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Abstract 

We assess the role of measurement error in minimum wage evaluations when the treatment 
variable – the bite – is inferred from a survey wage distribution. We conduct Monte Carlo ex-
periments on both simulated and empirical distributions of measurement error derived from 
a record linkage of survey wages and administrative data. On the individual-level treatment 
effects are downward biased by more than 30 percent. Aggregation of the treatment informa-
tion at the household, firm or region level does not fully alleviate the bias. In fact, the magni-
tude and direction of the bias depend on the size of the aggregation units and the allocation 
of treated individuals to such units. In cases of a strongly segregated allocation, measurement 
error can cause upward biased treatment effects. Besides aggregation, we discuss two pos-
sible remedies: the use of a continuous treatment variable and dropping observations close 
to the minimum wage threshold. 

Zusammenfassung 

Wir analysieren den Einfluss von Messfehlern in Mindestlohnevaluationen, wenn die Treat-
mentvariable, also der ”Bite”, aus einer befragungsbasierten Lohnverteilung stammt. In Monte-
Carlo-Simulationen überprüfen wir die Verzerrtheit der Schätzer sowohl mit simulierten als 
auch empirischen Verteilungen von Messfehlern. Die empirischen Messfehler stammen aus 
einem Link von Befragungsdaten und administrativen Daten. Auf der individuellen Beobach-
tungsebene werden die Treatmenteffekte über 30 Prozent unterschätzt. Eine Aggregation der 
Treatmentinformation auf der Ebene von Haushalten, Firmen oder Regionen löst das Pro-
blem nicht vollständig. In Fällen einer sehr stark segregierten Verteilung von betroffenen Be-
schäftigten auf nur wenige Firmen oder Regionen kann es sogar zu einer Überschätzung des 
wahren Effekts kommen. Wir diskutieren zwei Lösungsansätze: Die Verwendung einer kon-
tinuierlichen Treatmentvariable und das Löschen von Observationen, die in der Lohnvertei-
lung nahe der Mindestlohnschwelle liegen. 

JEL 

C21, C43, J38 
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1. Introduction 

The collection of income data in surveys is prone to human error. Respondents may not recall 
transitory components of their income, confound months, or come up with overly crude ap-
proximations, all in good faith. Due to the sensitivity of the information, respondents might 
also report an incorrect value deliberately. 

In empirical evaluation studies of nationwide minimum wages, assignment to a treatment 
group is determined by the position in the observed wage distribution. Measurement error 
in the wage variable might cause biased estimation of treatment effects due to misclassifi-
cation of persons into treatment and control groups. One recent example is the introduction 
of a nationwide minimum wage in Germany: for the evaluation of its causal effects, scholars 
typically apply a difference-in-differences identification strategy.1 Consequently, they have 
to assign individuals to treatment and control groups. Individuals are assigned to the former 
if the wage is below the new minimum wage threshold before the law came into force and to 
the latter if the wage already exceeds the forthcoming minimum wage. 

In the presence of misclassification into treatment and control groups due to classical mea-
surement error in wages, regression attenuation shrinks the estimated treatment effect to-
wards zero. Scholars typically claim to estimate a lower bound of the true effect without elab-
orating the actual size of the bias. However, the size of this bias is relevant, in particular when 
it concerns evaluations of disruptive policy changes such as minimum wages. In this study, 
we find that the bias can be quite substantial when we apply both simulated and empirical 
distributions of measurement error in survey-based wage data in a difference-in-differences 
minimum wage evaluation. 

Scholars typically hope to cancel out the measurement error by aggregating data in policy 
evaluations (Bound/Brown/Mathiowetz, 2001).2 However, we are not aware of any study that 
analyses potential estimation biases of measurement error when aggregating treatment vari-
ables to higher-level units. In fact, our results do not confirm the common belief that aggre-
gation fully alleviates attenuation bias. We also observe scenarios in which the bias changes 
sign, leading to an overestimation of the actual treatment effect. 

To analyze the bias induced by measurement error, we present a simulation study that ad-
dresses measurement error in an artificially generated setting of a minimum wage introduc-

1 The results in this paper, however, are not restricted to difference-in-differences estimation. All results can 
be generalized to OLS-based treatment effect estimations. 
2 Aggregating data is typically not done solely to alleviate attenuation bias. In difference-in-differences eval-

uations of uniform minimum wages, aggregated data can help to eliminate spillovers, i.e., to address violations 
of the SUTVA. However, we are focusing on the consequences of measurement error, ruling out any spillover 
effects by design. 
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tion. This is first and foremost a simulation study that also uses empirical measurement error 
distributions in later sections. In comparison to an empirical application using simulated data 
has some merits. First, it allows to precisely quantify the size of the bias relative to a gener-
ated effect size. Second, it yields a range of results, whereas a single application would only 
yield a single point estimate with large standard errors, which would have little informative 
value. Finally, it is not feasible to analyse measurement error in an application, simply be-
cause there is no data that is free of any measurement error in hourly wages. Even in German 
administrative data, the collection of gross monthly wages follows a definition that is differ-
ent from the minimum wage legislation, and even more important, the reporting of working 
hours to the German Statutory Accident Insurance allows for estimated values and does not 
distinguish between contractual and actual hours, both creating a meaningful error in the 
respective distribution of hourly wages. 

In the simulations, we start by assuming a normally distributed wage distribution and classi-
cal measurement error. We show that the treatment effect is biased downwards if we estimate 
the effect of a minimum wage on a generated dependent variable. Moreover, changing the er-
ror structure to include a nonclassical term hardly changes the results. We then implement a 
series of Monte Carlo experiments to study the bias after aggregating the data to higher-level 
units (e.g. households, establishments or regions). We use a synthetic allocation of individ-
uals to such units, accounting for varying degrees of segregation of minimum wage workers 
across units and varying unit sizes. In the absence of measurement error in wages, the re-
sulting grouped data regression yields unbiased estimates of the actual treatment effect (An-
grist/Pischke, 2008; Prais/Aitchison, 1954). However, in the presence of fuzzy wage data, the 
bias depends on the size of the aggregation units and the level of segregation. Again, includ-
ing a nonclassical error term has little impact on the bias compared with a classical term. 

Besides the aggregation of data to higher-level units, which entails a loss of efficiency due to 
the loss of observations, we propose and discuss two alternative remedies. First, when build-
ing the regression model, scholars might incorporate a continuous treatment variable indi-
cating treatment intensity instead of a binary treatment assignment. On the individual level, 
the results hardly improve, while for aggregated data with moderate individual-level contam-
ination, we recommend an approach using a continuous treatment variable. Second, and 
somewhat more radical, we discuss deleting individuals close to the minimum wage thresh-
old before its introduction, as those observations are the most prone to misclassification. We 
find that this strategy is only recommendable if we assume that the dummy variable catches 
the actual relationship between minimum wage and a dependent variable. When instead the 
relationship would necessitate a continuous treatment variable, dropping observation does 
not function as a remedy but yields a positive bias. 

In the last part of this paper, we exploit the record linkage of survey wage data with German 
administrative data – including both wages and working hours – to quantify the distribution 
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of measurement error in wages from the difference in survey-based wage information and 
administrative wage data. Even if the administrative data may entail measurement error, the 
difference of both data sources allows us to quantify the distribution of measurement error 
from a comparison of two independent data sources. This approach also allows us to better 
assess recent evaluation studies of the literature based on our new insights concerning po-
tential biases. Even if the empirical execution is clean by conventional empirical standards, 
the results could be biased due to the fuzziness in existing wage data. 

With regard to the generalizability of the results, it needs to be stressed that all recent intro-
ductions of a nationwide minimum wage in developed (and some developing) countries are 
similar compared with the German minimum wage introduction, which we study in this pa-
per. Most importantly, the coverage of a minimum wage among the working population, as 
well as the level of a minimum wage (as a percentage of the median wages) are informed by 
similar political considerations across countries. Policy makers want aim for a minimum wage 
to be high enough to allow for low-wage workers to make a decent living, but low enough as 
to not affect middle class and minimize the overall impact on employment. In 1999, the new 
British National Minimum Wage was 34 percent of the median wage and covered some 8.3 
percent of employees (Metcalf, 1999). One year later, Ireland introduced a minimum wage 
at 59 percent of the median wage that affected about 21 percent of the workforce (Nolan/ 
O’Neill/Williams, 2002). In 2008, Croatia’s general minimum wage was set at 42 percent of 
the average wage, covering 9.2 percent of Croatian employees (Nestić/Babić/Blažević Burić, 
2018). Treatment evaluations using survey data from these countries would likely suffer from 
structurally similar biases, sine about 13 percent of employees where directly affected by the 
2015 minimum wage introduction in Germany, which is 48 percent of the median wage (Ger-
man Minimum Wage Commission, 2016).3 

The OECD keeps track of minimum wages (and ratios) of its members starting in 2000: 
https://stats.oecd.org/Index.aspx?DataSetCode=MIN2AVE. 
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2. Classical measurement error in 
survey wages and treatment assignment 

In a hypothetical evaluation study, we are interested in estimating the relationship between 
an outcome variable 𝑦 and an independent treatment variable 𝑡. In the case of minimum wage 
evaluations, 𝑡 is a treatment indicator, i.e., any person with a wage below the minimum wage 
receives the treatment. However, in survey data, there often is no direct measure of 𝑡. Instead, 
we observe a survey measure of gross hourly wages (𝑤𝑖) for each individual 𝑖 before the treat-
ment event occurs. For studies using observable survey data, 𝑤𝑖 is the sum of the actual gross 
hourly earnings (𝑥𝑖) and an error term (𝑚𝑖), 

𝑤𝑖 = 𝑥𝑖 + 𝑚𝑖. (2.1) 

In the case of classical measurement error, mi is characterized by zero mean 𝐸(𝑚) = 0 and 
nonzero variance 𝐸(𝑚2) = 𝜎𝑚2 , i.e., the measurement error term has a mean of zero and is as-
sumed to be independently and identically distributed. Classical measurement error is easier 
to handle than other types of error, as there is no correlation between the error term and the 
independent variable of actual wages 𝑥𝑖. However, classical measurement error is only a spe-
cial case of a more general survey measure of wages: 

𝑤𝑖 = 𝑥𝑖 + 𝑚𝑖 + 𝑐 + 𝜌(𝑥𝑖 − 𝜇𝑥) (2.2)⏟ ⏟⎵⏟⎵⏟ ⏟⎵⏟⎵⏟ ⏟⎵⎵⎵⏟⎵⎵⎵⏟ 
actual wage classical measurement error nonzero constant nonclassical term 

In this broad description of additive measurement error, the observed survey measure of 
gross monthly wages (𝑤𝑖) is the sum of actual gross monthly earnings 𝑥𝑖, the iid error term 𝑚𝑖, 
possibly a constant nonzero average measurement error 𝑐 and an additional term accounting 
for dependence between the error term and actual earnings (𝜌(𝑥𝑖 − 𝜇𝑥)). The latter can ac-
count for mean reversion, i.e., above average earners understating survey wages and below 
average earners overestimating survey wages. This effect would result in a negative correla-
tion 𝜌, i.e., 𝑥𝑖 − 𝜇𝑥 and 𝑤𝑖 are negatively correlated conditional on 𝑥𝑖. 

Consider the assumptions for 𝑥𝑖 and 𝑚𝑖 in the motivating example in the next section while 
excluding the presence of nonclassical measurement error components. In the first simula-
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tion, both variables are independently, identically and normally distributed random variables 
with 𝐹𝑋 ∼ 𝑁(𝜇𝑥, 𝜎𝑥2) and 𝐹𝑀 ∼ 𝑁(0, 𝜎𝑚2 ). These characteristics implies that the measurement 
error in the survey wage variable is classical, i.e., measurement error 𝑚𝑖 and monthly wage 
𝑤𝑖 are uncorrelated. Considering the properties of iid random variables, the observed wage 
is also iid normally distributed with 𝐹𝑊 ∼ 𝑁(𝜇𝑥, 𝜎𝑥2 + 𝜎𝑚2 ). Thus, in an additive model with 
classical measurement error, the observed wage distribution exhibits the same mean and an 
increased variance. 

In an evaluation study, the treatment status of a person 𝑡𝑖 might be determined by a threshold 
such as an individual’s wage being below the minimum wage before its introduction. In this 
setting, the measurement error in the wage variable blurs the assignment of individuals to 
treatment and control groups. The case distinction 

= {
 0 if 𝑥𝑖 ≥ 𝑤𝑚𝑖𝑛 𝑡𝑖 (2.3)
1 if 𝑥𝑖 < 𝑤𝑚𝑖𝑛 

determines the treatment status of each individual at a point in time ahead of the treatment 
event. However, 𝑥𝑖 cannot be observed, and the contamination of 𝑤𝑖 due to measurement 
error invariably translates to contamination of the treatment indicator 𝑡𝑖. Minimum wages 
are a special case in this setting because only a small fraction of the working population is 
typically affected by its introduction (i.e., we assume that 𝑤𝑚𝑖𝑛 < 𝜇𝑥). 

Figure 1.: Stylized wage distribution with measurement error. 

Note: Assuming classical measurement error, the wage distribution with measurement error exhibits the same 
mean with increased variance compared to the earnings distribution without error terms. As theminimumwage 
typically is below the average wage, the fraction of treated workers is expected to increase. 
Source: own illustration. 

IAB-Discussion Paper 11|2020 11 



As illustrated in Figure 1, the measurement error-induced decompression of the wage distri-
bution causes the observed number of persons below 𝑤𝑚𝑖𝑛 to be higher than that without 
measurement error. While persons might be falsely attributed to the treatment and control 
groups in both directions, more individuals are expected to be false positives. This result fol-
lows from the cumulative density functions of the observed and actual wages. The expected 
actual fraction of treated workers (𝜋𝑥) corresponds to the value for 𝑤𝑚𝑖𝑛 of the cumulative 
distribution function for the actual earnings distribution: 

𝑤𝑚𝑖𝑛 

𝜋𝑥 ∶= 𝐹𝑥(𝑤𝑚𝑖𝑛) = ∫ 1 𝑒−(𝑥−𝜇𝑥)2/2𝜎2𝑑𝑥. (2.4)
0 𝜎𝑥√2𝜋 

The measurement error-induced classification bias is then defined as 

𝑏𝑖𝑎𝑠𝜋 ∶= 𝐹𝑊(𝑤𝑚𝑖𝑛) − 𝐹𝑋(𝑤𝑚𝑖𝑛). (2.5) 

The variance of the treatment variable 𝑉𝑎𝑟(𝑡), which is a relevant statistic in OLS-based re-
gression analyses, is a function of the fraction of individuals who receive the treatment. Since 
𝑡 is a binary variable, the variance is 𝑉𝑎𝑟(𝑡) = 𝜋𝑥(1−𝜋𝑥). As positive bias is expected as long 
as 𝑤𝑚𝑖𝑛 is smaller than 𝜇𝑥, the contaminated variance of the treatment variable leads to in-
creased variance (Figure 2). Under these conditions, as demonstrated in the next subsection, 
the measurement error in individual earnings causes the treatment effect 𝛽𝑚̂ to be biased 
downwards. 

Figure 2.: The variance of the treatment variable is a function of the fraction of the population re-
ceiving treatment. 

Note: Variance of treatment variable 𝑉𝑎𝑟(𝑡) = 𝜋𝑥(1−𝜋𝑥). If the treatment bias 𝑏𝑖𝑎𝑠𝜋 is positive, but a fraction 
well below 50 percent of the workers receive the treatment, the contaminated treatment variable exhibits a 
higher variance than before. 
Source: own calculations and illustrations. 
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3. Consequences of treatment 
misclassification in person-level 
difference-in-differences estimation 

Let us assume scholars are interested in estimating the effect of a uniform minimum wage 
introduction, such as the 2014-2015 German minimum wage introduction, from individual 
survey data. In this case, one might be interested in the effect of the treatment (𝑡 = 1) on an 
unspecified outcome variable 𝑦 and might apply a difference-in-differences model with two 
waves of panel data4 (before and after treatment, indexed by subscript t): 

𝑦𝑖𝑡 = +𝑡𝑖 ∗ 𝛽 + 𝑝𝑜𝑠𝑡𝑡 ∗ 𝛾 + 𝑝𝑜𝑠𝑡𝑡 ∗ 𝑡𝑖 ∗ 𝛿 + 𝜖𝑖𝑡, (3.1) 

where 𝑦𝑖𝑡 is the outcome variable such as pay satisfaction, wages or employment. 𝛼 is a con-
stant, 𝛽 captures the time-constant group effect of the treated individuals, 𝛾 captures a com-
mon time effect, and the treatment effect interaction of the treatment group and treatment 
time 𝛿 captures the treatment effect on the treated individuals. 

An advantage of the simple two-wave difference-in-differences model is its simplification by 
taking first differences in equation 3.1: 

𝑦𝑖 = 𝛾 + 𝑡𝑖 ∗ 𝛿 + 𝜖𝑖. (3.2) 

The difference-in-differences specification in terms of first differences explains the change in 
the outcome between two survey waves Δ𝑦𝑖. The constant and time-constant group effect of 
specification 3.1 are canceled out by the first difference, as these are time-constant terms. The 
time effect (𝛾) then becomes the new constant, and the treatment effect 𝛿 is the coefficient of 
the treatment dummy. In the absence of measurement error, equation 3.2 can be estimated 
via OLS to obtain a consistent estimate of the true treatment effect. 

For the sake of simplicity, Δ𝜖𝑖 is set to follow a standard normal distribution, and the effects 

Since the treatment indicator is typically defined at a specific point in time before the minimum wage re-
form, it is not influenced by the number of data waves for which the dependent variable is tracked. Hence, the 
simulation results remain unchanged and we can proceed with the simple case of only one wave of data before 
and one wave after the treatment. 
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sizes are fixed at 𝛾 = 0 and 𝛿 = 1, i.e., the introduction of a minimum wage causes the 
dependent variable (e.g., pay satisfaction) to increase by 1 if 𝑡 = 1. Thereby, we assume that 
the true treatment effect is homogeneous and uncorrelated with the measurement error 𝑚. 

When we introduce measurement error, 𝑡𝑖 is misclassified. In fact, the number of individuals 
classified as treated increases as the variance of the error term (𝜎𝑚2 ) increases. An increasing 
fraction of individuals assigned to the treatment group implies an increasing variance of the 
treatment indicator (see Figure 2), which is the denominator of the OLS estimator: 

𝐶𝑜𝑣(Δ𝑦𝑖, 𝑡𝑖) 𝐶𝑜𝑣(Δ𝑦𝑖, 𝑡𝑖𝑀𝐸) 𝛽𝑀𝐸.𝛽 ̂ = > = ̂ (3.3)𝑉𝑎𝑟(𝑡𝑖) 𝑉𝑎𝑟(𝑡𝑀𝐸 )𝑖 

Compared with that of the baseline, in which 𝑡𝑖 is assigned without measurement error, in 
the presence of measurement error, the variance 𝑉𝑎𝑟(𝑡𝑖𝑀𝐸) increases while the covariance 
𝐶𝑜𝑣(Δ𝑦𝑖, 𝑡𝑖𝑀𝐸) decreases. Hence, the overall effect of measurement error on the treatment 
effect is a bias towards zero. 

We test this conjecture in the first Monte Carlo experiment. Figure 3 depicts the median esti-
mated treatment effects, the variance of the treatment variable and the covariance between 
the treatment and outcome variable for iid normally distributed wages 𝐹𝑥 ∼ 𝑁(15, 5) and er-
ror terms with increasing standard deviation 𝜎𝑚2 . With 𝐹𝑚 ∼ 𝑁(0, 2.5), the expected fraction 
of workers subject to the treatment is 19.3 percent, up from 9.7 percent in the baseline (corre-
sponding to a treatment assignment bias of 9.6 percentage points), increasing the respective 
variance of the treatment variable 𝑡 from roughly 0.09 to 0.16. 

Figure 3 demonstrates that the treatment effect decreases (solid line) as the variance of the 
measurement error 𝜎𝑚 increases, mostly due to the increasing variance 𝑉𝑎𝑟(𝑡𝑖𝑀𝐸) depicted 
by the dark dashed line and the decreasing covariance 𝐶𝑜𝑣(Δ𝑦𝑖, 𝑡𝑖) depicted by the light 
dashed line. This bias holds in various robustness checks of the simulation using a log normal 
wage distribution, an empirical wage distribution from administrative data (see section 7), 
different sample sizes, and different baseline values for 𝛾 and 𝛿. Hence, we conclude that a 
fuzzy treatment assignment due to measurement error in wages – from which the threshold-
dependent treatment status is inferred – leads to a bias towards zero. 

Adding a nonclassical error term on the individual level 

We repeat the simulation presented in Figure 3 and introduce an additional error term to the 
measurement of the individual survey wage data. The additional error term is a nonclassical 
term (see Eq. 2.2) that accounts for possible correlation between gross wages and the error 
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Figure 3.: Estimated treatment effect from individual data with increasing measurement error. 

Note: Estimated treatment effect from individual data with increasing variance of the classical measurement 
error on the x-axis. Right axis: The variance of the contaminated treatment effect increases with increasing 𝜎𝑚 

(standard deviation of the error term); the covariance between the treatment and unspecified outcome variable 
decreases with increasing 𝜎𝑚. Left axis: Overall, the median estimated treatment effect for 𝐹𝑥 ∼ 𝑁(15, 5) and 
𝐹𝑚 ∼ 𝑁(0, 𝜎2𝑚) decreases with increasing 𝜎2𝑚. 
Source: own calculations and illustrations. 

terms. While a negative correlation would have mean-reverting effect, a positive correlation 
would increase the total measurement error. We use different correlations 𝜌 ranging between 
−0.3 and +0.3 and repeat the Monte Carlo experiment with an additional classical error term 
that is distributed 𝐹𝑚 ∼ 𝑁(0, 𝜎𝑚2 ), where 𝜎𝑚2 ranges between zero and five. 

Figure 4 depicts median estimated treatment effects after 1000 repetitions of the simulation, 
where the level of 𝜌 is on the x-axis. Considering a correlation of 𝜌 as high as ±0.2 would be 
extremely unusual, it is safe to say that the properties of the classical error terms are a much 
greater threat to the reliable estimation of treatment effects than a nonclassical term. We 
find that a nonclassical error structure would somewhat increase the bias of the estimation, 
if 𝜌 is profoundly negative and 𝜎𝑚 is large. However, the overall estimation bias is driven by 
the standard deviation 𝜎𝑚 of the classical error distribution, with 𝜌 serving to only slightly 
increase or decrease the bias. In summary, in an individual-level treatment effect estimation, 
a nonclassical error structure poses a considerably smaller threat to unbiasedness than does 
the variance of the error term distribution. 
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Figure 4.: Variance and covariance of the estimation variables. 

Note: In an individual level DiD estimation with nonclassical error structure, Eq.(2), the treatment effect de-
creases with increasing 𝜎𝑚 (standard deviation of the error term), and the covariance between treatment and 
unspecified outcome variable decreases with increasing 𝜎𝑚. Left axis: Overall, the median estimated treatment 
effect for 𝐹𝑥 ∼ 𝑁(15, 5) and 𝐹𝑚 ∼ 𝑁(0, 𝜎2𝑚) decreases for increasing 𝜎𝑚. 
Source: own calculations and illustrations. 
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4. Assessing the effect of data 
aggregation to higher-level units 

In this section, we analyze whether the treatment effect dilution bias is alleviated through 
data aggregation to higher-level units. In applied research, such higher-level units could be 
households, establishments, or regions. When using aggregated data (or grouped data), one 
might hope that the measurement error is canceled out by averaging over the within-group 
measurement error. We first discuss that data aggregation requires a definition of the unit 
sizes and a rule for allocating individual observations to units, and we estimate how the bias 
evolves with different unit sizes and levels of segregation in the allocation rule (Section 4.1). 
In a second step, we use realistic unit size distributions and allocation rules to simulate the 
treatment effect for realistic cases of data aggregation. In Section 4.2 we scrutinize these re-
sults using joint distributions of unit sizes and segregation from empirical data. 

4.1. Conceptual treatment effect bias of aggregation 

The aggregation of data to higher-level units is highly prevalent in the literature and is based 
on the identification goal of limiting the potential for spillovers within these units (Card, 1992; 
Caliendo et al., 2018). In the absence of such spillovers, i.e., without correlation within units, 
aggregated regression yields an unbiased estimate for the disaggregated model of interest. 
Hence, population-weighted estimation of equation 4.1 yields unbiased estimates of 𝛾 and 𝛿, 
as do equations 3.1 and 3.2. 

Δ𝑦𝑢 = 𝛾 + 𝑡𝑢 ∗ 𝛿 + 𝜖𝑢, (4.1) 

where 𝑢 is the unit subscript that determines the level of aggregation. Δ𝑦𝑢 is the average 
change in 𝑦 among observations in unit 𝑢, and 𝑡𝑢 is the fraction (average) of treated individu-
als in unit 𝑢. 

However, it is not a priori clear how individuals are allocated to higher-level units; hence, we 
use different rules of allocation with varying extents of sorting of low-wage individuals into 
low-wage units. In reality, workers are not randomly allocated to households, establishments 
and regions. In fact, the literature documents an increasing segregation of low-wage workers 
to low-wage plants for Germany over the past two decades (Card/Heining/Kline, 2013). 
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For different degrees of segregation, we test how sorting affects potential biases in the mea-
surement error in aggregated treatment effect estimations. Assuming no segregation, for in-
stance, implies that workers are randomly allocated to units (e.g. firms), i.e., on average, the 
units themselves are similarly affected by a treatment such as the minimum wage introduc-
tion, as differences between units are random. This characteristic implies that the fraction of 
affected employees 𝑡𝑢 across units is roughly the same. However, if we assume complete seg-
regation, some firms employ solely workers who are affected by the treatment, while other 
firms – which constitute the majority, since 𝑤𝑚𝑖𝑛 is smaller than 𝜇𝑥 – do not employ any af-
fected workers. After aggregation at the establishment level the treatment variable is a func-
tion of both segregation and measurement error. 

To measure segregation, we use the normalized Herfindahl-Hirschman Index (HHI): 

1 𝑈 𝑡𝑢2𝐻𝐻𝐼 = ∑ , (4.2)𝑈 𝑢=1 𝑡𝑢 

where U is the total number of u units of aggregation and 𝑡𝑢 is the fraction of treated indi-
viduals in 𝑢. We prefer the HHI over an index of dissimilarity, as it is multiplicative and hence 
linear in the variance and covariance, which is beneficial in terms of the components of the 
OLS estimator. 

Figure 5 illustrates the aggregated treatment variable densities before adding measurement 
error to the wages for different level of segregation, as measured by the normalized HHI. Fig-
ure 5 demonstrates that the levels of segregation largely determine the variance of the ag-
gregated treatment variable. In fully segregated markets, the aggregated treatment variable 
takes only the values 𝑡𝑢 = 1 or 𝑡𝑢 = 0, maximizing the variance 𝑉𝑎𝑟(𝑡𝑢). By contrast, when in-
dividuals are randomly allocated across establishments, the treatment variable of establish-
ments is distributed around 𝜇𝑡, resulting in a very low variance 𝑉𝑎𝑟(𝑡𝑢). After adding classical 
measurement error to the underlying individual wage data, the aggregated variances change 
in different ways: the variance of the aggregated treatment variable is likely to decrease in the 
fully segregated scenario (as it was already at its maximum in the absence of measurement 
error) but in the case of random allocation, the variance of the aggregated treatment vari-
able is unlikely to change substantially. Hence, the illustration of the aggregated unit-level 
treatment variables indicate different effects of measurement error for different magnitudes 
of segregation. 

To assess the treatment effect bias, we again conduct a series of Monte Carlo experiments. 
We estimate the aggregated treatment effect model as specified in equation 4.1. The indi-
vidual data are as before; hence, the aggregated (baseline) grouped data regression without 
measurement error yields unbiased estimates of 𝛾 = 0 and 𝛿 = 1 (Angrist/Pischke, 2008; 
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𝐶𝑜𝑣(Δ𝑦𝑢,𝑡𝑢)𝛿  = 
𝑉𝑎𝑟(𝑡𝑢)

(𝛿𝑤=𝑥+𝑚 − 𝛿𝑤=𝑥)

Figure 5.: Densities of aggregated treatment variables with 50 workers per unit. 
Random allocation (le panel) and highly segregated allocation (right panel)). 

Note: Densities of aggregated treatment variables, where the level of aggregation is 50 workers per unit. Since 
the original data included 10,000 workers, the aggregated data include 200 units. The aggregation uses differ-
ent aggregation rules w.r.t. segregation. The level of segregation is calculated from the normalized Herfindahl-
Hirschman Index (HHI). 
Source: own calculations and illustrations. 

Prais/Aitchison, 1954). To illustrate how measurement error affects these estimates, we con-
duct a simulation and inflict classical measurement error 𝑚𝑡𝑖 on the individual wage data, 
which is distributed 𝐹𝑚 ∼ 𝑁(0, 2.5). To demonstrate how different aggregation rules affect 
the average treatment effect bias, Table 1 displays the difference between the median esti-

̂ ̂mates and actual treatment effect  for different levels of segregation mea-
sured by the normalized HHI. We repeat the simulation for different unit sizes, but for sim-
plicity, we hold the size of the units constant within each of these simulations.5 

The results in Table 1 demonstrate a strong downward bias when the level of aggregation is 
small, i.e., when the observed number of employees per firm or region is small. Moreover, 
the bias tends to be negative when the level of segregation is low, i.e., when the allocation 
of low-wage workers to higher-level units is random. Most remarkably, we observe strong 
positive biases for highly segregated markets (indicated by high HHIs), especially when the 
aggregation unit size is large. 

These patterns of treatment effect biases can be explained by separate simulations of the vari-
ance and the covariance, which both determine the treatment effect of the linear regression, 
as specified in equation 4.1, i.e., ̂ . Figure 13 displays separate estimates of the 
variances (𝑉𝑎𝑟(𝑡𝑢)) as solid lines and estimates of the covariances (𝐶𝑜𝑣(Δ𝑦𝑢, 𝑡𝑢)) as dashed 
lines for varying levels of segregation and for four different unit sizes. The blue lines depict 

Holding the size of the units constant within each regression avoids the need to conduct weighted regression 
because each unit 𝑢 is given the same weight. 
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Table 1.: Simulation results for aggregated data for different unit sizes and levels of segregation. 

Concentration (HHI) 

Employees per unit 
5 10 50 

Bias p95-p5 Bias p95-p5 Bias p95-p5 
random allocation, which 
yields different HHIs 

-0.42 0.34 -0.44 0.44 -0.41 1.07 

0.2 n/a n/a -0.37 0.45 0.14 0.60 
0.4 -0.23 0.31 -0.01 0.34 0.29 0.40 
0.6 -0.07 0.26 0.12 0.28 0.34 0.32 
0.8 0.03 0.23 0.19 0.24 0.37 0.29 
0.95 0.08 0.21 0.23 0.25 0.37 0.25 

Concentration (HHI) 

Employees per unit 
100 20 500 

Bias p95-p5 Bias p95-p5 Bias p95-p5 
random allocation, which 
yields different HHIs 

-0.39 1.50 -0.40 1.87 -0.34 3.23 

0.2 0.28 0.67 0.33 0.70 0.36 0.72 
0.4 0.35 0.41 0.38 0.46 0.40 0.54 
0.6 0.38 0.34 0.39 0.34 0.40 0.46 
0.8 0.39 0.30 0.40 0.30 0.40 0.45 
0.95 0.39 0.25 0.40 0.27 0.40 1.45 

Notes: This table shows the bias of the median treatment estimates, i.e., the absolute difference between the 
estimated treatment effect and the predefined treatment effect (= 1). The bias is displayed for different levels 
of segregation and for varying firm sizes. Segregation is measured by the HHI concentration index, which is the 
normalized Herfindahl-Hirschman Index. Smaller values of HHI translate to less segregation. p95-p5 is the range 
between the 5th and 95th percentile of the estimated treatment effects. 
[a] Random allocation yields an HHI=0.28 for 5 employees per unit, HHI=0.18 for 10 employees, HHI=0.12 for 50 
employees, HHI=0.11 for 100 employees, HHI=0.1 for 200 employees, and HHI=0.1 for 500 employees. 
[b] In very small units with as few as 5 employees, an allocation that yields an HHI=0.2 is infeasible. 
Source: own calculations. 

the respective baseline without measurement error, and the red lines include measurement 
error, as in Table 1, i.e., 𝐹𝑚 ∼ 𝑁(0, 2.5). 

In the absence of measurement error in individual wages (blue lines), the estimates of the 
variance and the covariance are equivalent for different levels of segregation and across unit 
sizes of aggregation, leading to an unbiased estimator of the true treatment effect, which is 
uniform by design. Hence, segregation and levels of aggregation do not matter in an ideal 
world without measurement error. In the presence of measurement error, the estimated co-
variances and variances differ from those of an ideal world. The covariance is estimated to 
be smaller than the unbiased variance, independently of the unit size of aggregation. The es-
timated variance is even smaller than the covariance when the unit size is large, leading to 
an upward bias in the treatment effect. However, the estimated variance is larger than the 
covariance when the unit size is small, leading to a downward bias in the OLS estimate. The 
relatively larger variance at small unit sizes is most likely due to a corner solution problem: 
the variance can change only slowly in the presence of measurement error simply because 
the aggregated treatment variable 𝑡𝑢 can be characterized by very few distinct fractions of 
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Figure 6.: Estimated variances and covariances from Monte Carlo experiments for four different unit 
sizes of aggregation. 

Note: Estimated variances and covariances from Monte Carlo experiments for four different unit sizes of aggre-
gation: 2 employees per unit, 5 employees per unit, 10 employees per unit, and 500 employees per unit. Varying 
levels of segregation are on the x-axis, where the level of segregation is quantified by the Herfindahl-Hirschman 
Index (HHI). Solid lines display estimated variances of the treatment variable tu, and dashed lines display esti-
mated covariances of the treatment variable 𝑡𝑢 and Δ𝑦𝑢. Blue lines are estimates without measurement error, 
and red lines display estimates with measurement error. 
Source: own calculations and illustrations. 

treated individuals when the aggregation units are small. By contrast, the variance 𝑉𝑎𝑟(𝑡𝑢) 
responds more quickly to measurement error when unit sizes are large. 

4.2. Aggregation to observed unit size distributions 

Since we observe very heterogeneous biases in the aggregated regression when there is mis-
classification in the underlying wage data, we want to elaborate how such measurement 
error-induced biases would affect evaluation studies that use empirically relevant levels of 
data aggregation. In our artificially constructed data, the size and the direction of the bias 
heavily depend on the size of the higher-level aggregation units and the segregation of treated 
workers across those units. To transfer the results to actual empirical circumstances, we first 
infer realistic size distributions for households, establishments and regions from observable 
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data. These unit size distributions allow us to draw conclusions about the treatment effect 
bias in more realistic scenarios. 

The first scenario is aggregation at the household level, for which we can retrieve a realistic 
size distribution from the German panel study Labour Market and Social Security (PASS). The 
second scenario is aggregation at the establishment level, for which we retrieve a realistic 
firm size distribution from the German Establishment History Panel (BHP). The third scenario 
is aggregation at the region level. For this last scenario, we assign the underlying individual 
data to regions based on the region size in the BHP.6 

Figure 7.: Estimated treatment effect bias for the scenarios summarized in Table 4. 

Source: own calculations and illustrations. 

Given these unit size distributions, we assess the treatment effect bias of the measurement 
error in the underlying wage distribution from the Monte Carlo experiments. The simulations 
are designed as in Table 1 to allow for different levels of segregation of treated individuals 
across units. The results are displayed in Figure 7. When considering the aggregated treat-
ment effects at the household level, the difference-in-differences estimation yields a down-
ward bias in the treatment effect irrespective of the level of segregation. However, with high 
levels of segregation across households, this bias decreases slightly.7 Given households are 

6 A detailed description of how we draw the unit size distributions from the observable data sources is pro-
vided in Appendix A. 
7 Note that the HHI, a measure of segregation, does not take values below 0.89 even though the respective 

allocation of individuals is designed to be random. This is because the potential for an egalitarian distribution 
of treated workers across households is limited since households are small, on average, and many households 
have only one individual in the workforce. 
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increasingly segregated due to marital sorting (Pestel, 2017), the bias from measurement er-
ror is slightly reduced over time. 

In the establishment-level analysis, the treatment effects are underestimated if individuals 
are randomly allocated across establishments, but we observe overestimation if the labor 
market is highly segregated across firms. In the region-level analysis, the treatment effect bias 
is positive for all levels except unrealistically low levels of segregation. Since regions are typ-
ically much less segregated than households or establishments, in practice, the bias is possi-
bly small. However, the treatment effect bias also shows large confidence bands in cases of 
low segregation, demonstrating a higher degree of uncertainty when using large aggregation 
units. 

As in Section 3, we repeat the simulations presented in Figure 7 and introduce an additional 
nonclassical error term to the measurement of the individual survey wage data, allowing us to 
account for correlation between gross wages and the error term. To illustrate the additional 
effect of introducing a nonclassical error term determined by correlation 𝜌, we repeat the 
Monte Carlo experiment with a normally distributed error term with standard deviations of 
the classical term in 𝐹𝑚 ∼ 𝑁(0, 𝜎𝑚2 = 2.5) and add the nonclassical term 𝜌(𝑥𝑖 −𝜇𝑥) for various 
𝜌 before aggregating to household, firm, and region unit sizes. As before, the x-axis shows 
possible values of segregation for observed unit size distributions (see Table 4). 

Figure 8 depicts the median estimated treatment effects after 500 repetitions of the simula-
tion for different values of 𝜌 and varying levels of segregation among units. For high levels 
of segregation within households, the simulation without the nonclassical error term shows 
that the treatment effect bias after aggregation is similar to that for individual-level data. Ac-
cordingly, adding a nonclassical error term slightly increases (decreases) the median bias in 
the simulation if 𝜌 is negative (positive). However, as 𝜌 is typically small, the overall bias is 
driven by 𝜎𝑚. 

On the firm level, with much larger unit sizes, the effect of adding a nonclassical error term 
to the survey wages has a minimal effect for medium levels of segregation. For very high and 
very low levels of segregation, the bias decreases for unusually high values of 𝜌. Again, the real 
issues when estimating treatment effects with firm-level aggregation are segregation and the 
distribution of error terms, rather than a nonclassical error structure. 

At the regional level, the impact of correlation between survey wages and error terms is small 
for small levels of segregation. In Table 4, using PASS data, we calculated a realistic value of 
0.40 for segregation into regions of Germany. As before, a large negative 𝜌 would slightly in-
crease the bias, whereas a positive 𝜌 would decrease the bias. Overall, and in accordance with 
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Figure 8.: Estimated treatment effect bias for various scenarios. 

Note: Estimated treatment effect bias for the scenarios summarized in Table 4 with nonclassical error term 𝜌 
(Eq. 2.2). 
Source: own calculations and illustrations. 

individual-level survey data, after data aggregation, the effect of a nonclassical measurement 
error in the underlying wage data remains small compared to the impact of segregation. 
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5. Using a continuous treatment 
variable instead of a dummy 

Until this section, we implicitly assumed that an increase in wages due to a reform yields 
a homogeneous increase (or decrease) of a dependent variable. For instance, every person 
affected by a newly introduced minimum wage experiences an increase in their pay satisfac-
tion by a fixed amount. This is an implicit assumption concerning the data generating process, 
which results from including a treatment dummy instead of a continuous treatment indicator 
in the regression model. In most recent applications, researchers have chosen similar mod-
els (i.e. Bossler/Broszeit, 2017; Caliendo et al., 2019), thereby neglecting the possibility that 
individuals might be affected heterogeneously depending on the treatment intensity. 

If the effect of a treatment is assumed to be dependent on the treatment intensity, we must 
rewrite the model to account for a continuous treatment variable. We choose a simple model 
in which we incorporate the fraction of the wage that can be explained by a treatment. In this 
case, the treatment variable is given by 

𝑡𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 
0 if 𝑥𝑖 ≥ 𝑤𝑚𝑖𝑛 = {𝑖 𝑤𝑚𝑖𝑛−𝑥𝑖 if 𝑥𝑖 < 𝑤𝑚𝑖𝑛 𝑤𝑚𝑖𝑛 

The data generating process follows from the continuous treatment variable. In our model, 
the change in the dependent variable is equal to the treatment intensity 

= 𝑡𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 Δ𝑦𝑖 𝑖 + Δ𝜖𝑖. 

Figure 9 shows the known treatment dummy specification (Dummy) and the alternative con-
tinuous treatment variable specification (Continuous) for individual wage data. The use of a 
continuous indicator instead of a dummy for the individual-level model appears to be advan-
tageous for moderately contaminated data (SD of the error terms less than 2 for the simulated 
wage data). For more extensive contamination, it is preferable to assume a uniform treatment 
effect and resort to a dummy variable in the model specification (if feasible). 

Figure 9 includes another specification, accounting for the possibility that the assumed data 
generating process and the actual process are different. In this second case, we assume a 
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𝐶𝑜𝑣(Δ𝑦𝑖,𝑡𝑀𝐸 )𝛽 = 𝑖 
𝑉𝑎𝑟(𝑡𝑖𝑀𝐸 ) 

Figure 9.: The variance of the contaminated treatment effect increases with increasing 𝜎𝑚. 

Note: Right axis: The variance of the contaminated treatment effect increases with increasing 𝜎𝑚 (standard de-
viation of the error term), and the covariance between the treatment and unspecified outcome variable de-
creases with increasing 𝜎𝑚. Left axis: Overall, the median estimated treatment effect for 𝐹𝑥 ∼ 𝑁(15, 5) and 
𝐹𝑚 ∼ 𝑁(0, 𝜎2𝑚) decreases with increasing 𝜎𝑚. 
Source: own calculations and illustrations. 

uniform effect (Assumed dummy), while the effect in the data generating process actually 
differs by intensity. We scale the results to match the treatment effect of one, as we would not 
be able to compare the results directly otherwise. Interestingly, the patterns of bias appear 
to be similar for all specifications. 

Overall, on the individual level, the expected improvements are limited when using a continu-
ous treatment variable. While the bias is slightly reduced for low to moderate contamination, 
the dummy variable estimator is under real-world conditions more efficient than the contin-
uous variable estimator. 

In Figure 10, we show the results of a simulation in which we use a continuous treatment vari-
able with aggregated data. As before, we aggregate at the household, firm and region levels 
with varying levels of segregation of minimum wage workers into higher-level units. After ag-
gregating, the size of the bias depends on the error term distribution only and not on the level 
of segregation. Consequently, a positive bias induced by high segregation within higher-level 
units is not within the realm of possibility in the specification with a continuous treatment 
variable. 

The specifications yield different outcomes because the variances of the two treatment vari-
ables 𝑡𝑢 and 𝑡𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 are affected differently. For a treatment dummy, the OLS estimator 
after aggregation is given by ̂ , with 𝑡𝑀𝐸 being the fraction of treated individu-𝑖 
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𝐶𝑜𝑣(Δ𝑦,𝑡𝑀𝐸,𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 

𝛽 = 𝑖 ) 
𝑉 𝑎𝑟(𝑡𝑀𝐸,𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ) 𝑖 

Figure 10.: Using a continuous treatment variable. 

Note: Estimated treatment effect bias for the scenarios summarized in Table 4 using the continuous treatment 
variable instead of the dummy treatment. 
Source: own calculations and illustrations. 

als within unit 𝑖 (e.g., the fraction of treated personnel in an establishment). Adding measure-
ment error to individuals in highly segregated units makes those units more homogeneous 
as the fraction of treated individuals decreases in firms with very high treatment quotas and 
for firms with no or low treatment quotas, i.e., 𝑉𝑎𝑟(𝑡𝑖𝑀𝐸) decreases, while 𝛽 ̂ increases. 

For a continuous treatment variable, the OLS estimator after aggregation is defined similarly 

as ̂ . For a continuous treatment variable, the indicator 𝑡𝑀𝐸,𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 
𝑖 

is not a fraction but rather the average treatment intensity within a unit 𝑖. In this case, changes 
to 𝑉𝑎𝑟(𝑡𝑀𝐸,𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠

𝑖 ) induced by measurement error and its homogenization are mostly neg-
ligible, no matter the level of segregation. 

Overall and independently of segregation, for aggregated data with moderate individual-level 
contamination, we recommend an approach using a continuous treatment variable, if this 
assumption is justifiable with respect to the underlying data generating process. However, as 
with individual-level data, aggregating at the region level might not be viable due to the loss 
of efficiency. 
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In Appendix B we briefly discuss aggregation to higher-level units with a treatment dummy 
specification, when the data-generating process would necessitate a continuous treatment 
variable specification (see Figure 14). 

IAB-Discussion Paper 11|2020 28 



6. Dropping observations around the 
minimum wage threshold 

In this section, we simulate the treatment effects using a very simple approach to address the 
measurement error, which is to drop observations around the minimum wage threshold. The 
intuition of this approach is to drop the observations that are most likely misclassified due 
to the measurement error in wages (Caliendo et al., 2019). Deleting observations around the 
threshold may therefore reduce bias but may possibly decrease the efficiency, as the number 
of observations decreases. 

In our simulation, we delete a window of EUR 0 to EUR 6 around the minimum wage thresh-
old and repeat the treatment assignment and treatment effect estimation. If a €6-window is 
deleted, all individuals with an initial wage between EUR 5.50 and EUR 11.50 are dropped. 
As the first step, we repeat the individual-level estimation and present the results in Fig-
ure 11. Different sizes of measurement error are depicted by different lines, and the size of 
the Eurowindow of deleted observations is displayed on the x-axis. The three graphs illus-
trate the three possibilities for defining the treatment variable along with the data generat-
ing process, as in previous Section 5: treatment dummy, continuous treatment variable and 
assumed dummy (i.e., we assume a dummy suffices, while the effect actually depends on the 
intensity). 

In the case of the dummy treatment, the simulations show an unbiased treatment effect in the 
absence of measurement error, which does not change when individuals around the thresh-
old are dropped. With increasing variance of the classical measurement error, the initial bias 
increases, as demonstrated by the treatment effect (at zero on the x-axis when no observa-
tions are deleted). When we drop individuals around the minimum wage threshold, the bias 
decreases as the number of dropped individuals increases. Dropping observations does not 
help to reduce the bias if the measurement error is very pronounced. 

In the second case of a continuous treatment variable and a continuous data generating pro-
cess, the bias increases with the size of the measurement error. However, dropping observa-
tions around the threshold does not help to reduce this bias. The intuition of this result is as 
follows: individuals further from the threshold still remain in the sample and have the same 
size of measurement error in the treatment variable as before. Hence, the bias remains the 
same size. 

In the third case of an assumed dummy treatment, the bias increases as the variance of the 
measurement error increases. When observations around the threshold are dropped, the treat-

IAB-Discussion Paper 11|2020 29 



Figure 11.: Dropping observations with individual level data. 
Dummy treatment (top right, continuous treatment (top left), and assumed dummy (bottom). 

Note: Estimated individual-level treatment effect when individuals whose wages are near the threshold are 
dropped. The size of the Euro-window is indicated by the x-axis. Different lines illustrate various sizes of classical 
measurement error. 
Source: own calculations and illustrations. 

ment effects scale up because the group that is defined as treated comprises an increasing 
number of more intensely treated individuals who show a relatively stronger treatment effect. 
Hence, the changing composition of the treatment group scales-up the coefficient rather than 
providing a solution for the misclassification. 

Note that in all three cases, the variances of the estimates barely increase, as the loss of effi-
ciency is only minor. However, dropping observations may be considered to be a somewhat 
drastic solution in the first case, in which the data generating process and the treatment effect 
are assumed to be homogeneous across individuals as captured by the dummy variable. This 
finding also translates to the treatment effect estimation with aggregated data. Hence, we re-
peat the simulation for aggregated data for only this particular case using a dummy variable 
specification. 

Figure 12 shows the estimation results when individuals around the threshold are dropped 
(as depicted by the different lines), and the estimation is then performed using aggregated 
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Figure 12.: Dropping observations with aggregated data. 
Regional level (top left), firm level (top right), and household level (bottom). 

Note: Estimated treatment effect of aggregated data when individuals are assigned the dummy treatment and 
individuals located near the threshold are dropped. The size of the Euro-window that is dropped is indicated by 
the x-axis. Different lines illustrate various sizes of classical measurement error. 
Source: own calculations and illustrations. 

data. Irrespective of the unit of aggregation, indicated by the three graphs, and the level of 
segregation of individuals across aggregation units, the bias generally decreases when the 
most contaminated observations are dropped. 

Nevertheless, we urge researchers to be careful when dropping observations around the 
threshold. First, dropping observations is a solution only when there is a level shift at the 
threshold, i.e.. a homogeneous treatment effect. Second, in practice, dropping observations 
increases the potential of diverging trends in the difference-in-differences analysis because it 
yields a comparison of more dissimilar treatment and control groups by excluding observa-
tions at the point of intersection. Third, the individuals should be dropped when calculating 
the bite but also when running the estimation. In regressions applied to aggregated data, 
in principle, it is possible to calculate the bite from a sample that drops individuals around 
the threshold while including these individuals in the estimation. Nevertheless, such an ap-
proach can result in additional biases since the bite variable does not match the groups of 
comparison included in the regression. 
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7. Empirical distribution of wages and 
error terms: Validating survey data using 
administrative data 

We continue our analysis by exploiting empirical distributions of wages and error terms from 
observable data sources. We use survey data from the PASS data that have been linked with 
German administrative data.8 These data enable us to compare actual gross hourly wages 
(administrative data) with observed gross hourly wages (survey data), while the survey data 
provide information on the household composition and region for all individuals.9 The di-
rect link between survey and administrative data allows us to infer a realistic wage distribu-
tion and a realistic distribution of the measurement error, which we define as the difference 
between the two sources of data. Since the wage distribution and the distribution of mea-
surement error may deviate from a normal distribution, this exercise serves as a check of the 
results under real-world conditions. 

In addition to the commonly known advantage that survey data can be matched with so-
cial security data to compare gross monthly wages, we observe the respective distribution 
of (contractual) working hours from both sources, which enables us to eliminate possible 
bias from incorrect collection of working hours in the survey data. The administrative data 
source on monthly wages is the social security data collected by the German Institute for Em-
ployment Research (IAB), a source that is commonly known as the integrated employment 
biographies (IEB). The distribution of administrative contractual working hours stems from 
the German Statutory Accident Insurance, which is mandatory for all dependent workers in 
German firms and which we can link to the IEB data for the years 2010 to 2014.10 

The PASS itself is a survey data set focused on the labor market, poverty and means-tested 
income support in Germany. Established by the Institute for Employment Research in 2007, 
this annual panel survey consists of a mixed sample of both a special sample with households 
that receive social benefits and a regular sample with households registered as residents of 
Germany. Initially, a personal interview is conducted with the heads of all selected house-
holds. Then, all members of the household aged 15 year and older are interviewed. The sam-
pled low-income households, which include persons who might have a job in poorly paying 
industries, make this survey data set particularly suitable for this simulation study. 

8 For a comprehensive description of the PASS survey, see Trappmann et al. (2013). 
9 As the survey is missing information at the establishment level, this exercise had to be skipped. 
10 In Germany, the Statutory Accident Insurance is part of the social security net. It is a mandatory insurance 

scheme that provides compensation for accidents and illnesses suffered by insured employees during their in-
sured working time. 
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Figure 13.: Measurement error in German PASS survey data. 
Scatter plot of survey and administrative wages (left panel) and observed distribution of measurement error 
(right panel). 

Note: Measurement error in German PASS survey data, assuming that the gross hourly wages from the admin-
istrative data do not contain any measurement error (𝑤𝑎𝑑𝑚𝑖𝑛 = 𝑥). The left panel is a scatter plot of log survey 
wages versus log administrative wages with a linear fit obtained via least squares regression. The right panel 
shows a histogram of the log difference between the two measures and the kernel density for comparison. 
Source: own calculations and illustrations. 

Observations from PASS data have been record-linked with the IEB, which includes exhaus-
tive administrative information on past employment spells and the respective gross daily 
wages. The employment spells are mandatory reports from the employers for each employee 
provided at least once a year. Spells are day-specific in the sense that they include exact hir-
ing dates and job termination dates, which allows us to link the individual’s job at the date 
of the interview with the respective gross wage. The same logic applies to the administrative 
working hours, which are reported in the course of mandatory employer reports to the Ger-
man Statutory Accident Insurance. These data on hours were mandatory in the years 2010 
to 2014, and by means of the identical social insurance numbers, the job-specific informa-
tion on hours can be merged with the employment spells of the IEB. Thus, we can merge the 
PASS survey information for the years 2011 to 2014, which is before the German minimum 
wage was introduced in January of 2015. Hence, this time period is ideal to infer the indi-
vidual treatment status for a difference-in-differences evaluation study, as in the simulation 
exercises. In total, we observe 11,461 exact matches of individual observations in the PASS 
survey data and the administrative employment spells. 

We define the measurement error in survey wages as the difference between wages in PASS 
and administrative data, i.e., 𝑚𝑃𝐴𝑆𝑆 = 𝑤𝑃𝐴𝑆𝑆 − 𝑤𝑎𝑑𝑚𝑖𝑛, where we assume that the adminis-
trative wage is a good measure of the true wage (𝑤𝑎𝑑𝑚𝑖𝑛 = 𝑥). Both the graphical illustration 
of the measurement error in Figure 13 and the additional descriptive assessments demon-
strate that the measurement error in the PASS survey is similar in magnitude to some recent 
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validation studies of other survey data (Gauly et al., 2018).11 The variance in the measurement 
error is minimally dependent on the actual value, supporting our initial analyses that assume 
classical measurement error in survey wages (Sections 2-4). While the modus of the distribu-
tion of the PASS measurement errors is approximately zero, the distribution has a slightly 
negative skew. 

7.1. Applying the empirical error distribution to individual 
data 

As before, in this simulation, we set the effect of a minimum wage treatment on an outcome 
variable 𝑦 (e.g., pay satisfaction) to be 1, and the minimum wage threshold is set to an hourly 
wage of EUR 8.50. The distributions of hourly wages and the error terms are derived from 
the PASS-ADMIN merge, and, as shown in Table 2, we gradually include more moments of 
uncertainty in our estimations. 

Table 2.: Individual level results: Median bias of treatment effect estimates with PASS measurement 
error distributions after 1000 repetitions. 

PASS survey data, N=11,461
𝜖𝑠𝑢𝑟𝑣𝑒𝑦 = 𝜖𝑃𝐴𝑆𝑆 
𝑐𝑠𝑢𝑟𝑣𝑒𝑦 = 𝑐𝑃𝐴𝑆𝑆 
Median bias p95-p05 

Treatment dummy 
(1) 𝑤𝑠 = 𝑥𝑎𝑑𝑚𝑖𝑛 0.001 0.089 
(2) 𝑤𝑠 = 𝑥𝑃𝐴𝑆𝑆 = 𝑥𝑎𝑑𝑚𝑖𝑛 + 𝑐𝑠 + 𝜖𝑠 -0.366 0.095 
(3) 𝑤𝑠 = 𝑥𝑎𝑑𝑚𝑖𝑛 + 𝑐𝑠 + 𝜖∗ 

𝑠 -0.371 0.094 
Continuous treatment variable 
(4) 𝑤𝑠 = 𝑥𝑎𝑑𝑚𝑖𝑛 -0.001 0.240 
(5) 𝑤𝑠 = 𝑥𝑃𝐴𝑆𝑆 = 𝑥𝑎𝑑𝑚𝑖𝑛 + 𝑐𝑠 + 𝜖𝑠 -0.339 0.267 
(6) 𝑤𝑠 = 𝑥𝑎𝑑𝑚𝑖𝑛 + 𝑐𝑠 + 𝜖∗ 

𝑠 -0.369 0.206 
Assumed dummy 
(7) 𝑤𝑠 = 𝑥𝑎𝑑𝑚𝑖𝑛 0.001 0.332 
(8) 𝑤𝑠 = 𝑥𝑃𝐴𝑆𝑆 = 𝑥𝑎𝑑𝑚𝑖𝑛 + 𝑐𝑠 + 𝜖𝑠 -0.199 0.351 
(9) 𝑤𝑠 = 𝑥𝑎𝑑𝑚𝑖𝑛 + 𝑐𝑠 + 𝜖∗ 

𝑠 -0.227 0.333 

Notes: This table shows the median bias of the estimates from the actual treatment effect (= 1) under several 
different assumptions: in (1), (4) and (7) – for comparison – we report the median treatment effect bias and its 
confidence interval for a model without measurement error (from administrative wages), in (2), (5) and (8) we 
use the observed error terms from survey data (deterministic approach), and in (3), (6) and (9) we randomly (*) 
assign errors terms in combination with a deterministic level shift. 
Source: own calculations. 

In the first line of Table 2, for comparison, we show the median treatment effect bias and per-
centiles for an individual-level model without measurement error. In line (2), we add deter-
ministic error terms derived from the PASS survey and the merged administrative measures 

11 Separate scatter plots for log monthly wages and log working hours are presented in Figure 15 in the ap-
pendix. 
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of gross wages and working hours. Under these conditions, the downward bias of the treat-
ment effect is expected to be roughly 37 percent and, thus, quite substantial. In line (3), we 
randomly assign survey errors, include the deterministic level shift and show bootstrapped 
results. Overall, the median treatment effect is downward biased by more than 37 percent. 
However, the bias of the median treatment effect (and its variance) do not change by a large 
magnitude when we include more moments of uncertainty in our simulation. Regarding the 
alternative specification with a continuous treatment instead of dummies in lines (4)-(6), as 
expected, the estimates are less precise and the bias is slightly smaller. 

In lines (7)-(9) we present the results of a treatment dummy specification, when the rela-
tionship would actually necessitate a continuous treatment variable (assumed dummy). As 
predicted by the simulation, the overall downward bias is smaller than in both other specifi-
cations, but it is the least efficient specification. However, under empirical circumstances, 
falsely specifying a treatment dummy model does yield the least biased outcome, as this 
specification appears to be the most robust to measurement error in survey wages. 

7.2. Applying the empirical error distribution to aggregated 
data 

In this section, we again augment the Monte Carlo experiments using aggregated data. The 
individuals in the PASS survey can be aggregated to households and labor market regions. 
This step enables us to repeat the simulations under realistic aggregation conditions. How-
ever, it is not possible to aggregate individuals in the PASS at the establishment level since the 
sampling of the PASS is not clustered at the workplace level. Hence, for this particular level of 
aggregation, we have to rely on the results based on assumed distributions of measurement 
error, as in Section 4. 

In Table 3, for comparison, we show the bias of the median treatment effect and the p05−p95 
percentile range of the results for a model with aggregation but without measurement error 
in (1a) and (2a) for a specification with treatment dummies and in (3a) and (4a) for a spec-
ification with a continuous treatment variable. The results corroborate the conjecture that 
different units of aggregation would not bias the estimated treatment effects in the absence 
of measurement error (Angrist/Pischke, 2008). Aggregation does, however, affect the variance 
of the estimator. Smaller unit sizes for households result in a more efficient point estimator 
for the treatment effect compared to the larger unit sizes of regions, i.e., the 𝑝95 − 𝑝05 inter-
vals are smaller for models based on households. 

In terms of the median estimates for households or regions after aggregation and including 
measurement error for individuals, Table 3 shows the biases and p95-p05 intervals in lines 
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(1b) and (2b), assuming that the error terms are not correlated between members of the same 
household or region (see Table 2 for details of the Monte Carlo experiments at the individual 
level). At −0.283, the treatment effect is expected to be severely biased for aggregated house-
holds. The direction and magnitude of the bias are completely in line with the simulation in 
the last section (see Figure 7) and are the result of the small unit sizes of households and very 
high levels of segregation. 

Table 3.: Aggregation results: Median bias of estimated treatment effects with PASS measurement 
error distributions and data aggregation after 1000 repetitions. 

Aggregated PASS survey data, N=11,461
𝜖𝑠𝑢𝑟𝑣𝑒𝑦 = 𝐸𝑃𝐴𝑆𝑆 
𝑐𝑠𝑢𝑟𝑣𝑒𝑦 = 𝑐𝑃𝐴𝑆𝑆 
Median bias p95-p05 

Treatment dummy 
(1a) Households w/o measurement error 0.001 0.104 
(1b) Households w/ measurement error -0.283 0.111 
(2a) Regions w/o measurement error 0.009 0.381 
(2b) Regions w/ measurement error -0.204 0.357 
Continuous treatment variable 
(3a) Households w/o measurement error 0.002 0.273 
(3b) Households w/ measurement error -0.268 0.313 
(4a) Regions w/o measurement error -0.003 1.095 
(4b) Regions w/ measurement error -0.064 1.108 
Assumed dummy 
(5a) Households w/o measurement error 0.059 0.384 
(5b) Households w/ measurement error -0.083 0.394 
(6a) Regions w/o measurement error 0.018 1.386 
(6b) Regions w/ measurement error -0.021 1.184 

This table shows the median bias of the estimates from the actual treatment effect (= 1) after data aggregation 
at the household level (1a and 1b) and region level (2a and 2b). For comparison, we show the median treatment 
effect and the p05-p95 percentile range for a model with aggregation but without measurement error in (1a) 
and (2a). The error terms in the underlying individual data in (1b) and (2b) are derived from PASS survey data, 
as in line (2) of Table 2. Bootstrap samples are used to generate variation in the simulation of treatment effects. 
Source: own calculations. 

The results for regional aggregation in line (2b) are possibly more informative. The treatment 
effect is estimated to be one-fifth less than its actual value in this setting, which is an im-
provement over the individual-level estimation (also compare Table 2). Note that from the 
simulation, as shown in Table 1, we observed that for higher levels of segregation, the esti-
mated treatment effect is biased upwards. However, segregation of minimum wage workers 
across regions is low in reality; hence, we expect a downward bias and an inflated estimator 
variance. 

When using a continuous treatment variable instead of a dummy, the bias of the estimated 
treatment effect after aggregating at the household level is similar, whereas the efficiency 
of the estimator is greatly reduced (3b). For aggregation at the region level (4b), the bias is 
comparatively small. Due to the loss of precision after aggregating to large unit sizes, this 
approach might not be feasible for some research agendas. 
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For the sake of completeness, lines (5) and (6) present the results for aggregating a specifi-
cation with a dummy treatment variable, while the actual relationship follows a continuous 
variable. As with individual-level data, aggregating data does improve the estimates of the 
treatment effect, while precision of the estimates is lower at the household level and possibly 
unfeasible at the regional level. Interestingly, without measurement error this specification 
leads to a small upward bias at the household level (5a). 

7.3. Implications for existing evaluations of the recent 
minimum wage introduction in Germany 

A large number of evaluation studies recently emerged after the introduction of a nationwide 
minimum wage in Germany. In this literature, different levels of data aggregation are applied. 
Most prominently, we observe evaluations of employment effects that exploit variation at the 
establishment level (Bossler, 2017; Bossler/Gerner, 2019) and the region level (Ahlfeldt/Roth/ 
Seidel, 2018; Caliendo et al., 2018; Garloff, 2019; Schmitz, 2019). However, we also observe 
various studies that use data on the individual level or aggregated data on the household 
level. 

Individual-level data are analyzed in Bossler (2017) to estimate the effects on pay satisfaction 
and the work engagement of treated workers. While the effect on satisfaction is substantial, 
the effect on work engagement (which is interpreted as a proxy for individual motivation and 
productivity) is small and nonsignificant. Another study that applies individual variation is 
Caliendo et al. (2019), who analyze individual hours of work. The results indicate a significant 
reduction in working hours in the first year after the minimum wage introduction. Finally, 
Hafner (2019) analyzes the effects on the individual (self-assessed) health of affected individ-
uals, and the results suggest a remarkably large positive effect. 

While only the last study explicitly relies on data from the PASS survey, the first two apply the 
Linked Personnel Panel (LPP) and the Socio-economic Panel (SOEP), respectively. Assuming 
that all these data sources are collected from similar individual interviews and hence con-
tain similar distributions of measurement error, we can conclude that these estimates are un-
derestimated, with a bias between 25 and 45 percent. Hence, the negative effect on working 
hours and the positive effects on health and pay satisfaction might be larger than suggested 
in the respective studies. 

We are aware of only one study that analyzes the effect of the minimum wage at the house-
hold level by analyzing the effect on poverty based on PASS data (Bruckmeier/Becker, 2018). 
While the authors detect hardly any effects of the minimum wage, this lack of significance 
could be due to measurement error, as our results suggest an underestimation by approxi-
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mately 28 percent. 

Again, assuming error distributions as observed in the PASS data, our results suggest a smaller 
downward bias (approximately 20 percent) for all the studies that apply regional variation 
(Ahlfeldt/Roth/Seidel, 2018; Caliendo et al., 2018; Garloff, 2019; Schmitz, 2019). When we as-
sume a continuous treatment variable, as in Bonin et al. (2019), the bias is even smaller if the 
assumption holds. However, our simulations also suggest that the bias has a large variation 
when using aggregated data at the region level, which could explain the differences in mean-
ingful negative effects observed in Caliendo et al. (2018) and Schmitz (2019) and effects that 
are virtually zero, as in Ahlfeldt/Roth/Seidel (2018) or Garloff (2019). 

For the results at the establishment level, we do not observe an error distribution from the 
PASS data. Nevertheless, we can draw some cautious conclusions from the simulations that 
assume a classical error distribution applied to an observed establishment size distribution. 
Given the observed level of segregation in Germany, which is approximately 0.6 in the estab-
lishment data applied in Bossler (2017); Bossler/Gerner (2019), the median bias is slightly neg-
ative. However, with increasingly segregated labor markets (see Card/Heining/Kline, 2013), 
we can expect an increasing likelihood of overestimating the treatment effects of the mini-
mum wage at the firm level in the future. 
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8. Summary and conclusion 

In this simulation study, we assess the role of measurement error in a situation where the 
treatment variable is inferred from a survey wage distribution that is contaminated with mea-
surement error. Econometric theory predicts attenuation bias towards zero in the presence 
of measurement error in the independent variable. This regression dilution transfers to our 
Monte Carlo experiment, in which the treatment variable for an evaluation of a minimum 
wage introduction is inferred from a wage threshold. This treatment assignment is fuzzy when 
individual wages contain measurement error. The respective treatment effects from a sim-
ple two-period difference-in-differences specification are then downward biased; moreover, 
the size of the negative bias increases with increasing variance of the measurement error. 
The inclusion of nonclassical error characterized by mean reversion in the survey responses 
has little impact compared to the classical error term, in particular, the variance of the error 
term. 

The second issue of this study concerns the aggregation of potentially misreported data. Re-
searchers typically aggregate individual-level data to higher-level units, such as households, 
firms, or regions, to alleviate the bias. Applying such data aggregation in another series of 
Monte Carlo experiments, we find that the magnitude and direction of the bias depend on 
the size of the aggregation unit and the allocation of treated individuals to such units. In 
cases of strongly segregated allocation, measurement error may even cause an upward bias 
in the estimated treatment effect. However, using empirical distributions of wages, working 
hours and error terms – derived from a record linkage of survey and administrative data – 
we find that the treatment effect is biased towards zero in the presence of classical measure-
ment error under empirical conditions. However, the results also show that aggregation of 
the treatment information from PASS survey data to the household or region level does not 
fully alleviate the bias. 

In addition to aggregation of data to higher-level units, we propose two alternative methods 
to reduce the bias. First, when building the regression model, scholars might incorporate a 
continuous treatment variable instead of a treatment dummy (Bonin et al., 2019). A continu-
ous treatment variable implies that the effect of the treatment depends on its intensity, while 
a treatment dummy captures only a level shift. On the individual level, the results barely im-
prove. For aggregated data with moderate contamination, we recommend using a continu-
ous treatment variable, as the results are more robust to measurement error. Second, as a 
more drastic measure, we propose deleting observations close to the minimum wage thresh-
old before its introduction, as those observations are affected the most by misclassification. 
However, this strategy is only recommended for a model with a dummy treatment variable 
(for both individual-level and aggregated data). If we falsely assume that the dummy variable 
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captures the relationship between minimum wage and a homogeneously shifting dependent 
variable, while the relationship would necessitate a continuous model specification, drop-
ping observations does yield a positive bias. 

For scholars and decision makers, the consequences of this study are possibly substantial. 
Increases and changes to policies (such as the minimum wage) are often justified by previous 
ex post evaluations that concentrate on estimates of the effects of such an intervention. If pol-
icy evaluations potentially yield unreliable results, the decision-making process might lead 
to false conclusions. In the case of minimum wage introductions, or subsequent increases, 
the effects of such policies are distorted downwards, if not trivialized. 
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Appendix 
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A. Observed unit size distributions 

In this appendix, we describe the construction of realistic unit size distributions for observ-
able data, as applied in Section 4.2. Table 4 summarizes the three scenarios of our simula-
tions, including the data source from which we infer the unit sizes and the observed level of 
segregation. 

Table 4.: Three scenarios of aggregation in applied research. 
Aggregation 
scenarios 

Aggregation 
level 

Source of the 
size distribution 

Level of segregation 
(Measured by the HHI) 

(1) 
(2) 
(3) 

household 
establishment 
region 

PASS 
BHP 
BHP 

HHI=0.94 
HHI=0.59 
HHI=0.40 

Notes: The HHI for the household level is calculated from the PASS data, the HHI for the establishment level is 
calculated from the IAB-Establishment Panel, and the HHI for the region level is calculated from the PASS data. 
Source: own calculations. 

For the household level, we use the PASS, which is a household survey that collects data on 
each household member via a personal interview (see Trappmann et al., 2013). Hence, we 
observe the number of household members for each household in the data. From this infor-
mation, we draw household sizes until the total number of individuals in these households 
sums to the 10,000 individuals in our original sample.12 The average number of employees per 
household is 1.26 across all bootstrap samples, where the minimum is 1 and the maximum is 
4. On average, the 10,000 individuals in each data set are assigned to 7,936 households. 

For the establishment level, we use the BHP of 2014, which is an establishment-level data 
source that covers all establishments in Germany with at least one legal employee (see 
Schmucker et al., 2016). Since the information on the number of employees is included for all 
establishment-level observations, we randomly draw establishment sizes until the 10,000 in-
dividuals of our original data sample are assigned to one of the establishments. This sampling 
of realistic establishment size distributions yields an average establishment size of 11.73 em-
ployees per establishment, where the minimum is 1 and the maximum ranges between 281 
and 7964 employees, depending on the bootstrap sample. 

For the regional aggregation, we use a slightly different approach since most regions in Ger-
many have more that 10,000 individuals, and it is quite unlikely that all individuals of a re-
gion would participate in a survey. Instead, we fix the number of regions to 141, which is the 
number of distinct labor market regions suggested by Kosfeld/Werner (2012). We assign the 

12 In some cases, there is a residual household if the last household draw does not exactly sum up to 10,000 
individuals but instead exceeds 10,000 individuals. For example, if 998 individuals are already assigned to U 
household and household U+1 with 3 household members is drawn, this residual household would instead be 
assigned 2 household members such that the total number of individuals is exactly 10,000. 
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10,000 individuals of our initial data sample to these regions according to the regions’ true 
size distribution observed from the BHP, resulting in an average number of 71 individuals 
per region. 
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B. Aggregating to higher-level units: 
Assumed dummy 

In Figure 14, we show the results of a simulation in which we use a dummy treatment vari-
able, while setting the data generating process to a continuous relationship between depen-
dent variable and treatment (which we call assumed dummy). As before, we aggregate at the 
household, firm and region levels with varying levels of segregation of minimum wage work-
ers into higher-level units. After aggregation, the size of the bias depends on both the error 
term distribution and on the level of segregation. It is possible that high levels of segregation 
within regions and firms yield an upward bias in the treatment effect. For small unit sizes, 
such as households, such an outcome is unlikely. 

Figure 14.: Using a dummy treatment variable when a continuous treatment variable is appropri-
ate. 

Note: Estimated treatment effect bias for the scenarios summarized in Table 4 using the dummy treatment vari-
able while a continuous treatment variable would be appropriate. 
Source: own calculations and illustrations. 
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C. Measurement error in monthly 
wages and working hours 

While the Integrated Employment Biographies are commonly used among researchers both 
from Germany and internationally, the novel data set of reported working hours from the Ger-
man Statutory Accident Insurance are widely unknown. In Germany, the Statutory Accident 
Insurance is part of the social security net. It is a mandatory insurance scheme that provides 
compensation for accidents and illnesses suffered by insured employees during their insured 
working time. We can link the data to the IEB data for the years 2010 to 2014 via identical 
social security numbers in both data sources. Similar to the Integrated Employment Biogra-
phies that is reported to German Federal Employment Agency, the spells of the administra-
tive working hours are reported in the course of mandatory employer reports to the German 
Statutory Accident Insurance. These data on hours were mandatory only in the years 2010 to 
2014, and by means of the identical social insurance numbers, the job-specific information on 
hours can be merged with the employment spells of the IEB. Before 2010 and after 2014, firms 
typically reported working hours directly to the German Statutory Accident Insurance. 

Figure 15.: Measurement error in monthly wages and working hours in the Integrated Employment 
Biographies. 
Scatter plot of monthly wages (left panel) and scatter plot of working hours (right panel). 

Note: Scatter plot of log monthly wages (left panel) and log working hours (right panel), where the PASS survey 
data is on the vertical axis and ADMIN (social security data) is on the horizontal axis. 
Source: own calculations and illustrations. 

While this is the first time, researchers have an administratively collected estimate for individ-
ual working hours linked to the Integrated Employment Biographies and, thus, can compute 
hourly wages, the measurement of this variable will still be far from perfect. Most importantly, 
there are still inherent differences between contractual and actual hours worked in the data, 
that we are not able to quantify. Moreover, firms are allowed to submit an estimate of the 
hours worked as well, as many firms have no way of recording the hours of their workforce. 

IAB-Discussion Paper 11|2020 47 



This means there is still measurement error in the hourly wages that we can not control for. 
There is, however, more measurement error if we only take employees working full-time and 
assume a 40-hour work week. Hence, we expect the empirical distribution of hourly wages to 
be a significant improvement over past contributions. 
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