

+

x+1 x+2 n

min(x;, ,x,.)zx; zmax(x; +x,_;-n,0)

i+’

Interested in multi-way generalizations
involving higher-order, overlapping margins.
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Multi-way Bounds

* For decomposable log-linear models:
MSSs
Expected Value = —]:[

* Theorem: When released margins
correspond to those of decomposable model:

— Upper bound: minimum of values from relevant
margins.

— Lower bound: maximum of zero, or sum of
values from relevant margins minus separators.
— Bounds are sharp.

August 2007 Fienberg and Dobra (2000)
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23 Table Given 2x2 Margins

X121 | *141 X112 X122 | X142
Xot1 X221 | X241 Xo12 ‘xzzz\ X242

X1 X1 | X X2 X | X

++1 ++2
X1+ X124
Xote %22,

*Obvious upper and lower bounds for x,,,
*Extra upper bound: x,,,+ x,,,
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Role of Log-linear Models?

 For 2x2 case, lower bound is evocative of MLE

for estimated expected value under independence:
m;=x,x,_/n.
— Bounds correspond to log-linearized version.

— Margins are Minimal Sufficient Statistics (MSS).
* In 3-way table of counts, {x;,}, we model

logarithms of expectations {E(x;;)=m,,}:
log(mijk) =UF Uy T Uy T U3 T Uy T Uy T Uz

« MSS are margins corresponding to highest order

u-terms: {xij+}’ Kitkts {x+jk}°
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Log-linear Models (cont.)

« Maximum likelihood estimates (MLES)
are found by setting MSSs equal to their
expectations:

m;, =x,, fori=12,.,1,j=12,.,],

L forj=12,...J,k=1,2,..,K,

m,, =x,, fori=12,.,I,k=1,2,..,K.

1+

m+jk=x
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Existence of MLKEs for

2x2x2 Table

0+0 | xp -0 X, X;=0 X, +0| 1y,
Xy0=0 X +0| X, X,,40 |0-0(| n,,
X Yor | Yea Y12 Y2 | M
Y1+ Y124
Yo+ ¥xy

Delta must be zero and MLE doesn’t exist.
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Two Other Three-Way
Examples with [12][13][23]

e 33 table where MLE exists
31010 0011 011

01410 0/]0([{0]0

@) oy @)

5
0(014110[2]01(]31]0

e 43 table where MLE does not exist

0004 4101]0]2 11510712 11511312
O(0 1712 5101512 513142 0(0(2]0
O(112]3 516|512 0(2]0]0 012|410
511123 1101010 112010 1121310



Existence of MLESs

* Linked to pattern of zeros.

* Discoverable by defining basis for models
and using algebraic and polyhedral
geometry.

 Examples discovered using algebraic
software: Polymake.

* General theorems in Haberman (1974)
and “constructively” in Rinaldo (2005):
— Currently being implemented in C++ and R.
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Two Faces of Algebraic
Statistics

1. Conditional Inference: study and
characterization of portions the sample
space and, in particular, of all datasets
having the observed margins (“exact
distribution”).

2. Representation of a Statistical Model:
alternative, more powerful, description
of the parameter space.
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Its All About Geometry

 Polyhedral Geometry: virtually all data-related
quantities can be described by polyhedra.

Polyhedral
Cone

e Algebraic Geometry: a statistical model is specified
by a polynomial map. The set of probability
distributions is a hyper-surface of points satisfying

Algebraic
(Toric)
Variety
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Graphical & Decomposable

Log-linear Models

* Graphical models: defined by simultaneous
conditional independence relationships

— Absence of edges in gW

Example 1: ®

Smoke (Y/

Czech autoworkers
Graph has 3 cliques:
[ADE|[ABCE][BF] "

Mental work \.

Decomposable models correspond A

August 2007 to triangulated graphs. %
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Multi-way Bounds

* For decomposable log-linear models:
MSSs
Expected Value = —]:[

* Theorem: When released margins
correspond to those of decomposable model:

— Upper bound: minimum of values from relevant
margins.

— Lower bound: maximum of zero, or sum of
values from relevant margins minus separators.
— Bounds are sharp.

August 2007 Fienberg and Dobra (2000)
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Ex. 1: Czech Autoworkers

‘e
* Released margins: ‘ .
[ADE]|ABCE]|BF]
— Correspond to decomposable graph../ b

— Cell containing population unique has bounds [0, 25].

— Cells with entry of “2” have bounds: [0,20] and
[0,38].
— Lower bounds are all “0”.
e “Safe” to release these margins; low risk
of disclosure.
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Bounds for [BF|[ABCE][ADE]

B no ves
F E D C A no yes no yes
n; <3 <140 no [0,88] [0,62] [0,224] [0,117]
yes [0,261] [0,246] [0,25] [0,38]
=140 no [0,88] [0,62] [0,224] [0,117]
yes [0,261] [0,151] [0,25] [0,38]
=3 <140 no [0,58] [0,60] [0,170] [0,148]
yes [0,115] [0,173] [0,20] [0,36]
=140 no [0,58] [0,60] [0,170] [0,148]
yes [0,115] [0,173] [0,20] [0,36]
pos <3 <140 no [088] [0,62] [0;126] [0,117]
yes [0,134] [0,134] [0,25] | [0,38]
=140 no [0,88] [0,62] [0,126] [0,117]
yes [0,134] [0,134] [0,25] |[0,38]
=3 <140 no [0,58] [0,60] [0,126] - [0,126]
yes [0,115] [0,134] [0,20] | [0,36]
=140 no [0,58] [0,60] [0,026] [0,126]
yes [0,115] [0,134] [0,20] [0,36]

August 2007 26



Example 1: What to Release?
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Example 1: What to Release?

 Among all 32,000+ decomposable models, the
tightest possible bounds for three target cells
are: (0,3), (0,6), (0,3).
— 31 models with these bounds! All involve [ACDEF].

— Another 30 models have bounds that differ by 5 or
less and these involve [ABCDE].
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Example 1: What to Release?

 Among all 32,000+ decomposable models, the
tightest possible bounds for three target cells
are: (0,3), (0,6), (0,3).
— 31 models with these bounds! All involve [ACDEF].
— Another 30 models have bounds that differ by 5 or

less and these involve [ABCDE].

e Can actually show that release of everything

else is “safe”: 1.e., we can release

[ACDE][ABCDF][ABCEF]|[BCDEF]|[ABDEF]
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* When we fit model corresponding to
[ACD][ADE][ADF]|[CE]|CF][EF][BCD]

|IBDE][BDF]
1 2 D
1 2 1 2 E
1 2 1 2 1 2 1 2]|F
ryo o o o + 0 + O
240 + 0 O 0 + O O
1|+ 0 + 0 + + 4+ 0
2110 0 0 + + + 0 +
1|+ + + 0 + 0 0 O
2+ + + + 0 0 0 +
140 o0 O O 0 0 0 O
210 O O O O O O o
August 2007 C
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Ex. 2: Cont.

 For [ACD][ADE][ADF]|CE]|CF][EF]|BCD]
[BDE][BDF] there are 42 problematic zero cells:

— Detected by generalized shuttle algorithm for bounds
and verified by MLE software.

— Correspond to zeros in all 255,880 tables.
— Extended MLE exists here.

* For no-2nd-order interaction model there are 15
MSS marginals and no problematic zeros.

— Based on shuttle algorithm and verified by MLE
software.

— 8,628,046 tables.
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Discovering Non-existence

Using Bounds

* Replace positive counts by counts of 1.

 Run bounds algorithm and/or LP on 0-1
table.

— Look for: upper bound = lower bound = 0.
— Fractional LP bounds may not detect non-existence.

 Compare with methods for detecting
non-existence of MLESs.
— Is bounds software simpler than MLE software?
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Degenerate MLE

* Fixing all 15 positive 3-way margins
produces following bounds using integer
programming procedure in “/p solve”:

1 2 D
1 2 1 2 E
1 2 1 2 1 2 1 2 | F
1 1 1] [0,1] [0,0] [0,2] [0,0] [1,4 [0,1] [0,2] [0,1]
2 || [0,0] [0,2] [0,0] [0,2] [0,1 0,2 [0,1] [0,1]
2 1 [0,1] [0,0 [0,2] [0,0 [6,9 [0,1] [1,4 [o,1]
2| [0,0] [0,1] [0,0] [0,2] [0,1] [1,4] [0,1] [9,12]
2 1 1 [1518 (0,1 [0,4 [0,1] 0,1 [0,0] [0,1] [0, 0]
2| [0,1] [2,5] [1,2] [1,5] [0,0] [0,1] [0,0] [0, 1]
2 1 [0,1] [0,0 [0,2] [0,1] [0,1] [0,0 [0,1] [0, 0]
2 | [0,0] [0,1] [0,1] [0,2] [0,0 [0,1] [0,0 [o,1]
A B C
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EXx. 3: Collapsed Tables

e Collapsed 5-way table with 105,600 cells

of which 65% are zero
Variable | BPL | MST | QAL | INC | FIN

# Categ. 8 5 11 15 16

* Collapsed 6-way table with 48,000 cells of
which 41% are zero

Variable | BPL | SEX | AGE | REL | MST | QAL
# Categ. 8 2 11 5 5 11
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Ex. 3: S-way Table

Table has 105,600 cells; 65% are 0.

— We set counts in all positive cells = 1 to simplify the
problem.

 Then we use LP to find upper bounds of cells
when all the 2-way margins are fixed.

— We can run the LP solver for the table cells in
parallel.

— In our experiment, we used cluster of 64 processors
and it took about 4 hours.

— Upper bounds of the cells are all positive, so there
are no structural zeros found for this 5-way table.
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Ex. 3: 6-way Table

 Table has 48,400 cells and 41% have zero
cells.

— Use 0-1 representation again.

— Fixed all 2-way margins.

— All upper bounds found are positive-MLESs exist.
— Took about 1 hour on the cluster of 64 processors.

* Issue: Can we scale to larger models and
bigger tables?
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* What do we mean by sparseness:
— Three examples of contingency tables

* Confidentiality & bounds for cell entries
« Existence of MLESs for contingency tables

* Role of computational algebraic
geometry

* Exploring linkages between bounds and
MLES

* Undone: Scaling up computations
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The End

 Based in part on paper:

A. Dobra, S.E. Fienberg, A. Rinaldo, and Y.
Zhou: “Confidentiality Protection and Utility for

Contingency Table Data: Algorithms and Links to
Statistical Theory.”

 Many related papers available for downloading at
http://www.niss.org

www.stat.cmu.edu/~fienberg/DLindex.html
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Bounds for k-way Table Entries

 LP and IP approaches are NP-hard.

* Develop efficient methods for several special
cases, exploiting linkage to statistical theory
where possible:

— Released margins corresponding to decomposable
models have explicit formulae.

— Margins corresponding to reducible graphs can be
broken up into smaller problems.

— Simple result for 2% tables with release of all (k-1)-
dimensional margins fixed.
e Generalized Shuttle algorithm (Dobra, 2001)
for residual cases.

August 2007 39



2x2 Table: The Data

Observed Counts

Released
X11 | *12 . Margins
X1 | X22 t=Ax

L=X4
t3=x+1

=X

Design Matrix

 Set of all tables having margins 7 are integer
points inside a polytope and form the fiber:

(xER!, Ax =1}

=0’

August 2007
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2x2 Table: The Model

e We are interested in the distribution P11 | Pz

of the 4 cells in the table specified
by the vector of log probabilities:

D21 | P2

log(py15 Prys Pars Prp) = A'0=(6,+ 6,6, +6,,6, + 0,,6, + 0,)

e The set of all probability distributions for the
model of independence need to satisfy one

polynomial equation: p,p,,-P1,9,1=0,
and belong to surface of independence: 4

Segre Variet
August 2007 :



Design Matrix 4

Sample Space

A identifies the fiber:

the set of all tables having
the same margins.

{x=0,Ax =t}

Leads to the generalized

hypergeometric distribution.

August 2007

Parameter Space

A specifies the set of

polynomial equations that
encode the dependence
among the variables.

All probability vectors
satisfy binomial equations:

pu+ _ pu— _ O
all integer u € kernel (A).
4
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Warning: Bounds and Gaps

 Bounds may not not be sufficient to understand
degree of protection for confidentiality.

— Gaps in range of values for specific cells are possible!
* Consider possible 6x4x3 tables:

— Specify values for (1,1,1) cell: 0 and 2 (with gap at 1).

— Can construct margins for which gaps are realized:

2 11|10 2 (210
10 (0 |1 1|10 2132
212100 2 (0 (2 21112
00 (2 |2 301 21112
2101210 01210 2]1]2
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