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Abstract. One major strain of the statistical literature on disclosure
limitation for contingency table data has focused on the the risk-utility
tradeoff where utility has been measure either formally or informally in
terms of information contained in marginal tables linked to a log-linear
model analysis and risk has focused on disclosure potential of small cell
counts, especially those equal to 1 or 2. Utility of margins for log-linear
model analysis depends on estimability, e.g., existence of maximum like-
lihood estimates, and the ability to assess goodness-of-fit of models. One
simple way to assess risk is to compute bounds for cell entries given a set
of released marginals. Both of these methodologies become non-trivial to
implement for large sparse tables. This paper revisits the problem of com-
puting bounds for cell entries and picks up on a theme, first suggested in
Fienberg [21], that there is an intimate link between the ideas on bounds
and the existence of maximum likelihood estimates, and shows how these
ideas can be made rigorous through the underlying mathematics of the
same geometric/algebraic framework. We illustrate the linkages through
a series of examples.

1 Introduction

The disclosure limitation literature for contingency table data is highly varied
but over the past decade a substantial amount of it has focused on the the
risk-utility tradeoff where risk has been measure either formally or informally
in terms of information contained in marginal tables and risk has focused on
disclosure potential of small cell counts, especially those equal to 1 or 2 (for
details, see [15,16,23,26,28]). Among the ways considered for assessing risk have
been the computation of bounds for cell entries, e.g., see [9,10,11,12,13,14], and
counting of possible table realizations, e.g., see Fienberg and Slavkovic [28].

Recent advances in algebraic and polyhedral geometry have allowed us to
gain greater insights into both the bounds problem and that of determining
the existence of maximum likelihood estimates (MLEs) for log-linear models.
Some of the recent literature on bounds referred to above has made direct use
of algebraic geometry. Scaling up algebraic geometry methods to deal with large



tables remains a serious computational issue. The existence of MLEs is a major
issue for large sparse contingency tables and it is now well-known that this is a
direct function of the numbers and locations of the zero cell counts in a table.
For details, see [31,1,20,25,39,40].

A key feature in both problems is the two-fold role of marginal tables, as a
form of data release with significant implications for confidentiality and as mini-
mal sufficient statistics for estimation. The formal links between these seemingly
separate problems emanate from the common statistical and mathematical for-
malism of algebraic statistics. That the problems are related is somewhat surpris-
ing simply because zero cell values pose no direct disclosure limitation problem
since they correspond to cells containing no respondents from a survey or a
population dataset. But as we consider contingency tables of increasing dimen-
sionality (i.e., numbers of cell) with a fixed total count, and then we condition on
a collection of overlapping released marginal totals, we end up with very sparse
tables whose entries become more constrained than one might naively expect.

This paper revisits the problem of computing bounds for cell entries and
picks up on a theme first suggested in Fienberg [21] that there is an intimate link
between the ideas on bounds and the existence of maximum likelihood estimates
for contingency table cell counts under log-linear models, and shows how these
ideas can be made rigorous through the underlying mathematics of the same
geometric/algebraic framework.

In the next section we illustrate that link in terms of 2×2 and 2×2×2 tables
and then we outline the technical mathematical details on which we draw. We
illustrate the basic ideas using a series of numerical examples and data from two
actual contingency tables, one with 64 cells and the other with approximately
60,000 cells. Others have written about bounds recently, see [4,5,36,37] but they
have not examined in depth the proposal in Fienberg [21] as developed in detail
in Dobra [9] and they have not discussed the link to existence of maximum
likelihood estimates. We offer some clarifications and focus on the scaling up
algorithms to deal with large sparse tables of practical interest.

2 Bounds for 2 × 2 and 2 × 2 × 2 Tables and Their
Generalizations

Consider an 2 × 2 contingency table with cell counts nij and row and column
totals, ni+ and n+j respectively, adding to the total n = n++. If we are given the
row and column totals, then the well-known Fréchet bounds for the individual
cell counts are:

min(ni+, n+j) ≥ nij ≥ max(ni+ + n+j − n, 0) for i = 1, 2, j = 1, 2. (1)

The extra lower bound component comes from the three upper bounds on the
cells complementary to the (i, j) cell. These Fréchet bounds have been widely
exploited in the disclosure limitation literature and have served as the basis
for the development of statistical theory on copulas [38]. The link to statistical
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theory comes from recognizing that the minimum component ni+ +n+j −n cor-
responds to the MLE of the expected cell value under independence, ni+n+j/n.
The bounds are also directly applicable to I × J tables and essentially a re-
lated argument can be used to derive exact sharp bounds for multi-way tables
whenever the marginal totals that are fixed correspond to the minimal suffi-
cient statistics of a log-linear model that is decomposable, i.e., whose estimated
expected values are expressible as explicit functions of marginal totals.

Next we consider a 2×2×2 table with cell counts nijk, and two way marginal
totals nij+, ni+j , and n+jk, adding to the grand total n = n+++. Given the 2-
way marginal totals, the bounds for the count in the (i, j, k) cell for i = 1, 2,
j = 1, 2,and k = 1, 2, are

min (nij+, ni+k, n+jk, nijk + nīj̄k̄)
≥ nijk

≥ max(ni++ − ni+k − nij+, n+j+ − nij+ − n+jk, n++k − ni+k − n+jk, 0)
(2)

where (̄i, j̄, k̄) is the complementary cell to (i, j, k) found by replacing 1 by 2 and
2 by 1, respectively. Equation (2) consists of a combination of Fréchet bounds for
each of the rows, columns, and layers of the full table plus an extra upper bound
component nijk + nīj̄k̄. Again there is a link to maximum likelihood estimation
but this time it is much more subtle. Under the no 2nd-order interaction model
(e.g., see [1,31]), the minimal sufficient statistical marginals are the two-way
totals. Further, Haberman [31] showed that the maximum likelihood estimates
exist if and only if the minimal sufficient statistics are positive and, in addition,
so are the pairs of cells (i, j, k) and (̄i, j̄, k̄) for all possible values of i, j and k.
Thus in particular, the MLEs do not exist when

nijk = nīj̄k̄ = 0. (3)

The extra component of the upper bound for this non-decomposable model seems
inextricably bound up with the existence of MLEs and it is the generalization
of this notion that the present article is built upon.

Fienberg [21] suggested how to use this basic construction to get bounds
for an I × J × K table by considering all possible collapsed 2 × 2 × 2 versions
(based on all possible permutations of the subscripts). Dobra [9] then used a re-
lated construction with further refinements to develop what he referred to as the
“generalized shuttle” algorithm, extending an idea in Buzzigoli and Giusti [2]
that we can iterate between “naive” upper bounds and lower bounds in order to
get sharp bounds. This algorithm has the nice property that it finds the sharp
bounds in the decomposable case without extensive computation, and it can
reduce the computation substantial in a number of other special cases. Nonethe-
less, it does not really scale well to situations involving large sparse contingency
tables in part of the same reasons that the related non-integer bounds problem
is known to be NP -hard, c.f., [4,5].
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2.1 Non-sparse Example

We use the example of a real-life table to point out that nonexistence of the
MLE, although generally to be expected in a sparse setting, can very well occur
also in tables with large counts and very few empty cells.

Table 1 shows a 2×2×2×3 contingency table from [34], which describes the
results of a clinical trial on the effectiveness on an analgesic drug, for patients
of two statuses and centers. The sample size is large (193) with respect to the
number of cells and, in fact, except for two zero counts, the cell counts are quite
big.

With the goal of illustrating statistical disclosure limitation techniques and
discussing the risk of disclosure associated to various marginal releases, Fienberg
and Slavkovic [26] analyze two nested models which fit the data of Table 1:

1. [CST][CSR],
2. [CST][CSR][TR].

The [CSR] margins has one zero entry, which causes the nonexistence of the
MLE for both models. For reasons that will be explained in the discussion of
the next example, since both models are decomposable the IPF algorithm does
not provide any indications of nonexistence, except that some fitted values are
zeros. Both of these models are decomposable and the IPF algorithm does not
produce any indication of nonexistence, except that some fitted values are zeros.

Table 1. Results of clinical trial for the effectiveness of an analgesic drug. The
variables are Center (C), Response (R), Status (S) and Treatment (T). Source:
[34]. Using the software MIM (see [17]), the search for the best log-linear model for
this data will result in three competing models: [CST][CSRT], [CST][CSR][TR]
and [CST][CSR][CTR]. Close inspection will reveal that the MLE is not defined
for any of these models because of the two zero entries, an anomaly that neither
MIM nor R detected. In parentheses are the upper and lower bounds for the indi-
vidual cell entries over all contingency tables with the same [CST][CSR][CTR]
obtained using integer linear programming. See [26].

Response Poor Moderate Excellent
Center Status Treatment

Active 3 [0,6] 20 [9,28] 5 [0,13]
1

Placebo 11 [8,14] 14 [6,25] 8 [0,13]
Active 3 [0,6] 14 [6,25] 12 [4,17]1

2
Placebo 6 [3,9] 13 [2,21] 5 [0,13]
Active 12 [6,15] 12 [9,18] 0 [0,0]

1
Placebo 11 [8,17] 10 [4,13] 0 [0,0]
Active 9 [0,9] 3 [3,12] 4 [4,4]2

2
Placebo 6 [0,9] 9 [6,15] 3 [3,3]
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3 Some Technical Details for Bounds and MLEs

We can describe both the determination of cell bounds associated to the release
of marginal tables and the problem of nonexistence of the MLE within the same
geometric/algebraic framework.

3.1 Technical Specifications and Geometrical Objects

Contingency tables are arrays of non-negative integers that arise from the cross-
classification of a sample or a population of N objects based on a set of cat-
egorical variables of interest (see [1], [35]). We represent the contingency table
n as a vector of non-negative integers, each indicating the number of times a
given configuration of classifying criteria has been observed in the sample. We
can fully specify log-linear models for the vector p of cell probabilities by a 0-1
design matrix A, in the sense that, for each p in the model, log p belongs to
the row span of A. The vector t = An of marginal tables for the highest-order
terms in the model gives a set of minimal sufficient statistics for the underly-
ing parameters, e.g., see [1,31,35]. It is precisely because released margins are
also minimal sufficient statistics that disclosure limitation techniques and infer-
ence for log-linear models are structurally linked and share much of the same
statistical and mathematical formalism.

Recent advances in the field of algebraic statistics have provided novel and
broader mathematical tools for log-linear models and, more generally, the analy-
sis of categorical data. Their application has led to a series of theoretical results
that offer novel, geometric representation of both the parameter and the sample
spaces. We outline below the most relevant aspects of the algebraic statistics
formalism, which essentially involves a representation of the interaction between
parameter and sample space through geometric objects that can be explicitly
described.

Parameter Space
In algebraic statistics we represent hierarchical log-linear models by certain poly-
nomial maps. The parameter space, i.e., the set of probability distributions im-
plied by such models, becomes a smooth hyper-surface of points satisfying poly-
nomial equations, referred to as a toric variety [42]. Specifically, for a given
design matrix A, the toric variety describing the associated log-linear model is
the set of all probability vectors p such that pz+ − pz− = 0 for all integer val-
ued vector in kernel(A), where z+ = {max(z(i), 0)}, z− = {−min(z(i), 0)} and
pz =

∏
i p(i)z(i). For a 2 × 2 table and the model of independence the toric

variety is the familiar surface of independence ([1]) and for general tables the
toric variety is a hyper-surface.

The log-linear modeling paradigm hinges upon representing log p as a point
in the vector space spanned by the rows of A and thus constrain p to be strictly
positive. In contrast, the algebraic geometry representation enjoys the crucial
advantage of naturally providing an explicit representation of the closure of the
parameter space, which consists of points in the simplex that belong to the
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toric variety and have some zero coordinates. It is the possibility of identifying
these points, both analytically via polynomials functions and geometrically, that
allows for a full description of all possible patterns of sampling zeros leading to
the nonexistence of the MLE.

Sample Space
Virtually all data-dependent objects encountered in the study of log-linear mod-
els are closed convex sets defined by linear inequalities. In particular, for a given
log-linear model and a set of margins t, consider the convex bounded set

Pt = {x real, non-negative : t = Ax}

of all real-valued non-negative tables having the same margins t, computed using
the design matrix A, where Pt is a high-dimensional polygon which can be
explicitly described as a finite intersection of half-spaces (e.g., see [?]). The
set of all integer points inside Pt is called the fiber of t and A. The fiber is
the portion of the sample space associated with the same set of MSS margins
and thus the support of the conditional distribution of tables given the margins,
often called the exact distribution. Properties of the fiber are fundamental both
for assessing the risk of disclosure and for conducting exact inference.

Three tasks of interest in disclosure limitation techniques are:

1. Counting. The simplest indication of the complexity of the fiber is its size,
corresponding to the number of integer-valued tables with prescribed mar-
gins, i.e., the count of the lattice points in the polytope. Fienberg and
Slavkovic [28] illustrate the use of LattE [6], a program for table enumera-
tion, in the context of confidentiality. For the example in Table 1, there are
908 tables consistent with the margins [CST][CSR][CTR], 108,490 for the
margins [CST][CSR][TR] and up to 65,419,200 for [CST][CSRT]. Counting
is of particular interest to those who want to explore issues of confidentiality
(e.g., see [28]).

2. Sampling. As the previous numbers show, the support of the conditional
distribution can be quite big, in fact, so big that enumerating the points
in the fiber may be an unrealistic task. Alternatively, one could charac-
terize the fiber by means of Markov moves, i.e. integer valued vectors in
kernel(A) that, added to the current table, will produce a new one with the
same margins [8]. A Markov basis is a smallest set of moves that preserve
connectedness in the fiber. Using Markov bases, it is possible to explore
in a stochastic fashion the fiber and to estimate the conditional distribu-
tion of the tables given the margins. In most cases, Markov bases can only
be computed with algebraic symbolic software, such as 4ti2 ([32]), based
on algorithms that do not scale with the dimension of the problem and
are not practical even for very small tables. For example, the Markov ba-
sis for a 4 × 4 × 4 table and the model of no-second-order interaction con-
sists of 145,512 moves, obtained with considerable computational efforts (see
http://math.harvard.edu/~seths/ccachallenge.html).

3. Optimizing. An important task of great relevance for disclosure limitation
techniques is integer linear programming over the fiber, e.g., see [41]. In
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a limited sense, the technique solves the so-called “table entry data secu-
rity problem,” i.e., the computation of sharp lower and upper bounds for
the individual table entries given a set of margins. These bounds allow for
some assessment of the disclosure risk for a given marginal release. For ex-
ample, the bounds for the entries in Table 1 show that the release of the
[CST][CSR][CTR] margins will reveal with certainty four cell counts, namely
the ones for which the upper and lower bounds coincide, and hence may be
considered problematic [26]. Integer linear programming entails maximizing
a linear function over the polyhedron Pt, with the constraint that the so-
lution has to be integral. Unlike linear programming, for which the integral
constraint is removed, thus producing solutions that may be not sharp, it is
computationally unfeasible with large tables (see, for example, [41]). Unfor-
tunately, the linear programming solution is not guaranteed to be correct, as
it may produce bounds that are fractional and not sharp (see, for example,
Dobra et al. [11]).

Another polyhedral object relevant to log-linear modeling is the convex hull
of all the possible margins t that could be observed for a given design matrix
A. This object, called marginal cone, is an unbounded (here N is allowed to be
any integer number) convex set consisting of all the linear combination of the
columns of A with nonnegative coefficients, i.e.,

CA = {y : y = Ax, x real, non-negative}.

Since the margins are minimal sufficient statistics, the marginal cone provide
the most efficient and parsimonious representation of the entire sample space.
On the other hand, every point t in marginal cone CA determines the polytope
Pt, which in turns contains the fiber, i.e., the portion of the sample space that
is relevant for both statistical inference and disclosure limitation.

In summary, we use the design matrix A and the marginal tables t to ob-
tain geometric representations of the parameter and sample space for log-linear
models. On one hand, A determines a system of polynomial equations that en-
code the dependencies among the random variables in the table. The solution
set of these equations is the hyper-surface representing the parameter space as
a compact subset of the simplex.

3.2 Link between MLE and Bounds

The MLE p̂, if it exists, is the unique point in the simplex such that log p̂
is in the row range of A and A (N p̂) = t [31]. [20] show that existence of
the MLE is equivalent to requiring that the marginal table t belongs to the
interior of the marginal cone. Not only is this condition simple to interpret,
but it also reduces the problem of detecting nonexistence of the MLE to a linear
optimization program over a convex set. We use the same geometric formalism to
characterize cases in which the MLE does not exist, a circumstance that occurs
whenever t lies on the boundary of CA. In fact, for any point t in the marginal
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cone, the polytope Pt containing the fiber is never empty and it intersects always
the toric variety describing the model implied by A at one point p̂e [40]. The
first condition implies A (N p̂e) = t and the second that p̂e is in the closure
of the log-linear parameter space. If t is in the interior of CA, then these are
precisely the defining conditions for the MLE, hence p̂e = p̂. If t is instead a
point on the boundary of CA, p̂e will have some zero coordinates and will be the
MLE of a restricted log-linear model at the boundary of the parameter space, an
extended MLE. The extended MLE realizes, both statistically and geometrically,
the connection between the sample space and the parameter space.

For example, the pattern of zero cells in Table 2(a) leads to the nonexis-
tence of the the MLE under the model of no-second-order interaction despite
the margins being strictly positive. This table, along with others providing novel
examples of “pathological” configurations of sampling zeros, were obtained using
polymake (Gawrilow and Joswig [29]), a computational geometry software for
the algorithmic treatment of convex polyhedra. The example in Table 2(b) is
sparser than the one in Table 2(a) but the MLE exists in the former case and
not in the latter.

Table 2. (a): Configurations of zero cells that cause nonexistence of the MLE
for the model of no-second-order interaction without producing null margins.
(b): Example of a table with many sampling zeros but for which the MLE for
the model of no-second-order interaction is well defined. Cells with entries x
indicate positive entries. Source: Fienberg and Rinaldo [25].

(a)

0 x 0

x x x

0 x x

x x x

x 0 x

0 0 x

x x 0

x 0 0

x x x

(b)

x 0 0

0 x 0

0 0 x

0 0 x

x 0 0

0 x 0

0 x 0

0 0 x

x 0 0

We use the geometric machinery to make the link between existence of the
MLE and the computation of cells bounds explicit in the following Proposition:

Proposition 1. For any lattice point t on the boundary of the marginal cone,
let p̂e be the extended MLE and let Zt = {i : p̂e(i) = 0} be the set of cells for
which the extended MLE is zero. Then, each table n in the fiber is such that
n(i) = 0 for all i ∈ Zt.

The set Zt is uniquely determined by the margin t and correspond to one of
the many patterns of sampling zeros which invalidate the existence of the MLE.
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The cells not in these configurations form a random set called the facial set (see
[30,40]). The cells with positive entries in Tables 2 (a) and Table 5 are examples
of facial sets. Proposition 1 then shows that the determination of the facial set
associated to a given marginal table is key not only for computing the extended
MLE, but also for calculating individual cell bounds, as it implies that one only
needs to consider the cells in the facial set for performing the tasks of counting,
sampling and optimizing over the fiber.

The determination of the facial sets is an instance of what in computational
geometry is known as the face-enumeration problem: the computations of all
the faces of a given polyhedron.Unfortunately, the number of solutions of this
problem is often affected by a combinatorial explosion. This is, in fact, what
emerges from the computational study conducted in
citeMLE:06, which suggests that the number of facial sets associated to a given
hierarchical log-linear model may grow super-exponentially in the dimension of
the table. As a result, complete enumeration of all the facial sets is impractical.
A much more efficient solution consists in finding just the facial set correspond-
ing to the observed margins t, using the methods developed in Fienberg and
Rinaldo [?].

3.3 Open problems and their geometry

Sharp Bounds Linear programming relaxation methods for the problem of
computing integers bounds for cell entries will often produce fractional and non-
sharp bounds. See the example in Table 3. In recent years, researchers have
made various attempts to quantify the maximal difference between the linear
programming and integer linear programming solution, i.e., the integer gap. [44]
construct pathological cases of contingency tables for dichotomous variables with
exponentially large gaps. [33] give general algebraic conditions on the size of the
integer gap. [43] uses the notion of compressed polytopes to derive necessary
and sufficient conditions for a null integer gaps. These conditions include the
well known case of decomposable models, for which Fréchet bounds are known
to be sharp, but they are typically difficult to check for generic log-linear models,
and they do not help with settings such as those involving reducible models [12]
which may allow for a considerable simplifications.

The shuttle algorithm, originally put forward by Buzzugoli and Giusti [2], is a
very efficient algorithm for computing integer bounds for cell entries that is based
on the idea that the upper and lower bounds are interlinked, which means that
bounds for some cells induce bounds for some other cells in the table. Dobra [9]
generalized the shuttle algorithm by proposing a succeeding Branch-and-bound
approach to enumerate all feasible tables, thus adjusting the shuttle bounds to
be sharpest, and implemented a parallel version of the enumerating procedure
which permits efficient computation for large tables. Because this algorithm is
substituting for the traversal of all lattice points in the convex polytope, and
this involves aspects of the exact distribution without the probabilities, it is not
surprising that there are links with the issues of maximum likelihood estimation.
In the case of margins corresponding to decomposable graphs, the bounds have
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1 2 C
1 2 1 2 D

1 1 0 1 1 0
2 1 0 0 0

2 1 1 0 0 0
2 0 0 0 1

A B

Table 3. An example of a table with integer gap of 1.67 for the entry (1, 1, 1, 1)
with fixed 2-way margins. For that cell the integer upper bounds is 0. Inciden-
tally, we note that the MLE is defined and that the fiber contains one table only.
Source: Hos»ten and Sturmfels [33].

explicit representation (see [12]) and the branch and bound component is not
needed, and when they correspond to reducible graphs this component effectively
works on the reducible components!

Markov Bases Complexity and Disconnected Fiber By construction,
Markov bases preserve connectedness in the fiber. This crucial feature implies,
among other things, that Markov bases encode the maximal degree of geomet-
ric and combinatorial complexity for the fibers associated to a given log-linear
model. De Loera and Ohn [7] indicate that the complexity of Markov bases has
no bound and thus there is little hope for an efficient computation of Markov
bases for problems of even moderate size, from the theoretical point of view.
They also show in a constructive way that fibers can be largely (in fact, arbi-
trarily) disconnected, a fact that can be quantified by the degree of the Markov
moves. A disconnected fiber implies that there may exist cells in the table for
which the range of integer values that are compatible with the margins is not
a finite sequence of integers, but contains instead gaps. In the presence of such
gaps, it is apparent that the knowledge of sharp upper and lower integer bounds
for the cell entries cannot be a definitive indication of the safety of a data release.
The combinatorial and geometric assessment of the degree of disconnectedness
of a given fiber is an open problem with important implications for disclosure
limitation methodologies.

Table 4 gives an example of an integer gap for a 3×4×6 with fixed 2-way mar-
gins. The fiber contains only 2 feasible tables and the range entry for the first cell
is {0, 2}, thus exhibit a gap, since a value of 1 cannot be observed. In principle,
it is possible to generate examples of tables with arbitrarily disconnected fiber.

4 Examples

MLE Existence and Bounds. Table 5 shows a 4×4×4 table. There are 123
tables in the fiber. Table provides the cell bounds given the two-way marginals
computed using the shuttle algorithm. Proposition 1 implies that the upper
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(:,j,k)= (i,:,k)= (i,j,:)=

2 1 2 0 2 0
1 0 2 0 0 2
1 0 0 2 2 0
0 1 0 2 0 2

2 1 2 3 0 0
2 1 0 0 2 1
0 0 2 1 2 3

2 2 2 2
3 1 1 1
2 2 2 2

Table 4. Margins of a 3×4×6 table with a gap in the entry range for the (1, 1, 1)
cell. Source: De Loera and Ohn [7].

bounds for the entries of the zero cells, which correspond to a set Zt, is zero.
Furthermore, it is easy to show that the entry range for each cell is an interval of
integer points, i.e. the fiber is connected, and thus the knowledge of cell bounds
is very informative for assessing the risk of disclosure.

(:,:,1)= (:,:,2)= (:,:,3)= (:,:,4)=

0 0 0 5
4 5 5 1
1 5 0 1
1 0 0 1

0 0 1 1
0 0 6 0
5 3 2 2
5 0 2 2

0 1 2 2
0 5 5 0
0 4 0 0
3 2 4 3

4 2 3 3
2 2 2 0
2 2 0 0
2 0 0 0

Table 5. A 4×4×4 table with a pattern of zeros corresponding to a non empty
Zt and, therefore, to a nonexistent MLE. Source: Fienberg and Rinaldo [25].

A Small Sparse Table. Edwards [18] reports on an analysis of genetics data in
the form of a sparse 26 contingency table given in Table 7. The six dichotomous
categorical variables, labeled with the letters A-F, record the parental alleles
corresponding to six loci along a chromosome strand of a barely powder mildew
fungus, for a total of 70 offspring. The original data set, described in [3], included
37 loci for 81 offsprings, with 11 missing data—a very large sparse table.

(:,:,1)= (:,:,2)=

[0, 0] [0, 0] [0, 0] [5, 5]
[2, 6] [3, 7] [5, 5] [1, 1]
[0, 4] [3, 7] [0, 0] [0, 2]
[0, 2] [0, 0] [0, 0] [0, 2]

[0, 0] [0, 0] [0, 2] [0, 2]
[0, 0] [0, 0] [6, 6] [0, 0]
[4, 6] [3, 3] [2, 2] [1, 3]
[4, 6] [0, 0] [1, 3] [0, 4]

(:,:,3)= (:,:,4)=

[0, 0] [0, 3] [0, 4] [1, 3]
[0, 0] [3, 6] [4, 7] [0, 0]
[0, 0] [4, 4] [0, 0] [0, 0]
[3, 3] [2, 2] [3, 5] [2, 4]

[4, 4] [0, 3] [2, 5] [3, 3]
[0, 4] [0, 6] [0, 3] [0, 0]
[0, 4] [0, 4] [0, 0] [0, 0]
[2, 2] [0, 0] [0, 0] [0, 0]

Table 6. Sharp integer bounds of the 4×4×4 Table 5.
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1 2 D
1 2 1 2 E

1 2 1 2 1 2 1 2 F

1 1 1 0 0 0 0 3 0 1 0
2 0 1 0 0 0 1 0 0

2 1 1 0 1 0 7 1 4 0
2 0 0 0 2 1 3 0 11

2 1 1 16 1 4 0 1 0 0 0
2 1 4 1 4 0 0 0 1

2 1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0

A B C

Table 7. Cell counts for the dataset analyzed by [18]. Data publicly available
at http://www.hypergraph.dk/.

For the model implied by fixing all the 2-way margins, the MLE is nonexistent
because there is one null entry in the [AB] margins (there is a total of 60 possible
values for the margins). Using the program polymake ([29]), we found that the
marginal cone for this model has 116,764 facets, each of them corresponding to
a different pattern of sampling zeros causing nonexistence of the MLE , but only
60 of them produce null margins. Table 8 displays one facial set associated to
one of these facets. The facet of the marginal cone specified by the unique null
margins observed for the Table 7 has 11,432 facets.

1 2 D
1 2 1 2 E

1 2 1 2 1 2 1 2 F

1 1 1 0 + + + 0 0 + 0
2 0 0 + + 0 0 0 0

2 1 0 0 0 0 0 0 0 0
2 0 0 + 0 0 0 0 0

2 1 1 0 + 0 0 + + + 0
2 0 + + + 0 0 + 0

2 1 0 0 0 0 + 0 0 0
2 + + + 0 + 0 + 0

A B C

Table 8. Example of a 26 sparse table with a nonexistent MLE for the model
specified by fixing all 2-way margins. The ’+’ signs indicate cells in a facial set
corresponding to one facet of the marginal cone.
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Table 9 shows the set Zt obtained when fixing the [ABCD][CDE][ABCEF]
margins as the cells marked with a ’0’. The ’+’ entries are cells for which the
integer lower bound is positive, while ’+0’ cells indicate a 0 lower integer bound.
The fiber in this case consists of 30 tables.

We note that Proposition 1 cannot be reversed, in the sense that null integer
upper bounds for a set of cells does not imply the nonexistence of the MLE. In
fact, Table 10 shows a set of sharp integer upper and lower bounds for a model
for which the MLE exists! Despite the fact that there exist strictly positive real-
valued tables in the fiber determined by the prescribed margins, there are cells,
highlighted in red, for which no positive integer entries can occur.Although the
MLE is well defined, many estimated cell mean values are rather small: 28 out of
64 values were less than 0.01 and only 14 were bigger than 1, while the smallest
estimated mean value is 0.000691. For such small estimates, which correspond
mostly to the cells for which the upper and lower integer bound is zero, the
standard error is clearly very large. In fact, it is reasonable to expect that cells
for which the maximal integer entries compatible with the fixed margins are zero
will correspond to cell estimates with large standard errors. In this sense, cell
bounds and maximum likelihood inference are strongly interlinked.

1 2 D
1 2 1 2 E

1 2 1 2 1 2 1 2 F

1 1 1 0 0 0 0 + 0 + 0
2 0 + 0 0 0 + 0 0

2 1 +0 +0 + 0 + +0 + 0
2 +0 +0 0 + +0 + 0 +

2 1 1 + +0 + 0 +0 +0 +0 0
2 +0 + +0 + +0 +0 +0 +0

2 1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0

A B C

Table 9. Zero patterns when CDE, ABCD, ABCEF are fixed.

A Large Sparse Table. The 8-dimensional contingency table in Table 11 is
a collapsed excerpt from a slightly altered version of the 1981 Australian popu-
lation census, involving about 10 million individuals. The variables we consider
are birthplace (BPL), sex (SEX), age (AGE), religious denomination (REL),
marital status (MST ), level of qualification (QAL), individual income (INC)
and family income (FIN).

Structural zeros for some combinations of DUR and TIS, because these are
impossible combinations, , but there are no reasons a priori to suspect that struc-
tural zeros may originate from the cross-classification of the remaining categories.
Thus, we ignored the variables DUR and TIS and considered the resulting 9-way
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1 2 D
1 2 1 2 E

1 2 1 2 1 2 1 2 F

1 1 1 [0, 1] [0, 0] [0, 2] [0, 0] [1, 4] [0, 1] [0, 2] [0, 1]
2 [0, 0] [0, 2] [0, 0] [0, 2] [0, 1] [0, 2] [0, 1] [0, 1]

2 1 [0, 1] [0, 0] [0, 2] [0, 0] [6, 9] [0, 1] [1, 4] [0, 1]
2 [0, 0] [0, 1] [0, 0] [0, 2] [0, 1] [1, 4] [0, 1] [9, 12]

2 1 1 [15, 18] [0, 1] [0, 4] [0, 1] [0, 1] [0, 0] [0, 1] [0, 0]
2 [0, 1] [2, 5] [1, 2] [1, 5] [0, 0] [0, 1] [0, 0] [0, 1]

2 1 [0, 1] [0, 0] [0, 2] [0, 1] [0, 1] [0, 0] [0, 1] [0, 0]
2 [0, 0] [0, 1] [0, 1] [0, 2] [0, 0] [0, 1] [0, 0] [0, 1]

A B C

Table 10. Exact upper and lower bounds for model obtained by fixing all
positive 3-way margins.

BPL SEX AGE REL
#Categories 8 2 11 5

MST QAL INC FIN
#Categories 5 11 15 16

Table 11. Number of levels for the 8 variables extracted from the 1981 Aus-
tralian population census.

table. Since even this reduced table is too large to be analyzed, we applied various
collapsings over the levels of the variables TALLY , BPL and REL. Specifically,
we aggregated 1) the levels of TALLY into TALLY ≥ 3 and TALLY ≤ 3; 2) the
levels of BPL into Australia, England, OtherEurope, Asia, America, Africa,
Ocean, and Other; 3) the levels of REL into Majority and Minority where the
label Majority includes the original labels CatholicRoman, CatholicNotRoman,
and ChurchOfEngland. The resulting 9-dimensional table is described in Table
11. Since it contains more than 13 millions of cells, a number of the same order
of magnitude of the grand total. As more than half of the cells contains zero
entries, this table offers an exemplary instance of large-dimensional sparse data
sets, ideal as a test sets for many computations for cell bound and extended
MLE.

We determined facial sets in a naive way by computing LP upper bounds for
individual cells. (More efficient algorithms for the identification of facial sets are
presented in Rinaldo [39] and are currently under development.) The rationale
for this procedure is an immediate consequence of Proposition 1.

Corollary 1. For any t in the marginal cone, Zt = {i : supx∈Pt
x(i) = 0}.

Therefore, the real upper bound for an individual cell i is 0 if and only if i ∈ Zt,
a fact that can be checked by setting up a linear program, which can be run
in parallel. Besides nonexistence of the MLE, this also implies maxn x(i) = 0,
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where the maximum is taken over all integer tables n inside the fiber. We note
that 0 < supx∈Pt

x(i) < 1 would have the same implication.
We report on our results for the determination of the Zt sets for various sub-

tables and different fixed margins. Specifically, we consider two 5-dimensional
sub-tables 12 and 13 by collapsing over BPL, AGE and REL and over SEX,
AGE and REL, respectively and the 6-dimensional sub-table 14 by collapsing
over INC and FIN . The distributions of cell entries for these sub-tables, re-
ported in Table 15, reveals a high degree of sparsity, whereby most of the entries
are zeros or small counts.

Since existence of the MLE depends only on the position of the positive counts
in the table and not on their values, we replaced all positive entries with 1. In
order to perform linear programming optimization, we used lp_solve ([19]),
a free linear/integer programming solver based on the revised simplex method
and the branch-and-bound method for the integers, on a 128-processor linux
Beowful cluster. For the 5-way Tables 12 and 13 we fixed the margins: [QAL,

INC][SEX, MST, QAL][SEX, MST, INC][SEX, MST, FIN][SEX, INC, FIN] and [BPL,

QAL][MST, QAL][QAL, INC][INC, FIN][BPL, MST, INC], respectively, and for the
6-way Tables 14 we fixed the margins [BPL, SEX, QAL][SEX, AGE, QAL][SEX,

REL, QAL][SEX, MST, QAL][BPL, SEX, AGE, REL][BPL, SEX, REL, MST][SEX,

AGE, REL, MST]. We chose these marginal configurations because they are all
positive.

Table 16 summarizes these computations and gives the time cost. Since |Zt|
is empty in all three cases the MLE exists and all estimated expected values
are strictly positive. Given the high level of sparsity of these tables, however, we
expect to observe a phenomenon similar to the one with describe earlier in our
comment of Table 10, namely that many fitted values are very small and that
there will be numerous instances of cells for which the upper and lower integer
bound is zero.

SEX MST QAL INC FIN
#Categories 2 5 11 15 16

Table 12. A 5-dimensional sub-table after collapsing the table over variable
BPL, AGE and REL. 42% of cells are zero.

BPL MST QAL INC FIN
#Categories 8 5 11 15 16

Table 13. A 5-dimensional sub-table after collapsing the table over variable
SEX, AGE and REL. 65% of cells are zero.
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BPL SEX AGE REL MST QAL
#Categories 8 2 11 5 5 11

Table 14. A 6-dimensional sub-table after collapsing the table over variable
INC and FIN . 41% of cells are zero.

Cell count No. Cells

Table 12 Table 13 Table 14
0 11613 69029 19771

1∼10 6722 20689 14107
11∼100 4168 10094 8965

101∼1000 2597 4360 4126
>1000 1300 1428 1431

Total cells 26400 105600 48400

Table 15. Distribution of the cell counts for the sub-tables 12, 13 and 14.

table dimensionality #cells #equality constraints time cost |Zt|
Table 12 5 26400 1065 14 minutes 0

Table 13 5 105600 1788 4 hours 0

Table 14 6 48400 2468 1 hour 0

Table 16. Summary of our computations for the Tables 12, 13 and 14.

5 Conclusions

In this paper, we follow up on ideas put forward by Fienberg [21] and eluci-
date some connections between the problem of computing cell bounds given a
fixed set of margins and the existence of the maximum likelihood estimates for
the cell counts under hierarchical log-linear models. We show that these two
problems can be formulated using the same geometric framework of algebraic
statistics and we describe the relevant geometric objects. We exemplify these
results by presenting a variety of computations on simulated and real life exam-
ples of contingency tables of different dimensions and degrees of sparsity. In our
calculations we relied a variety of software for symbolic algebra, computational
geometry, linear and integer programming and the generalized shuttle algorithm.
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