
A Continuous-Time Model of Income Dynamics

Thorsten Heimann and Mark Trede
Institute for Econometrics
University of Münster
Am Stadtgraben 9

48143 Münster, Germany
email: mark.trede@uni-muenster.de

January 2005

Abstract

Most models of income dynamics are set in a discrete framework
with arbitrary choice of the accounting period. This paper introduces
a continuous-time stochastic model of income flows, avoiding the prob-
lem of choosing the accounting period. Our model can be estimated
using unbalanced panel data with arbitrarily spaced observations. Al-
though our model describes the stochastic properties of income flows,
estimation is based on observed incomes accrueing during time inter-
vals (of possibly varying length). Our model of income dynamics is
close in spirit to the discrete-time two-stage models. We impose a
parsimoniously parametrised continuous-time stochastic process (pos-
sibly containing a unit-root) to model the deviation from a traditional
earnings function. The model is estimated using micro-data from the
German social security agency from 1975 to 1995.

Keywords: Earnings, Diffusion process, Ornstein-Uhlenbeck process,
Panel data, Estimation

JEL classifications: C13, J31, J62

1 Introduction

Knowing the dynamics of the income or earnings process is important for
various purposes, e.g., it might allow us to distinguish between different
theories about income distributions; models of income dynamics can be used
to base macro economic theories of saving behaviour on a micro economic
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foundation; they are a tool for measuring income risk; simulations of possible
future income paths can be generated and might be used for pricing private
income insurance contracts as proposed by Shiller and Schneider (1998).

The existing dynamic income models assume that income is a discrete-
time stochastic process. This approach has two disadvantages. First, the
choice of the accounting period is completely arbitrary and often driven
simply by data availability. Second, even if one succeeds in finding an ap-
propriate time series model of, say, weekly earnings, the model is bound
to fail if we aggregate into annual earnings, as aggregation over time al-
ters many time series properties. Further, although wages are usually paid
weekly or monthly, the flow variable earnings is nevertheless generated in
continuous time. Although discretely observed in the form of cumulated (or
rather integrated) earnings over certain time intervals, the income process
itself is essentially a continuous phenomenon and ought to be modelled as
such.

This paper introduces a continuous-time stochastic model of income
flows, avoiding the problem of choosing the accounting period. Our model
can be estimated using unbalanced panel data with arbitrarily spaced ob-
servations. Estimation is not based on observations of the income flow at
certain points of time (since flow variables are obviously unobservable at
single points of time), but rather on observed incomes accruing during time
intervals (of possibly varying length).

The literature on dynamic income models is large but mostly restricted
to the discrete-time case (see Atkinson, Bourguignon and Morrisson (1992)
and Alvarez, Browning and Ejrnaes (2002) for overviews). Most studies
use a two-stage estimation procedure: earnings are regressed on individual
characteristics such as age, education or occupation, then the residuals are
modelled as an autoregressive and/or moving average process. There is no
consensus on whether the income or earnings process is to be modelled as
stationary or rather with a stochastic trend. Influential studies on income
dynamics are Lillard and Willis (1978), MaCurdy (1982), Abowd and Card
(1989), Gottschalk and Moffitt (1994), Baker (1997), Baker and Solon (2003)
and Geweke and Keane (2000).

A continuous-time approach to income dynamics is developed in Geweke,
Marshall and Zarkin (1986b) and Geweke, Marshall and Zarkin (1986a):
Their continuous-time Markov chain model allows income to jump at any
point in time between income classes. Discretising income into classes
and inspecting movements between them is a standard methodology in the
strand of literature dealing with income mobility (see Shorrocks (1976) and
Shorrocks (1978)). Obviously, a discretisation of the income space rubs out
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a huge amount of valuable information. Our model, in contrast, preserves
the continuous nature of both time and income itself.

The lack of continuous-time models of the income process conflicts with
the long established and wide-spread use of continuous-time models in econo-
metrics (see e.g. Phillips (1972), Bergstrom (1983) and Bergstrom (1990))
and related fields such as finance (see any textbook on finance).

Our model of income dynamics is close in spirit to the discrete-time two-
stage models. We impose a parsimoniously parametrized continuous-time
stochastic process (possibly containing a unit-root) to model the deviation
from a traditional earnings function. To illustrate our approach, the model
is estimated using micro-data from the German social security agency from
1975 to 1995. Data provider is the Institut für Arbeitsmarkt und Berufs-
forschung (IAB). This administrative data set forms a one percent random
sample of the German labour force. The number of individuals covered is
large (roughly 560,000 individuals). For each individual the dataset con-
tains daily information on earnings and other occupational and personal
characteristics, that are observed for spells of different lengths.

We estimate the model by a two-stage maximum likelihood method.
First, we estimate an earnings function with individual random effects and
use the resulting estimates to predict the mean income (as a function of time)
for each person in the dataset. Second, we estimate an integrated Ornstein-
Uhlenbeck process for the residuals. Although the Ornstein-Uhlenbeck process
is the continuous equivalent to an AR(1) process, the resulting integrated
process has a much richer time series structure.

The paper is organised as follows. Section 2 presents our continuous-time
model of income dynamics. Section 3 describes the two-stage estimation
procedure. Section 4 describes the data and the estimation results. Section
5 concludes.

2 The continuous-time model of income dynamics

The income of an individual person is assumed to follow a stochastic process
in continuous time. We model income flow Yt at time point t as

Yt = ỹt + ut (1)

where ut is a (not necessarily stationary) Ornstein-Uhlenbeck process with
the stochastic differential equation

dut = −ηutdt+ σdWt, (2)
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(Wt)t≥0 denotes a Wiener process, ỹt the mean income to be defined in
more detail below, and η ∈ R and σ > 0 are the parameters of the process.
For η > 0 the stochastic process (Yt)t≥0 is trend stationary (around mean
income ỹt). For η = 0, income is a continuous-time random walk around ỹt,
and for η < 0 the income process is explosive. The parameter σ determines
the strength of the stochastic income component.

The expected income flow ỹt is a function that predicts a person’s income
at time point t given a list of explanatory variables. To keep the model simple
we restricted the list of explanatory variables to just age and time, though in
principle other variables could be included, e.g., occupational characteristics,
education, etc. We include both linear and quadratic terms in age to allow
mean income to exhibit an inverse u-shape. We further include a time trend
in order to account for differences between people generating their incomes
at different times. Let B denote a person’s date of birth, then his or her age
at time t can be written as At = t−B.

Our simple model for the expected income flow at time point t for an
individual aged At is

ỹt = µ+ β1t+ β2At + β3A
2
t . (3)

Of course, it is impossible to separate time and cohort effects if there are
just observations on a single person (or a single cohort). However, since our
model will be estimated with panel data from many cohorts, the parameters
in (3) are identified.

The solution of the stochastic differential equation (2) is

ut = u0e
−ηt + σ

Z t

0
eη(s−t)dWs

where u0 is the, possibly random, start value with V ar(u0) =: V0. The sto-
chastic processes (ut)t≥0 and (Yt)t≥0 are Gaussian with mean and covariance
functions

E(Yt) = ỹt (4)

E (ut) = 0 (5)

Cov(Ys, Yt) = Cov (us, ut)

=

∙
V0 +

σ2

2η

³
e2ηmin(s,t) − 1

´¸
e−η(t+s). (6)

Since we cannot observe the income flow directly at single points of time, but
rather the income generated during time intervals [t0, t1], . . . , [tT−1, tT ], we

4



integrate (1) to obtain the observable integrated Ornstein-Uhlenbeck process

Sk =

Z tk

tk−1

Ytdt

=

Z ti

tk−1

ỹtdt+

Z tk

tk−1

utdt

for non-overlapping intervals k = 1, . . . , T . Note that the (deterministic)
integral

R
ỹtdt captures the first moments of the process while the (stochas-

tic) integral
R
utdt describes its second moments. Since (Yt)t≥0 is Gaussian,

so is (Sk)k=1,2,.... Notice that Sk does not inherit the Markov property of
the Ornstein-Uhlenbeck process ut. Its variance and covariance functions
have been derived by Gloter (2001) for the case of equidistant intervals.
The generalisation for intervals of arbitrary lengths is (see appendix for the
derivations)

E(Sk) = µ (tk − tk−1)

+β1
1

2

¡
t2k − t2k−1

¢
+β2

µ
1

2

¡
t2k − t2k−1

¢
−B (tk − tk−1)

¶
+β3

µ
1

3

¡
t3ik − t3ik−1

¢
+B2 (tk − tk−1)−B

¡
t2k−1 − t2k

¢¶
(7)

V ar(Sk) =
σ2

η3

³
eη(tk−1−tk) − 1− η (tk−1 − tk)

´
+

µ
V0
η2
− σ2

2η3

¶¡
etkη − etk−1η

¢2 ³
e−2η(tk+tk−1)

´
. (8)

Cov (Sk, Sl) =
σ2

2η3

³
e(tk−1−tl)η − e(tk−1−tl−1)η + e(tk−tl−1)η − e(tk−tl)η

´
+

µ
V0
η2
− σ2

2η3

¶¡
etkη − etk−1η

¢
×
¡
etlη − etl−1η

¢
e−η(tk−1+tk+tl−1+tl) (9)

where 1 ≤ l < k ≤ T . These stochastic properties form the basis of the
maximum likelihood estimation procedure to be presented in the next sec-
tion.
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3 Estimation Method

Estimation of the parameters of the income model in section 2 proceeds in
two steps: In the first step, the parameters of the mean income function (3)
are estimated from the data and then used to predict the expected income.
In the second step, we use the residuals to estimate the parameters of the
Ornstein-Uhlenbeck process (2). This method is in line with most of the
literature in the discrete case, although a one-step maximum likelihood esti-
mation of all model parameters simultaneously would be more efficient. The
development of such an estimation procedure is subject to current research.
However, we reckon that the loss in efficiency of the two-stage estimation is
tolerable.

Estimation of the mean income function
As to the mean income function, we assume the existence of an individual

random effect. For individuals i = 1, . . . ,N and time intervals [tk−1, tk],
k = 1, . . . , Ti, the resulting random-effects model for average daily incomes
S∗ik takes the form (cf. (7))

S∗ik = (E (Sik) + αi + vik) /∆ik

= µ

+β1
t2ik − t2ik−1
2∆ik

+β2

1
2

¡
t2ik − t2ik−1

¢
−Bi∆ik

∆ik

+β3

1
3

¡
t3ik − t3ik−1

¢
−Bi

¡
t2ik − t2ik−1

¢
+B2i∆ik

∆ik

+(αi + vik) /∆ik (10)

where ∆ik = tik − tik−1

E (αi) = E (vit) = 0,

E (αivik) = 0,

E (αiαj) =

½
σ2α if i = j,
0 if i 6= j,

E (vikvjl) =

½
σ2v if i = j, k = l,
0 otherwise,

E (αiBi) = E (uikBi) = 0.
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Estimating the model using average daily incomes, rather than total income
during each spell, has the advantage that the individual effects influence
income proportional to spell length. The estimation’s residuals can easily
be transformed back from average values to total values by multiplying them
with spell lengths.

The parameters µ, β1, β2, β3 of (3) are the same for each person, we do
not allow for random coefficients. We assume that αi and vik are normally
(and independently) distributed and then recover the model parameters by
maximising the restricted likelihood function.1 We use the estimated para-
meters µ̂, β̂1, β̂2, β̂3 to predict mean income according to the earnings func-
tion (3) for each individual and time period. The distance between observed
and predicted incomes serve as input in the following estimation step.

Obviously, the covariance structure imposed by this error component
model deviates from the one implied by the Ornstein-Uhlenbeck process ut
as given in (2). However, the estimates of µ, β1, β2, β3 are consistent, hence
the residuals v̂t can be used as valid substitutes for the unobservable

R
utdt,

if the sample is sufficiently large.

Estimation of the Ornstein-Uhlenbeck Process
In our data, we do not observe realisations of the flow process Yt itself but

of the integrated process. We therefore consider the income observed in the
interval [tk−1, tk] to be a realisation of Sk. Similarly, the consistently esti-
mated residuals from the first estimation step are the realisations of

R
utdt.

The parameters σ and η can then be estimated by maximising the likelihood
function. As before, the observations are assumed to be independent across
individuals i = 1, . . . , N , and the parameters of the residual process are the
same for each person.

We start by constructing the likelihood function for a single individual
i. Required are the parameters of the multivariate normal distribution of

pi=

⎡⎢⎣
R t1
t0
utdt
...R tT−1

tT
utdt

⎤⎥⎦
i.e., its vector of expectations and its covariance matrix. The expected values
of the residuals are, of course, zero, and the covariance matrix is constructed

1Estimation of the parameters was performed with the lme (linear mixed effects) com-
mand of the statistical programming language R, implementing the method of Laird and
Ware (1982).
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using (8) and (9). Denote the resulting covariance matrix by Σ
¡
σ2, η, V0

¢
.

Reparametrising w = V0/σ
2 we can extract the volatility parameter σ2 from

the covariance matrix,

V ar (Sk) = σ2
∙
1

η3

³
eη(tk−1−tk) − 1− (tk−1 − tk) η

´
+

µ
w

η2
− 1

2η3

¶¡
eηtk−1 − eηtk

¢2 · e−2η(tk−1+tk)¸
Cov (Sk, Sl) = σ2

"
1

2η3

³
eη(tk−1−tl) − eη(a−tl−1) + eη(tk−tl−1) − eη(tk−tl)

´
+

µ
w

η2
− 1

2η3

¶¡
eηtk−1 − eηtk

¢ ¡
eηtl − eηtl−1

¢
×e−η(tk−1+tk+tl−1+tl)

#
,

and write Σ
¡
σ2, η, w

¢
= σ2Ω (η,w) where Ω (η,w) collects the terms in

square brackets. Since the integrated process is multivariate normal with
the (T × 1) vector 0 of expected values and the covariance matrix σ2Ω (η,w),
the joint density is

f
¡
p|σ2, η, w

¢
= (2π)−Ti/2

¯̄
Σ
¡
σ2, η, w

¢¯̄−1/2
exp

∙
−1
2
p0Σ

¡
σ2, η, w

¢−1
p

¸
.

Since the incomes according to (2) are independent across individuals,
the likelihood function for all persons i = 1, . . . ,N in the dataset is just the
product over the individual likelihood functions, and the joint log-likelihood
function is

NX
i=1

lnL
¡
σ2, η, w|pi

¢
=

NX
i=1

µ
−Ti
2
ln (2π)− 1

2
ln
¡¯̄
Σi

¡
σ2, η, w

¢¯̄¢
− 1
2
p0iΣi

¡
σ2, η, w

¢−1
pi

¶
,

where subscript i indicates the person and N is the number of individuals in
the dataset. Notice that the covariance matrices Σi differ (in general) from
person to person as the time intervals need not be identical for everyone.
Numerical maximisation yields the ML estimates. Since σ2 can be factored
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out of the covariance matrix we can easily concentrate the likelihood to
speed up the maximisation procedure. The first-order condition for σ2 is

∂
PN

i=1 lnL
¡
σ2, η, w|pi

¢
∂σ2

=
NX
i=1

⎛⎝−1
2

∂ ln
¡¯̄
σ2Ωi (η,w)

¯̄¢
∂σ2

− 1
2

∂
h
p0iσ

−2Ωi (η,w)
−1 pi

i
∂σ2

⎞⎠
= − 1

2σ2

NX
i=1

Ti +
1

2σ4

NX
i=1

p0iΩi (η,w)
−1 pi

= 0,

or

σ̃2 =
1PN
i=1 Ti

NX
i=1

p0iΩi (η,w)
−1 pi. (11)

Hence the concentrated log-likelihood is

NX
j=1

lnL (η,w|pj)

= −
PN

j=1 Tj

2
ln (2π)−

PN
j=1 Tj

2
ln

Ã
1PN
i=1 Ti

NX
i=1

p0iΩ (η,w)
−1 pi

!

−1
2

NX
j=1

ln |Ωj (η,w)|−
PN

i=1 Ti
2

(12)

which is to be numerically maximised with respect to η and w. The ML
estimate for σ can then be recovered from (11) by inserting η̂ and ŵ for
η and w. The asymptotic distribution of the estimated parameters is, of
course, normal. Note that the presence of a stochastic trend in Yt (or even
an explosive process) is innocuous.

The maximum likelihood estimation becomes rather unwieldy if the num-
ber of integrals T is large, since (12) involves the T × T matrices Ωj ,
j = 1, . . . , N . As the largest number of spells in our illustrative applica-
tion does not exceed 40 (and is mostly around 10-15) this is not a serious
limitation. An alternative estimation method, based on prediction-based
estimating functions (Sørensen, 2000) and capable to handle large T , is sug-
gested by Ditlevsen and Sørensen (2004).
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4 Data and Results

Estimation of our model is based on the Institute for Employment Research
(Institut für Arbeitsmarkt und Berufsforschung, IAB) employment sample,
which covers a one percent random sample of all employees registered with
the German social security system within the period from 1975 to 1995.
It includes spell data on the employment history as recorded by the so-
cial insurance system, and information on periods of drawing benefits. The
variables include information on education, part/full time employment, oc-
cupation and the average daily remuneration during the spell. In addition,
some socio-economic variables such as age, gender, marital status, national-
ity, number of children etc. are also available.

The data have been recorded by the administrative data collection pro-
cedure of the social insurance system, introduced in West Germany in 1973.
It includes a common notification procedure for health insurance, unem-
ployment insurance, and the statutory pension scheme. All employers in
Germany are legally obliged to supply the social security agencies with com-
prehensive information about their employees. Employers have to notify the
agencies of any relevant changes in the employment status. If there are no
changes, an annual control notification is required. These data are collected
and stored by the Federal Employment Service (Bundesanstalt für Arbeit).

Since the purpose of the data collection is to set up a social insurance
account for each employee, and since substantial legal sanctions are imposed
for incorrect or missing notifications, the data are much more reliable than
survey income data collected on a voluntary basis. Furthermore, the dataset
does not suffer from panel mortality or attrition.

However, there are some limitations to the data quality:
First, the social insurance agency records a person’s wage only up to

the contribution assessment ceiling of the social security system. For wages
exceeding this threshold, the data are censored (from above). The threshold
increases over time roughly in line with the increase in the general wage
level. For the 1980s, the fraction of censored observations lies between 8
and 11 percent, but it is substantially higher for subgroups such as highly
qualified employees (see Steiner and Wagner (1997, p. 639)).

Second, the German social insurance system does not include civil ser-
vants, self-employed persons, nor employees with an income below a certain
threshold and thus not subject to social insurance contributions. In 1995,
the employees registered with the social insurance system in West Germany
accounted for roughly 80 percent of the total workforce, varying across oc-
cupations and industries (see Bender, Haas and Klose (2000, p. 651)).
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Third, there is a structural break: From 1984 onwards, all establishments
were required to report wages including various forms of extra allowances
and bonuses. Before 1984, they were free to decide whether or not to in-
clude extra payments in reported wages, and there is no information on how
these payments have been treated by each establishment (see Steiner and
Wagner (1997, p. 639) and references cited there). It is likely that some
establishments did not report extra payments while others did so.

For each employee, the dataset contains socio-economic variables on the
person as well as information on their establishment. However, for the es-
timation of our model we only need: total income during each spell, the
spell itself, and the person’s year of birth. Since each change in employ-
ment status triggers a notification the information is constantly updated,
and each time a new spell is created. The spell lengths vary according to
the frequency of the notifications submitted by the employer. Earnings dur-
ing each spell are reported as average daily earnings (in Deutsche Mark);
hence, total earnings are simply the product of average daily earnings times
spell length.

We chose the day as time unit and set 1 January 1900 as day 1. Since only
the year of birth is given, but not the exact day, we set each person’s day of
birth to 30 June. The complete IAB dataset contains 7 847 553 observations
(i.e., spells) on 559 540 individuals. In order to reduce the computational re-
quirements and to facilitate the statistical analysis, we eliminate individuals
from the original dataset in the following way.

We eliminate persons holding more than one job at a time (multiple
employment). Women are excluded from the sample. Further, employees
in East Germany are not considered since their data do not cover the pe-
riod before 1992. Concerning occupational status, we exclude apprentices,
trainees, home workers, part-time workers, and people with unspecified or
unknown status. We also exclude people born before 1925 or after 1970, peo-
ple with only one spell, and employees reaching the contribution assessment
ceiling of the social security system in at least one spell. In addition, we do
not take into account interrupted employment histories, that is observations
with non-adjacent spells.

Finally, we eliminate all individuals with obviously implausible data,
such as persons with non-constant identification number, changing dates of
birth, spell lengths of more than 366 days,2 or daily incomes of less than
one or more than 300 DM (far above the assessment ceiling). Drawing this

2Since an annual control notification is mandatory, spell lengths cannot exceed 366
days.
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subsample from the original IAB data reduces our dataset to 292 913 obser-
vations on 23 150 individuals. This final dataset is used in both estimation
steps. For each person, it contains an identification number, the beginning
and end of each spell, the date of birth, and total earnings in each spell.
For all individuals and spells, the lengths of the spells vary from one to 366
days, with a mean of 323.5 days. Mean earnings across spells (of possibly
different lengths) are 36 920 DM, and average daily earnings range from 10
to 255 DM with a mean of 113.6 DM.

Estimation of the mean earnings model (3) using (10) yields the estimates
given in the upper panel of table 1. All coefficients are significant at the 1
percent level. Mean earnings flow as a function of time is depicted in figure
1 for selected cohorts (born 1925, 1940, 1955 and 1970). The curves exhibit
the typical concave pattern of earnings functions: Earnings are increasing
over lifetime but at a decreasing rate; and younger cohorts’ earnings are
higher at a given age (due to the positive time effects). The line for the
1925 cohort stops in 1990 at the normal retirement age of 65 years. The line
for the 1970 cohort starts only in 1988 at the age of 18 years.

Figure 2 shows the mean earnings flow in a cross sectional perspective
for the year 1995. Apparently, for a given year, earnings are increasing with
age reaching a maximum at the age of about 54 and declining thereafter.
This is in line with other studies of earnings functions. Remember that we
estimate the earnings function only for the sub-sample of men never reaching
the assessment ceiling, i.e., many persons in our sample are likely to be
blue-collar workers where the (cross sectional) earnings function is known to
have a maximum, while mean earnings for white-collar workers are usually
increasing over the entire age range (although the rate is decreasing in age).
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First step

fixed effects estimate std.err.
intercept −366.7 0.9712
time trend 1.2521× 10−2 4.4125× 10−5
age 9.5233× 10−3 7.6253× 10−5
age2 −2.4331× 10−7 2.1387× 10−9
random effects
σ2α 27.97
σ2v 12.60

Second step

parameter estimate std.err.
η 1.181 6.3333× 10−3
w 0.299 8.5198× 10−3
σ̂ 8182.456

Table 1: Estimation results for the earnings function (upper panel) and
residual process (lower panel)
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Figure 1: Mean earnings flow (in DM/day) as a function of time for selected
cohorts
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Figure 2: Mean earnings flow (in DM/day) as a function of age in 1995

The results of the second estimation step are reported in the lower panel
of table 1. The estimates η̂ and ŵ are significant at the 1 percent level,
we have not yet derived the standard error of σ̂. Using (8) and (9) with
V0 = wσ2 we can compute the (estimated) variance-covariance matrix for
incomes accruing during intervals of arbitrary lengths.

5 Conclusions

We suggest a model of labour income in which income evolves continuously
over time. The income flow of an individual follows a (not necessarily sta-
tionary) Ornstein-Uhlenbeck process around a traditional earnings function.
The model is capable of handling observations on income accruing during
time intervals of different lengths. Our framework avoids arbitrarily defined
income periods. We derive a maximum-likelihood estimation technique for
the model parameters and use a dataset that contains spell earnings infor-
mation.

Further research is under work in various directions: Our dataset is sub-
sampled from the IAB employment sample in a non-random manner, we
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systematically dropped a large number of individuals to avoid estimation
problems due to non-adjacent time intervals or censored data. In order to
ensure a more representative sample, it may be worthwhile to modify the
model in a way that it can handle these problems. A Tobit-like extension to
retain observations censored at the assessment ceiling will be incorporated
into the estimation procedure.

Furthermore, our model presumably suffers from missing exogenous vari-
ables in the earnings function. Rather than including age only, further indi-
vidual attributes (e.g. occupation) or business cycle variables will we added.

From estimations for single individuals it seems that parameters assumed
to be homogenous for all individuals appear to be heterogenous in fact. It
may be worthwhile to examine this further, and where appropriate to allow
for a certain degree of heterogeneity either by assuming common coefficients
for more homogenous subgroups, or by assuming random coefficients.

We have used nominal income rather than real income and therefore we
did not account for decreasing buying power of the income over time. It
may be suggestive to deflate wages by a consumer price index before using
the data for our analysis.
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Appendix

We first consider the variance of the integrated process for a certain time
interval,

V ar(Sk) = V ar

ÃZ tk

tk−1

utdt

!
,

for 0 ≤ tk−1 < tk. Let I
tk
tk−1

= 1
n

Pn
i=1 ui∆k+tk−1 with ∆k = (tk − tk−1) /n

denote the corresponding Riemann sum of the process with mesh ∆k. Gen-
erally, the variance of Itktk−1 can be written as

V ar
³
Itktk−1

´
=
1

n2

nX
i=1

nX
j=1

Cov
¡
utk−1+i∆k

, utk−1+j∆k

¢
. (13)

For the Ornstein-Uhlenbeck process (ut)t≥0 (Karatzas and Shreve (1991,
p. 358) or Shiryaev (1999, p. 239))

Cov
¡
ui∆k+tk−1 , uj∆k+tk−1

¢
=

∙
V ar (u0) +

σ2

2η

³
e2ηmin(i∆k+tk−1,j∆k+tk−1) − 1

´¸
×e−η(∆k(i+j)+2tk−1). (14)

Since we do not know the value of the process at time t = 0 we consider u0
to be stochastic and set V ar (u0) =: V0. Equation (13) then becomes

V ar
³
Itktk−1

´
=

1

n2

nX
i=1

nX
j=1

∙
V0 +

σ2

2η

³
e2ηmin(i∆k+tk−1,j∆k+tk−1) − 1

´¸
×e−η(∆k(i+j)+2tk−1)

=
σ2

2η
· 1
n2

nX
i=1

nX
j=1

³
e−η∆k|i−j|

´
+

µ
V0 −

σ2

2η

¶
1

n2

nX
i=1

nX
j=1

e−η(∆k(i+j)+2tk−1),

where we have exploited the fact that |i− j| = −2min (i, j) + i + j. The
first double sum converges to

lim
n→∞

1

n2

nX
i=1

nX
j=1

³
e−η∆k|i−j|

´
=

2

η2
¡
etk−1η−tkη − 1− tk−1η + tkη

¢
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and the second double sum converges to

lim
n→∞

1

n2

nX
i=1

nX
j=1

e−η(∆k(i+j)+2tk−1)

=

µ
V0
η2
− σ2

2η3

¶¡
etkη − etk−1η

¢2 ³
e−2η(tk−1+tk)

´
,

so that we finally obtain

V ar

Z tk

tk−1

utdt = lim
n→∞

³
V ar

³
Itktk−1

´´
=

σ2

η3
¡
etk−1η−tkη − 1− tk−1η + tkη

¢
+

µ
V0
η2
− σ2

2η3

¶¡
etkη − etk−1η

¢2 ³
e−2η(tk−1+tk)

´
.

The covariances of the integrated process,

Cov (Sk, Sl) = Cov

ÃZ tk

tk−1

utdt,

Z tl

tl−1

utdt

!
,

for time intervals [tk−1, tk] and [tl−1, tl], tk−1 < tk < tl−1 < tl, can be
obtained in a similar manner: Using (14) and defining ∆k = (tk − tk−1) /n
and ∆l = (tl − tl−1) /n, we have the covariance of the Riemann sums

Cov
³
Itktk−1 , I

tl
tl−1

´
=

1

n2
Cov

⎛⎝ nX
i=1

ui∆k+tk−1 ,
nX

j=1

uj∆l+tl−1

⎞⎠
=

1

n2

nX
i=1

nX
j=1

Cov
¡
ui∆k+tk−1 , uj∆l+tl−1

¢
=

1

n2

nX
i=1

nX
j=1

∙
V0 +

σ2

2η

³
e2ηmin(i∆k+tk−1,j∆l+tl−1) − 1

´¸
×e−η(tk−1+i∆k+tl−1+j∆l)

=
σ2

2η

1

n2

nX
i=1

nX
j=1

e−η(|i∆k+tk−1−j∆l−tl−1|)

+

µ
V0 −

σ2

2η

¶
1

n2

nX
i=1

nX
j=1

e−η(tk−1+i∆k+tl−1+j∆l)
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Even though slightly more complex, rearranging the elements of the first
double sum proceeds analogously to the procedure above, and it can be
shown that the rearranged expression converges towards

lim
n→∞

⎛⎝ 1

n2

nX
i=1

nX
j=1

e−η(|i∆k+tk−1−j∆l−tl−1|)

⎞⎠
=

σ2

2η3

³
e(tk−1−tl)η − e(tk−1−tl−1)η + e(tk−tl−1)η − e(tk−tl)η

´
.

The second double sum converges towards

lim
n→∞

⎛⎝ 1

n2

nX
i=1

nX
j=1

e−η(tk−1+i∆k+tl−1+j∆l)

⎞⎠
=

¡
etkη − etk−1η

¢
·
¡
etlη − etl−1η

¢
e−η(tk−1+tk+tl−1+tl),

so that we finally obtain

Cov

ÃZ tk

tk−1

utdt,

Z tl

tl−1

utdt

!

=
σ2

2η3

³
e(tk−1−tl)η − e(tk−1−tl−1)η + e(tk−tl−1)η − e(tk−tl)η

´
+

µ
V0
η2
− σ2

2η3

¶
·
¡
etkη − etk−1η

¢
×
¡
etlη − etl−1η

¢
e−η(tk−1+tk+tl−1+tl).

The expected income in [tk−1, tk] is

E(Sk) =

Z tk

tk−1

ỹtdt

=

Z tk

tk−1

¡
µ+ β1t+ β2At + β3A

2
t

¢
dt

=

Z tk

tk−1

³
µ+ β1t+ β2 (t−B) + β3 (t−B)2

´
dt

= µ (tk − tk−1) + β1
1

2

¡
t2k − t2k−1

¢
+β2

µ
1

2

¡
t2k − t2k−1

¢
−B (tk − tk−1)

¶
+β3

µ
1

3

¡
t3ik − t3ik−1

¢
+B2 (tk − tk−1)−B

¡
t2k−1 − t2k

¢¶
.
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