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Abstract

Applications of multiple imputation have long outgrown the traditional context of dealing

with item nonresponse in cross-sectional data sets. Nowadays multiple imputation is also

applied to impute missing values in hierarchical data sets, address confidentiality concerns,

combine data from different sources, or correct measurement errors in surveys. However,

software developments did not keep up with these recent extensions. Most imputation

software can only deal with item nonresponse in cross-sectional settings and extensions

for hierarchical data – if available at all – are typically limited in scope. Furthermore, to

our knowledge no software is currently available for dealing with measurement error using

multiple imputation approaches.

The R package hmi tries to close some of these gaps. It offers multiple imputation routines

in hierarchical settings for many variable types (for example, nominal, ordinal, or continuous

variables). It also provides imputation routines for interval data and handles a common

measurement error problem in survey data: Biased inferences due to implicit rounding of

the reported values. The user-friendly setup which only requires the data and optionally

the specification of the analysis model of interest makes the package especially attractive

for users less familiar with the peculiarities of multiple imputation. The compatibility with

the popular mice package ensures that the rich set of analysis and diagnostic tools and

post-imputation commands available in mice can be used easily once the data have been

imputed.

Zusammenfassung

Anwendungen von Multipler Imputation sind längst über den klassischen Kontext der Be-

handlung von fehlenden Beobachtungen in Querschnittsstudien heraus gewachsen. Heut-

zutage wird Multiple Imputation auch verwendet um fehlenden Werten in hierarchischen

Datensätzen zu imputieren, um Vertraulichkeits-Interessen zu begegnen, um Datensätze

aus verschiedenen Quellen zu kombinieren oder um Messfehler aus Erhebungen zu korri-

gieren. Die meiste Imputationssoftware kann allerdings nur mit fehlenden Beobachtungen

in Querschnittsdaten umgehen und Erweiterungen für hierarchische Daten - sofern über-

haupt vorhanden - sind typischerweise in ihrem Umfang begrenzt. Unserem Kenntnisstand

nach, ist aktuell keine Software für den Umgang mit Messfehlern, basierend auf Multi-

plen Imputationsmethoden, vorhanden. Das R-Packet hmi versucht einige dieser Lücken

zu schließen. Es bietet Multiple Imputationsroutinen in hierarchischen Settings für viele

Variablentypen (zum Beispiel nominal, ordinal oder stetige Variablen). Zudem stellt es Im-

putationsmethoden für Intervalldaten bereit und behandelt ein übliches Messfehlerproblem

in Befragungsdaten: Verzerrungen aufgrund impliziten Rundens der berichteten Werte. Der

nutzerfreundliche Aufbau, der nur die Daten und optional eine Spezifizierung des Analyse-

models benötigt, macht das Paket besonders attraktiv für Nutzer die weniger vertraut mit

den Besonderheiten von Multipler Imputation sind. Die Kompatibilität mit dem populären

Paket mice stellt sicher, dass der reichhaltige Satz an Analyse- und Diagnosewerkzeugen,
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und Befehlen für das Imputationsergebnis aus mice, einfach angewandt werden kann, so-

bald die Daten imputiert wurden.

JEL classification: C38; C83

Keywords: hierarchical data, multiple imputation, multilevel models, measurement error,

heaping, R
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1 Introduction

Forty years after Donald Rubin’s seminal paper (Rubin, 1978) which introduced the concept

of multiple imputation, the approach has been shown to be useful in many contexts going

far beyond the classical item nonresponse in cross sectional surveys for which it was origi-

nally proposed (Reiter/Raghunathan, 2007). Today, multiple imputation is used to deal with

nonresponse in hierarchical data sets (Carpenter/Kenward, 2013: chap. 9), address confi-

dentiality concerns by disseminating synthetic data instead of the original data (Drechsler,

2011), concatenate files from different data sources (Rubin, 1986; Rässler, 2003; Reiter,

2012), address measurement error in self-reported health information (Schenker/Raghu-

nathan/Bondarenko, 2010), handle changes in the coding of variables in longitudinal stud-

ies (Clogg et al., 1991; Schenker, 2003), or impute plausible values for coarse data (Tay-

lor/Schwartz/Detels, 1986; Heitjan/Rubin, 1990; Raghunathan et al., 2001). As discussed

in Heitjan/Rubin (1991) coarse data are data for which the true values are not observed in

a precise way. This includes missing data as a special case, but also rounding, grouping,

censoring and interval data. Examples of applications of multiple imputation for coarse

data include Gartner/Rässler (2005); Jenkins et al. (2011); Drechsler/Kiesl/Speidel (2015).

While classical imputation methodology as discussed for example in Rubin (1987) or van

Buuren (2012) is sufficient for some of these applications, adjusted methodology is re-

quired for others. However, although all major statistical software such as SPSS, Stata,
SAS, or R offer multiple imputation routines today, the available methodology is typically lim-

ited to the classical methodology for cross-sectional surveys. Some software also provides

methods for dealing with hierarchical data structures, but as we will illustrate in Section

2.6, current implementations are limited in scope. With the exception of the recently imple-

mented software package synthpop (Nowok/Raab/Dibben, 2016) which was specifically

developed for generating synthetic data sets for disclosure protection, no software exists to

our knowledge for applications such as the coarse data problem discussed above, which

require modifications of the traditional multiple imputation framework.

The R package hmi closes some of the gaps of currently available software by offering four

important contributions:

1. It offers imputation routines for hierarchical data using multilevel (mixed-effects) mod-

els for all variable types based on the sequential regression approach, which unlike

the joint modeling approach can also handle item nonresponse if random slope mod-

els need to be estimated (see Section 2.4 for details)

2. It provides routines for dealing with rounding in reported values based on the method-

ology proposed in Heitjan/Rubin (1991).

3. It offers routines for imputing plausible values if it is only known (for some of the

observations) that the exact value lies in certain intervals, for example if the data are

censored. Currently, such imputation routines are only available in Stata.

4. It allows to deal with item nonresponse, interval information and rounding within

the same variable simultaneously following the approach described in Drechsler/

Kiesl/Speidel (2015).
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The package also offers imputation tools for “classical” missing data problems by call-

ing imputation routines available in the popular multiple imputation package mice (van

Buuren/Groothuis-Oudshoorn, 2011). Since the objects generated using hmi are struc-

tured similar to objects generated using mice (both are mids objects), the rich set of anal-

ysis and diagnostic tools and post-imputation commands available in mice can be used

easily once the data have been imputed. Furthermore, the package provides imputation

routines for semi-continuous variables, that is, variables which have a spike at one value

(typically zero), but can be considered continuous otherwise. These imputation routines

are available in several software packages, but are not offered in mice.

To facilitate the usage of the package for less experienced users, the selection of suitable

imputation models is highly automated, that is, the user only needs to provide the data.

The package will identify the most appropriate imputation models for each variable with

missing values using decision rules described in Section 5 of this paper. Additionally, the

user can specify the substantive model he or she wants to run on the imputed data set. In

this case hmi will use the same set of predictors and the same functional form as the sub-

stantive model for all imputation models in an effort to make the congeniality assumption

more plausible. As discussed in Meng (1994), congeniality between the imputation model

and the substantive model is important to avoid biased inferences based on the imputed

data. We illustrate in Section 2.3 that specifying the substantive model is especially impor-

tant if multilevel models will be fitted at the analysis stage since this will ensure that the

hierarchical structure of the data will also be taken into account at the imputation stage.

The package is available at https://cran.r-project.org/package=hmi.

The remainder of the paper discusses the main contributions of the package and provides

detailed illustrations on how the package can be used. Specifically, Sections 2 to 4 ad-

dress multiple imputation for hierarchical, interval and rounded data. Each section starts

by illustrating the inferential problems caused by the various data deficiencies followed by

a brief review of the required multiple imputation methodology for addressing the said prob-

lem. Limitations of currently available software and our contributions are also discussed.

Section 5 describes the hmi package in detail: all mandatory and optional arguments, the

internal checks, the handling of the model formula, the types of supported variables, and

the implemented convergence checks will be presented. In Section 6 we provide real data

applications to illustrate the implementation of the different features of the package. We

end with a conclusion.

2 Multiple imputation for hierarchical data sets

Hierarchical data sets are data sets in which individual records are nested within groups.

Typical examples include students in the same class or repeated measures of the same

individual. In such settings, the assumption of independent observations, needed for the

classical linear regression model, does not hold since records belonging to the same group

tend to be more homogeneous than records belonging to different groups. To account for

these cluster effects, multilevel models (also referred to as random effects or mixed effects

models depending on the field of study) are often employed. In the following, we provide a
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brief summary of the methodology behind multilevel modeling starting with multilevel linear

models for continuous variables. Then, we discuss extensions to multilevel generalized

linear models for any variable type from the exponential family. A more detailed introduc-

tion can be found in any textbook on multilevel modeling, for example in Raudenbush/Bryk

(2002). The brief overview will form the basis for our discussion of appropriate imputa-

tion strategies for hierarchical data and details about their implementation and available

software in Sections 2.3 to 2.7.

2.1 Multilevel linear models

Paraphrasing from Speidel/Drechsler/Sakshaug (2017), multilevel linear models assume a

linear relationship between the continuous target variable Y and some covariates X and

Z. The effect of X on Y is governed by some global fixed effects β; the effect of Z on Y by

some cluster specific random effects γ. Often Z is a subset of X, meaning that variables

that are assumed to have a random effect are also included as fixed effect variables in the

model.

The standard multilevel model has the form

yij =xijβ + zijγj + εij ,

γj ∼N(0, Σ),

εij ∼N(0, σ2),

(1)

with j = 1, . . . , J being the index for the clusters, i = 1, . . . , nj being the index for the units

belonging to cluster j, and nj being the number of observations in cluster j. The parameter

β contains the global fixed effects, similar to the regression coefficients in classical linear

regression models. The parameters γj are the cluster specific random effects, which are

assumed to follow a normal distribution with zero mean vector and variance matrix Σ.

These random effects and the normality assumption for them is a key difference to the

classical linear regression model. The parameter εij is the error term which is normally

distributed with zero mean and variance σ2, which is constant for all clusters.

Multilevel linear models can be generalized to more than two levels and residual variances

being heteroscedastic across the clusters. Since hmi can only handle two levels of hierar-

chy and homoscedastic residuals at the moment, we do not cover these extensions here.

The interested reader is referred to Raudenbush/Bryk (2002) or Snijders/Bosker (2011) for

more details on these topics.

2.2 Multilevel generalized linear models

The step from multilevel linear models to multilevel generalized linear models (mglm) is

analogous to the step from classical linear models to generalized linear models (glm). Both

enable model estimation for variables from the exponential family using a linear predictor

l and a link function f such that E(Y ) = µ = f−1(l). The major difference between

mglm and glm is that the linear predictor in mglm also has random effect variables Z with
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regression coefficients γ = {γ1, . . . , γJ} leading to l = Xβ+Zγ+ε. These random effects

and their covariance matrix Σ also have to be considered when estimating the model.

The link function is defined according to the type of variable that is modeled. For example

for continuous variables the identity link is used and for count data the log-link. In general

no closed form solution for the parameter estimates exist, so Markov Chain Monte Carlo

(MCMC) methods or other iterative procedures are required for estimation (Gelman/Hill,

2006; Hadfield, 2010).

2.3 Dealing with missing values in hierarchical data

Hierarchical data are not spared from nonresponse and multiple imputation can be a con-

venient strategy to address this problem. Several researchers have shown that ignoring the

hierarchical structure at the imputation stage will lead to biased inferences when analyz-

ing the data (Reiter/Raghunathan/Kinney, 2006; van Buuren, 2011; Enders/Mistler/Keller,

2016; Zhou/Elliott/Raghunathan, 2016; Lüdtke/Robitzsch/Grund, 2017). Furthermore, ac-

counting for the clustering by adding indicator variables for the clusters (fixed effects mod-

eling) will still introduce bias if the analysis is based on a multilevel model (Taljaard/Don-

ner/Klar, 2008; Andridge, 2011; Drechsler, 2015; Speidel/Drechsler/Sakshaug, 2017). To

avoid this bias due to uncongeniality between the imputation and the analysis model, all

manuscripts suggest using multilevel models also at the imputation stage.

2.4 Multiple imputation using multilevel models

With multiple imputation missing values are imputed multiply (M ≥ 2 times) to be able to

take the uncertainty from imputation into account. The imputed values are random draws

from the distribution of the missing data given the observed data. Let D = {Dobs, Dmis}
denote the data D separated into an observed part (Dobs) and a missing part (Dmis) and

let θ contain the parameters which govern the distribution of D. To obtain approximate

draws from f(Dmis | Dobs) multiple imputation repeatedly applies the following two steps:

1. Draw a new set of parameters θ? from their posterior distribution given the observed

data: f(θ | Dobs).

2. Draw replacements for the missing values from the predictive distribution of the miss-

ing data given the observed data and the drawn parameters from the previous step:

f(Dmis | θ?, Dobs).

Valid inferences based on the imputed data can be obtained using the generic inferential

procedures first described in Rubin (1978). For further details regarding the general prop-

erties of multiple imputation we refer to any textbook on multiple imputation, for example

Rubin (1987); van Buuren (2012); Carpenter/Kenward (2013).

As pointed out above, if the model to be estimated on the imputed data is a multilevel

model, a similar model specification should be used at the imputation stage to ensure

unbiased results. Thus, for continuous variables the imputation model should follow the
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model specification given in Equation (1) and the two generic multiple imputation steps

described above consist of the following two steps:

1. Draw a new set of parameters θ? = {β?, γ?, Σ?, (σ?)2} from their posterior distri-

bution.

2. Generate imputed values by drawing from

yimp
ij = ximp

ij β? + zimp
ij γ?j + εij

? ε?ij ∼ N(0, (σ?)2), (2)

where the superscript imp identifies all records for which Y is imputed. Unlike in the clas-

sical linear regression case, no closed form solutions exist for the posterior distribution

of the parameters. Thus, Markov Chain Monte Carlo methods or other approximations

(Jolani, 2018) are generally required to update the parameters. We refrain from providing

the details of the iterative procedure here for brevity. The interested reader is referred to

Goldstein (2011) for a detailed description of Gibbs sampling methods for hierarchical data

and to Carpenter/Kenward (2013: chap. 9) and Drechsler (2015) for applications in the

missing data context.

2.5 Joint modeling vs. sequential regression for multilevel multiple imputa-
tion

Two general strategies exist for imputing missing values if more than one variable is af-

fected by nonresponse: joint modeling and sequential regression. The joint modeling

approach specifies a joint distribution for all variables with missing data (potentially con-

ditioning on fully observed variables) and draws imputed values based on this distribution.

For example, if all variables to be imputed are continuous, a multivariate normal distribu-

tion is typically specified for those variables affected by nonresponse. A major drawback

of the joint modeling approach in the multilevel context is that it cannot be used if miss-

ingness also occurs in the random slope variable(s) (Carpenter/Kenward, 2013; Enders/

Mistler/Keller, 2016). Furthermore, the specification of a joint distribution can be difficult, if

different variable types need to be modeled.

The sequential regression approach (also known as chained equations or fully conditional

specification) does not require modeling the joint distribution directly. Instead, conditional

distributions are specified for each variable to be imputed. The variables are imputed

sequentially, conditioning on the other variables in the data set. However, some of the

predictors in the imputation model might themselves contain imputed values. Thus, the

model estimates will change if these imputed values are updated. To account for this, the

procedure of sequentially imputing each variable has to be repeated several times, until the

draws from the conditional distribution converge to draws from the implicitly specified joint

distribution (see Raghunathan et al. (2001) for further details on the sequential regression

approach).

A downside of the approach is that convergence is only guaranteed if this joint distribution

exists. However, Liu et al. (2014) and Zhu/Raghunathan (2015) show that the joint distri-

bution will exist under rather general conditions and even if this is not the case, inferences

IAB-Discussion Paper 16/2018 11



based on the imputed data will still be consistent as long as the conditional distributions

are correctly specified.

2.6 Existing imputation routines for hierarchical data and their limitations

To our knowledge the only R (R Core Team, 2016) packages allowing hierarchical multiple

imputation are jomo (Quartagno/Carpenter, 2018), mice (van Buuren/Groothuis-Oudshoorn,

2011), micemd (Audigier/Resche-Rigon, 2018) and pan (Schafer, 2016). Currently, mice is

limited to continuous variables for hierarchical settings and cannot impute other variable

types using a multilevel model. micemd also provides multilevel imputation functions for bi-

nary and integer variables, but not for categorical variables with more than two categories.

A downside of jomo and pan is the fact that they rely on the joint modeling approach, with

the drawbacks mentioned in the previous section.

Imputation routines based on multilevel models have also been developed for other statis-

tical software packages: For SAS the external macro MMI_IMPUTE (Mistler, 2013) can be

used. Mplus (Asparouhov/Muthén 2010) and the stand alone software REALCOM-IMPUTE
also offer some multilevel multiple imputation routines. All of these imputation routines also

use the joint modeling approach. To our knowledge, the only other software allowing multi-

level imputation based on the more flexible sequential regression approach is the recently

released standalone software blimp (Enders/Keller/Levy, 2017).

2.7 Our contribution for the imputation of hierarchical data

As mentioned in the introduction, hmi is designed to provide multilevel imputation routines

for many relevant variable types, including semi-continuous variables based on the flexible

sequential regression approach. Furthermore, it also offers single level models for all types

of variables, for situation where a multilevel model is not applicable.

If an analysis model is specified, the package will automatically use the same set of pre-

dictors and the same functional form as the substantive model for all imputation models

to avoid introducing bias in the analysis, because relationships which are important to the

analyst are not reflected in the imputation models. If no analysis model is given, all vari-

ables are imputed using single level models by default. However, if desired, the user can

manually specify which imputation models should be used for each variable.

For single level imputation, the package relies on the imputation routines implemented in

mice. Own code is used for all multilevel imputation routines. The draws from the posterior

distribution of the parameters of the multilevel models are obtained using MCMC methods

implemented in the MCMCglmm package (Hadfield, 2010).

If multilevel imputations are employed, the package also stores the model parameters at

each iteration of the MCMC chains, to enable the users to monitor the convergence of

the chains. The users can either extract this information to run their own convergence

diagnostics or they can rely on the checks implemented in the package. Per default the

package runs Geweke’s stationarity test (Geweke 1992) on each chain, plots those chains
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that failed the test and provides some summary information on the number of chains which

failed the test (see Section 5.8 for details).

3 Multiple imputation for interval data

Interval data (sometimes called bracketed response) comprise all data for which an interval

covering the true value is given instead of the exact value. According to this definition both,

grouped and censored data can be treated as interval data. With grouped data, a set

of precise observations is grouped into a single response group. For example in cancer

research the number of positive lymph nodes might only be collected in categories 0, 1-

3, 4-9 and 10+ (Royston, 2007) or age might only be reported in five year intervals for

confidentiality reasons. Grouped data can also arise if surveys aim to maximize response

rates for sensitive or difficult questions. For example, in the Survey of Consumer Finances

(SCF) range cards are shown to respondents who refuse to provide information regarding

their exact income, asking them to pick one of the ranges depicted (e.g. 0-5,000 $) or

to pick a category following a decision tree (Kennickell, 1991). A similar procedure is

implemented in the National Health Interview Survey (NHIS), where initial nonresponders

to the question regarding the yearly income are asked whether their income is above or

below 20, 000 USD and in a next step a range card with 44 income categories is shown

(Schenker et al., 2006). The German Panel Study Labour Market and Social Security

(PASS) also asks initial nonresponders consecutive questions about intervals covering the

true income (Trappmann et al., 2010). These approaches help to collect at least some

information for respondents initially refusing to provide an answer (Drechsler/Kiesl/Speidel,

2015) or selecting “don’t know” for the exact income question (Kennickell, 1996).

Censoring refers to the situation in which values above (or below) a given threshold are not

observed. The only information available is that the true value must be above (or below)

the known threshold. Censoring from the left typically arises in situations in which technical

equipment will not detect the measure of interest if its concentration is below a certain limit.

For example, in the study presented in Pilcher et al. (2007), the number of HI viruses in

human blood is only measurable once it is above a given threshold of detection. Censoring

from the right often occurs in public use files, in which top coding is applied to reduce the

risk of re-identification. This is for example done in the US-American Current Population

Survey (CPS) (Larrimore et al., 2008). An example of right censoring in biology is the time

to seed germination as the time it takes for a seed to germinate can be longer than the

duration of the study (Scott/Jones, 1990).

3.1 Analyzing interval data

Obtaining valid inferences if only interval information is available for (parts of) some of the

variables can be complex. The most common strategy is to adjust the likelihood accord-

ingly. For example, in linear regression models, the well known tobit model (Tobin, 1958)

can be used to account for censoring in the dependent variable. This approach can easily

be extended to other forms of interval data but iterative procedures are typically required
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to find the maximum likelihood estimates in this case. Since most software packages do

not offer routines for dealing with interval data beyond the tobit model, some applied re-

searchers rely on naive approaches for analyzing the interval data: A common approach is

to ignore the interval information completely, using only those observations for which exact

information is observed. This approach is always inefficient, since available information is

not used. It can also introduce bias, if those units that only provide interval information dif-

fer form those units which provide exact information. In fact, Heeringa/Little/Raghunathan

(1997) showed that the tendency to only report intervals for income increases with income.

Thus, results solely based on the exact reports are likely to be biased.

To simplify the analysis for applied researchers, imputation approaches can be used to

generate plausible values given the interval information. This offers the advantage that the

analysts no longer need to find appropriate ways for incorporating the interval information.

They can rely on standard analysis models using the plausible values for inference. How-

ever, just like in the standard nonresponse context, care needs to be taken to ensure that

valid inferences can be obtained from the imputed data.

For example, a naïve imputation approach which is sometimes applied in practice uses the

midpoint or the upper bound of each reported interval as the imputed value (Law/Brookmeyer,

1992; Dorey/Little/Schenker, 1993). The data are then analyzed treating the imputed val-

ues as the true exact values. These approaches are valid only in very limited settings since

they will generally underestimate the variance in the imputed data (Law/Brookmeyer, 1992;

Kim/Xue, 2002).

To fully account for the uncertainty resulting from the fact that only intervals instead of

exact values are observed initially, multiple imputation approaches are required which gen-

erate imputations by drawing from the conditional distribution of the exact values given the

interval information (and additional information from other variables available in the data

set).

Imputation approaches have been used for several data sets to facilitate the analysis for

the user. For example, since 1995 the Survey of Consumer Finances generates imputed

income values by drawing from truncated normal distributions using the bounds of the

reported intervals as truncation points.

An application of the joint modeling approach for imputation of interval data is discussed

in Heeringa (1993). The author imputed interval and missing data in the Health and Re-

tirement Survey (HRS) using the general location model. One major disadvantage of the

general location model is that the multivariate normal distribution needs to be estimated

for each cell of the table spanned by crossclassifying all categorical variables. Thus, the

approach can only be used if the number of categorical variables is very limited to ensure a

sufficient number of observations for estimating the normal distribution within each cell. A

second problem can be sparse cells in the interval variable, making the imputation model

unreliable. The author noticed this problem especially for the largest income category

which typically included only few, very wealthy individuals. The true income distribution in

this category also might be very skewed, violating the normality assumption.
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For settings with ordered income categories affected by item nonresponse, Bhat (1994)

proposed an imputation method modeling the income distribution and the response proba-

bilities jointly using a selection modeling approach.

Raghunathan et al. (2001) describes a general sequential regression approach for inter-

val data. Plausible values are generated by drawing from truncated normal distributions.

The parameters for the model are estimated using those observations for which an exact

value is available. New parameters for the truncated normal model are drawn using sam-

pling/importance resampling (SIR, Rubin 1988). This approach is also implemented in the

multiple imputation software IVEware (Raghunathan et al., 2016). The software was also

used to impute plausible values for interval answers in the National Health Interview Survey

(NHIS), (Schenker et al., 2006).

Royston (2007) implemented an imputation model for interval data for Stata. He extended

the approach of Raghunathan et al. (2001) by also using the information from the respon-

dents that only provided an interval when estimating the parameters of the imputation

model. To obtain parameter estimates the joint likelihood of the income of the exact re-

porters and the income of the interval reporters is maximized under the implicit assumption

that the conditional distribution of the true income given the covariates in the model is the

same for both groups. Instead of using SIR, draws from the posterior distribution of the pa-

rameters are only approximated by drawing from a multivariate normal distribution centered

around the maximum likelihood estimates of the parameters. Compared to the approach

of Raghunathan et al. (2001) this strategy offers the advantage that it uses all available

information and that it can also be used if only interval information is available.

A similar approach was later used by Drechsler/Kiesl/Speidel (2015) for simultaneous im-

putation of interval, rounded, and missing data. For interval data without rounding, the

approach simplifies to the method described by Royston (2007) and is separately imple-

mented in hmi.

Several (multiple) imputation approaches have also been proposed for the special case of

survival data (Taylor/Schwartz/Detels, 1986; Muñoz et al., 1989; Taylor et al., 1990; Dorey/

Little/Schenker, 1993). In survival analysis censoring is a common problem since for those

units that entered a certain state of interest (for example unemployment) previous to the

start of the study or are still in that state at the time the study is terminated, the true time

of entry or exit is unknown. Imputation routines for survival data differ systematically from

the imputation routines for interval data in other data sets since survival models need to

be used for imputation to ensure congeniality between the imputation and the analysis

model. Multiple imputation routines for this special type of data are implemented in the R
package icenReg (Anderson-Bergman, 2017). Imputations in icenReg can be based on

proportional hazards, proportional odds or accelerated failure time models. Since icenReg
already provides a convenient tool for dealing with survival data, we did not implement

these routines in hmi and we limit the description of the imputation methodology in the

next section to applications outside the survival analysis context. The interested reader is

referred to Grover/Gupta (2015) or Anderson-Bergman (2017) for details regarding impu-

tation routines for survival data.
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3.2 Methodology of multiple imputation for interval data

Let y = {y1, . . . , yn} be the realizations of the variable of interest– possibly transformed to

fulfill the normality assumption of linear regression models – for which only interval infor-

mation is available for some or all of the n observations in the data. Let x = {x1, . . . , xn}
be the realizations of any other variables X available in the data set which might help to

predict the values of y. We assume that

Y |X ∼ N(Xβ, σ2) (3)

If exact values would be observed for all records, the likelihood of the model parameters

would be

L(β, σ2|y, x) =
n∏

i=1

f
(
yi, µi = x′iβ, σ

2
)

(4)

with f being the density of a normal distribution.

If only interval information is available for some of the respondents, we need to introduce

some additional notation. Let Ii be an indicator function that equals zero if exact information

is available and equals one if only interval information is available for individual i (the

interval information includes missing data as a special case with interval bounds −∞ and

+∞). Let yi and yi be the lower and upper bound of the interval for unit i. The extended

likelihood that also takes the interval information into account is given by

L(β, σ2|y, x) =
n∏

i=1

(
(1− Ii)f(yi, x

′
iβ, σ

2) + Ii
[
F (yi, x

′
iβ, σ

2)− F (yi, x
′
iβ, σ

2)
])
, (5)

with F being the cumulative distribution function of the normal distribution. Maximizing

this likelihood will provide estimates for the parameters θ = {β, σ2}. To approximate a

draw from the posterior distribution of f(θ|y, x) under the assumption of flat priors for all

parameters, we can draw from

θ? ∼MVN(θ̂, I(θ̂)), (6)

where θ̂ contains the maximum likelihood estimates of θ, and I(θ̂) is the negative inverse

of the Hessian matrix of the log-likelihood with θ̂ plugged in.

Plausible values for interval respondents can be imputed by drawing from a truncated nor-

mal distribution Nt(µ, σ
2) with µ = x′β?, σ2 = (σ?)2, where β? and (σ?)2 are the parame-

ters drawn form the approximate posterior distribution as described above. The truncation

points are given by the bounds of the reported interval. Imputations for those respondents

that refused to provide any information are obtained by drawing from a normal distribution

with parameters µ = x′β? and σ2 = (σ?)2.
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3.3 Our contribution for the imputation of interval data

To our knowledge, imputation routines for interval data following the procedures described

above are currently only available in Stata. For the special case of survival data imputa-

tion routines following a completely different methodology are available in the R package

icenReg by Anderson-Bergman (2017). The hmi package is the first R package to offer

general imputation routines for interval data beyond the survival data context. The pack-

age also provides a new solution for storing information on lower and upper bounds of the

interval information in one variable together with a set of functions for handling interval

data.

The idea is to store the bounds in a character variable separated by a semicolon. Such an

interval object can be generated using generate_interval or split into its lower and upper

bounds by split_interval. See Section 5.5 for details and Section 6.2 for examples.

4 Multiple imputation for data affected by heaping

Another form of coarse data are data for which the reported values are implicitly rounded.

The rounding can either be identical for all individuals (for example if individuals round

off their age), or subject to different rounding degrees. Many individuals rounding to the

same value lead to heaps in the empirical distribution of the data. Therefore, this form of

rounding with unknown rounding degrees is often referred to as heaping in the literature.

It typically occurs, if the respondent is unwilling or unable to provide an exact value and

instead reports a value which is a multiple of some common rounding base to implicitly

express his or her uncertainty regarding the estimate. In many cases, multiples of 10, 100,

or 1,000 are used. In other situations, the respondent uses a higher level of aggregation

(such as years instead of months or weeks instead of days) for the estimate. For exam-

ple, Heitjan/Rubin (1990) studied reported ages for young children in Tanzania and noted

several heaps at certain values, such as 6 or 12 months. Huttenlocher/Hedges/Bradburn

(1990) found heaps at multiples of seven for questions which asked how many days ago an

event took place. Wang/Heitjan (2008) identified several heaps at multiples of 20 in ques-

tions regarding cigarette consumption because the common pack of cigarettes contains 20

cigarettes.

Table 1 taken from Drechsler/Kiesl/Speidel (2015) illustrates the problem using reported

monthly household income in the German panel study Labour Market and Social Security

(PASS) (Trappmann et al., 2010) for the year 2008/2009. The table provides the percent-

age of the reported monthly income values that are divisible by a given round number. It

seems that most respondents tend to round their income. More than 60 percent of the

reported values are divisible by 100 and less than 16 percent of the values are not divisible

by 5. Czajka/Denmead (2008) report similar problems for the American Community Survey

and the Current Population Survey.

The major problem with heaping is that inferences will be biased if the reported values are

treated as face value (Hanisch, 2005). For example, Drechsler/Kiesl (2016) illustrate that
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Table 1: Percentage of reported monthly household income values that are divisible by a
given round number in the PASS survey for the year 2008/2009.

Income divisible by 1,000 500 100 50 10 5
Relative frequency (%) 13.97 23.94 61.57 69.58 80.71 84.13

Source: PASS data, own calculations

important policy measures such as the poverty rate can be substantially biased if heaping

in the reported income is not taken into account.

4.1 Analyzing rounded data

Starting with Sheppard (1898) several methods have been proposed to account for round-

ing at the analysis stage (see for example Hanisch 2005 or Schneeweiss/Komlos/Ahmad

2010 for a review). However, most of the rounding literature assumes symmetric rounding

intervals that can be derived directly from the reported value. For example, if distance is

reported in kilometers, it is assumed that the true distance must be in the interval reported

distance ± 500 meters. However, this does not generally hold for heaping. As illustrated

below, the rounding interval can not be inferred directly with data affected by heaping.

Instead of accounting for the rounding at the analysis stage multiple imputation method-

ology can be used to account for the rounding at the data processing stage. A multiple

imputation strategy to obtain plausible values for the true values based on the reported

values accounting for the uncertainty from rounding was first proposed by Heitjan/Rubin

(1990) for age data affected by heaping. Related approaches were later used for self-

reported cigarette counts (Wang/Heitjan, 2008), rounded unemployment durations (van

der Laan/Kuijvenhoven, 2011) and self-reported income (Drechsler/Kiesl/Speidel, 2015;

Drechsler/Kiesl, 2016; Zinn/Würbach, 2016).

4.2 Methodology of multiple imputation for data affected by heaping

There is an important difference between interval observations treated in Section 3 and

rounded observations: With interval observations the interval in which the true value must

lie is known. This is not the case for rounded observations. For example, if the reported

income is 1,800, we do not know whether this is the exact true value, or if the true value

has been rounded to the closest 5, 10, 50, or 100. To account for this uncertainty, we also

need to model the rounding process.

The methodology presented in this section is based on the ideas first discussed in Heit-

jan/Rubin (1990). We summarize the main ideas of the approach here borrowing heavily

from Drechsler/Kiesl (2016). For further details we refer to Heitjan/Rubin (1990) or Drech-

sler/Kiesl (2016).

To be able to account for the heaping in a variable, two models need to be specified: one

model for the variable of interest and one model for the rounding behavior. Let Y be the

variable of interest. Similar to Section 3 we assume that the conditional distribution of Y
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given some covariates X is given as

Y |X ∼ N(Xβ, σ2) (7)

To model the rounding behavior, an ordered probit model can be specified, i.e., a nor-

mally distributed latent variable G is assumed which may (linearly) depend on Y and some

covariates Z (where some or all components of Z might be in X and vice versa):

G|Y,Z ∼ N(γ0 + Y γ1 + Zγ2, τ
2). (8)

The thresholds of the ordered probit model separate the different degrees of rounding. For

example, if the assumed possible degrees of rounding are 1, 10, 50, and 100, an ordered

probit model with four categories would be estimated.

Based on these model assumptions, the joint distribution of Y and G can be specified.

The set of parameters to be estimated is given by Ψ = (β, σ2, γ1, γ2, k1, ..., kp−1), where

k1, ..., kp−1 denote the thresholds of the probit model assuming p possible degrees of

rounding (note that γ0 is fixed at 0 and τ2 at 1 to make the ordered probit model identi-

fiable). For each individual i, i = 1, . . . , n, with n being the sample size, let si denote the

rounded value which is observed instead of the true yi, and s = (s1, . . . , sn). The like-

lihood function for Ψ given si and covariates xi, zi (assuming independent observations)

may then be written as

L(Ψ|s, x, z) =
∏
i

f(si|xi, zi,Ψ)

∝
∏
i

∫∫
A(si)

f(g, y|xi, zi,Ψ)dydg,
(9)

where A(si) is the set of (g, y) that are consistent with an observed si. The parameter

vector Ψ can be estimated by maximizing L(Ψ|s, x, z) using numerical methods.

To generate imputations of Y , the first imputation step (drawing a new set of parameters

from their joint posterior distribution) can again be approximated by drawing from

Ψ? ∼MVN(Ψ̂, I(Ψ̂)), (10)

where Ψ̂ contains the maximum likelihood estimates of Ψ, and I(Ψ̂) is the negative inverse

of the Hessian matrix of the log-likelihood with Ψ̂ plugged in.

For the second imputation step (generating imputed values for Y ) a simple rejection sam-

pling approach is implemented:

1. Draw candidate values for (yimp
i , gi) from a truncated bivariate normal distribution

using parameters from Ψ?, where the truncation points are given by the maximal pos-

sible degree of rounding given the observed value si (for example, for an observed

income value 850 with possible degrees of rounding 1, 10, 50, 100, and 1,000, yi is

bounded by 825 and 875 and gi has to be in ]−∞, k?3[).
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2. Accept the drawn values for yi as imputation value if they are consistent with the

observed rounded value, i.e., when rounding the drawn value for yi according to the

drawn rounding indicator gi gives the observed value si.

3. Otherwise draw again.

4.3 Our contribution for the imputation of data affected by heaping

The R package simPop (Templ et al., 2017) provides a function for generating plausible

values if heaps only occur at multiples of 5 or 10. However, no other rounding degrees

can be considered and no covariates can be incorporated into imputation model. hmi
provides a more general imputation routine for variables affected by heaping following the

methodology presented above. With hmi flexible degrees of rounding can be specified

and covariates can be incorporated in both, the model for the rounding process and the

imputation model. The package will declare variables to be affected by heaping if certain

criteria are met, but it is also possible for the user to manually decide, which variables are

affected. For details how to register variables accordingly see Section 5.1 and the Rounded

continuous variables paragraph in Section 5.5.

It is also possible to use hmi for dealing with situations in which missing observations, in-

terval observations and rounded observations occur simultaneously. This will typically be

the case for surveys asking for income or other sensitive questions. Since nonresponse to

the income question tends to be high, it is common practice to ask respondents whether

their income lies in certain intervals if they are unwilling or unable to provide exact income

values. In this situation three potential outcomes are possible: the respondent remains un-

willing to provide any information at all and thus the income value is missing. Alternatively,

the respondent might not provide an exact value but might be willing to indicate an interval

in which his or her income lies. Finally, the respondent might report a supposedly exact

value, which considering Table 1 will still be a rounded estimate of the true income in many

cases. To deal with such a situation the likelihood function in Equation (9) needs to be

extended to also account for the interval information:

L(Ψ|s, x, z) ∝
n∏

i=1

{
(1− Ii)

∫∫
A(si)

f(g, y|xi, zi,Ψ)dydg+

Ii

[
F (yi, µi = x′iβ, σ

2)− F (y
i
, µi = x′iβ, σ

2)
]} (11)

Imputed values for the interval data can be obtained by drawing from a truncated distribu-

tion as described in Section 3. See Drechsler/Kiesl/Speidel (2015) for an application and

for further details regarding the imputation procedure. To our knowledge, hmi is the only

imputation routine which is able to simultaneously impute rounded, missing and interval

observations.
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5 Software

The main function of the package hmi is the wrapper function called hmi. It performs all

input checks, data preparations, calls of different imputation functions depending on the

type of variable to be imputed and generates the output. In the simplest case the user just

passes her or his data to hmi. In this case all variables with missing values are imputed

based on a single level imputation model including all other variables in data as predictors.

Under this scenario, the package works similar to other multiple imputation packages in R
such as mice or mi (Su et al., 2011). The full flexibility of the package is unleashed, if the

user additionally passes her or his (multilevel) analysis model to hmi and/or makes further

specifications.

5.1 Input

These are the arguments which can be specified with hmi:

data: The (partially observed/rounded) data set specified as a data.frame. Data

in the matrix format are converted into a data.frame. For multilevel imputation the

data have to be in the long format, meaning that observations belonging to the same

cluster have to be stacked in rows and a cluster indicator needs to be available. Data

in the wide format have to be converted to the long format using for example the

packages reshape2 (Wickham, 2007) or tidyr (Wickham/Henry, 2018).

model_formula: This argument requires a formula representing the desired analysis

model which should be run once the data have been imputed. If model_formula is

specified, hmi will try to set up imputation models which are in line with this model.

In the multilevel case model_formula is used to identify fixed effects and random

effects covariates and the cluster indicator. See Section 5.3 for details.

family: A family object supported by glm (resp. glmer). This argument is not

needed in the imputation process, it only facilitate the automated pooling (see Sec-

tion 5.9) when the dependent variable in model_formula is not continuous. For

example, for count data the appropriate call would be family = "poisson". Setting

the family argument will ensure that the correct model is used when hmi calculates

the appropriate multiple imputation inferences for the specified analysis model.

additional_variables: With this argument the user can specify variables (sep-

arated by +, e.g. "x8 + x9") which should be included in the imputation mod-

els beyond those variables already included in the analysis model as specified in

model_formula. Instead of using additional_variables the user might extend

the model_formula and run a reduced analysis model with hmi_pool (or use the

analysis tools provided by mice).

list_of_types: If users are not satisfied with the automatic classification of the

variable types by hmi (see Section 5.5), they can specify a list containing their own

classifications. For example a user might want to treat a variable as continuous while
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it was identified as count data (imputations would then be based on a linear regres-

sion model in this case instead of the Poisson model which is the default for count

data). The explicit specifications in list_of_types are binding for hmi and overrule

all other implicit specifications in any other attribute. For example, only missing val-

ues will be imputed in a variable specified to be continuous even if rounding degrees

and/or a rounding formula are specified for this variable. To change this, the variable

would need to be explicitly specified as rounded continuous in list_of_types. The

list contains elements, named like the variables. Each element is a character of one

keyword (e.g. list_of_types = list(x1 = "cont", x2 = "categorical")) to

denote the imputation routine that shall be used for this variable. See Section 5.5 for

all supported keywords and Section 5.6 for more explanations about the pre-definition

of the variable types and Section 6.1 for an real data example.

M: The number of imputed data sets that should be generated. The default value is

5.

maxit: Similar to mice, maxit defines the number of cycles of the sequential regres-

sion imputation procedure that should be run before one imputed data set is stored

(see also Section 2.5). The default value is 10, unless only one variable needs to

be imputed. In this case the number of iterations is set to 1 as no updating of other

variables is required.

nitt: An integer defining the number of iterations that should be used for the Gibbs

sampler whenever a variable is imputed using multilevel models based on the MCMC

routines implemented in the package MCMCglmm (Section 2.4). Higher values imply a

higher chance of convergence, but also increase the runtime of the imputation pro-

cess. Convergence can be checked after imputation using the function chaincheck
(see Section 5.8 for details). By default 22,000 iterations are run.

burnin: An integer defining the number of MCMC draws of the MCMCglmm routines to

be discarded as burn in. Higher values increase the chance of drawing values from a

chain that has converged, but burnin has to be strictly lower than nitt. Furthermore

a sufficient number of draws (say 1,000) should remain after discarding the burn in

order to be able to effectively test convergence of the chain after the imputation run.

The default value is 2,000.

pvalue: By default hmi tries to include all variables as predictors in the imputation

model. This can lead to unstable parameter estimates if the number of predictors

is large. As a consequence imputations can vary erratically generating implausible

imputed values way outside the observed range of values. A strategy to limit this

problem is to exclude insignificant variables from the imputation model via a variable

selection procedure (this strategy is also implemented in the multiple imputation soft-

ware IVEware). If specified, the package hmi uses a backward selection procedure

to identify the final imputation model: In the first step a (multilevel generalized) linear

model is estimated using all variables as predictors. In the next step a new regres-

sion model is estimated such that the variable with the highest p value above pvalue
is removed. This is repeated until each variable included in the model have a p value

smaller or equal to pvalue or until only one variable remains in the model. Excluding
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insignificant variables stabilizes the imputation process in most situations, but will

typically bias the (conditional) correlation between imputed and excluded variables

towards zero in any analysis performed on the imputed data. Therefore we advise to

use this option conservatively, that is, we recommend generating imputations using

the default value (i.e., pvalue = 1, which means no variables are removed). Lower

values – say, 0.5 or 0.2 – can be specified, if the imputations based on the default

setting show unacceptably large variances. We also note that variables are automat-

ically removed if their effect cannot be estimated, that is, if the estimated coefficient

is NA.

mn: Estimating cluster specific parameters based on very few observations can lead

to unstable estimates. As an ad hoc approach the user can specify a minimum num-

ber (mn) of observations a cluster should contain. The smallest clusters with less

then mn observations will then be collapsed with the second smallest cluster until all

clusters have at least mn observations. As this approach violates the assumption of

independent normally distributed cluster effects and the individual effects of the col-

lapsed clusters will no longer be reflected in the imputed data, this approach should

be used with caution. The default value is 1, leading to no collapsing.

k: Categorical variables with many categories can lead to unstable estimates since

a large number of dummy variables needs to be included in the imputation model

and some categories might be sparsely populated. To avoid such problems, k gives

the maximum number of categories a categorical variables is allowed to have when

used as covariate in an imputation model. Variables with more than k categories

will be excluded from all imputation models. By default the number is ∞, leading

to no removal. A less restrictive solution to avoid unstable estimates is to prevent

the inclusion of insignificant dummy variables in the imputation model by setting an

appropriate values for pvalue. In some situation it could be acceptable to classify

ordinal variables with many categories as continuous in list_of_types.

spike: This argument accepts a single numeric value or a list for which the names of

the list entries match the names of semi-continuous variables (variables which have a

spike at one value of the distribution but can be considered continuous otherwise). By

setting spike to be an integer, the user can specify at which value the spike(s) might

be found in the variable(s). In many cases, a spike will be found at zero, for example

if a household survey asks for the taxes payed or a business survey asks for the

number of employees hired in the previous year. However, there could be situations

in which a spike occurs at a different value. For example, responses regarding the

monthly net income will typically have a spike at the social security transfer level. In

cases of different spikes for different variables, the parameter spike should be a list.

For example, if x2 has a spike at 0 and x7 has a spike at 416 (which is minimum

amount of social security payments in Germany), the attribute would need to be

specified as spike = list(x2 = 0, x7 = 416). The function list_of_spikes_-
maker can be used to generate such a list with suggested spikes (returning the mode

for all variables for which more than 10 percent of the values are equal to the mode).

This list can be adopted according to the needs of the user and then passed to hmi
via the spike attribute. If spike contains a list, the names in the list implicitly define
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which variables should be treated as semi-continuous, that is, there is no need to

additionally register the variables as semicont in list_of_types. However, if a

different variable type is explicitly provided in list_of_types for this variable, the

variable is treated according to this type since explicit specifications in list_of_-
types dominate any implicit specifications through any of the other attributes. The

Semi-continuous variables paragraph in Section 5.5 describes the heuristic used to

decide whether a variable should be treated as semi-continuous if neither a numeric

value nor a list is specified. It also provides details how semi-continuous variables

are imputed.

rounding_degrees: If the user wants to generate plausible values for variables af-

fected by heaping following the methodology described in Section 4, she or he can

specify the rounding degrees which should be included in the model. The argument

can either be a single numeric vector or a list for which the names of the list entries

match the names of the variables affected by heaping. In this case each element

of list contains a numeric vector specifying the various rounding degrees. For ex-

ample if the age of children is reported in months, heaps might occur at multiples

of 1, 6, or 12 while the monthly income might be rounded to multiples of 1, 10,

100, or 1,000. If plausible values should be generated for both variables, the user

would need to specify rounding_degrees = list(age = c(1, 6, 12), income
= c(1, 10, 100, 1000)). The function list_of_rounding_degrees_maker gen-

erates such a list with individually suggested rounding degrees for each variable

found to be affected by heaping. This list can be adapted by the user according to

his or her needs. See the Rounded continuous variables paragraph in Section 5.5

for details regarding when a variable is considered to be heaped and what rounding

degrees are used in which scenarios. In Section 6.3 a data example on imputing

variables affected by heaping is given.

rounding_formula: For heaped continuous variables the user can specify a formula

for the rounding process, that is he or she can specify, which predictor variables

should be included in Equation (8). The standard formula notation should be used

but no dependent variable needs to be specified. To give an example, the formula

specification could be ~y + x2 + x15, where y represents the variable affected by

rounding and x2 and x15 are two other variables from the data set. Again, the ar-

gument can either be a formula or a list with element names identical to the names

of the heaped variables. In the letter case each list element must contain a formula

for the rounding process. The function list_of_rounding_formulas_maker gener-

ates such a list. This list can be adapted by the user according to his or her needs.

The default formula is ~., meaning that all variables are included as main effects in

the model for rounding. We note that maximizing the likelihood in Equation (9) is

tricky since the boundaries of the integrals also need to be estimated. If the rounding

model is too complex or if too many rounding degrees are specified, the iterative pro-

cedure for maximizing the likelihood might not converge. The function hmi will issue

a warning whenever the optimizer did not converge or when the Hessian matrix of the

maximum likelihood procedure cannot be inverted (which is typically a strong indica-

tion of numerical problems of the estimation procedure). In such cases, we generally
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recommend to either drop predictors from the rounding_formula or discard some

of the specified rounding_degrees.

pool_with_mice: As long as pool_with_mice is set to be TRUE, which is the de-

fault, hmi internally uses the functions from mice to obtain the final results for the

analysis model specified in model_formula. The results are returned as an addi-

tional attribute called pooling within the output object. Note that the output object

generated by hmi differs from the output generated by mice in this case. This can be

avoided if pool_with_mice is set to FALSE. Currently, the synergy of hmi and mice
supports the automatic calculation of the final inferences for (generalized multilevel)

linear analysis models. The default pooling of (ordered) categorical variables, is not

supported, except for categorical variables in the single level case. A more flexible,

but somewhat inconvenient function for pooling is hmi_pool, which is delivered with

this hmi package (see Section 5.7 for details).

5.2 Checks and preparations

The package hmi runs several initial checks before starting with the actual imputation:

All inputs are checked to ensure correct formating (e.g., data must be set up as a

data.frame, many other attributes must either contain a list or a vector of numeric

values, etc). See ?hmi or the previous section for details on the attribute specifica-

tions.

If any of the variables included in data has more than 90 percent missing values, the

program asks the user whether he or she wants to keep this variable or to quit the

program to adjust the data accordingly.

Variables which are completely missing will cause a warning; they do not con-

tain any information and will not be imputed.

Observations with missing values for all variables will also cause a warning for

the same reasons.

Variables included in model_formula which are not in data will cause an error. Note

that hmi currently only supports two levels of hierarchy in the multilevel imputation

models. Thus, only one cluster ID can be specified in model_formula.

If a multilevel model is specified in model_formula but less than three clusters are

found, the user is asked to run a single level imputation or to process the data in a

different manner.

If a multilevel model is specified in model_formula and the cluster variable contains

missing values, the user is asked whether those should be removed (recommended),

categorically imputed (not recommended) or the imputation process should be can-

celed.

If nm is specified, clusters with less than nm observations are collapsed (see Section

5.1 for details).
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The following additional preparing steps are taken for each imputation model during the

imputation process:

If more than one constant variable is included in the imputation model, only one is

kept to avoid multicollinearity. For the same reason one variable is dropped from mul-

tilevel imputation models of unordered categorical variables, whenever two predictor

variables are highly correlated (ρ > 0.99).

If a value for k is specified, categorical variables with more than k categories are

removed from the current imputation model (see Section 5.1 for details).

If a value for pvalue is specified, variables with p values larger than pvalue are

removed from the current imputation model in an iterative procedure (see Section

5.1 for details).

During the first imputation cycle, interval variables are treated as factors whenever

they appear as covariates in one of the imputation models, until they have been

imputed themselves: Once they have been imputed, the plausible values are used

as predictors instead of the interval information. If there are many unique intervals in

an interval variable, the user may consider setting a limit for the maximum number of

allowed factors using the attributes k.

5.3 model_formula

In the single level case, the model specified in model_formula has to follow standard

formula conventions for lm in R (see ?formula). For multilevel models the notation used by

lmer (lme4 package by Bates et al. 2015) must be used. The notation for multilevel models

as implemented in lme4 closely follows the notation for single level models with the main

difference that random effect variables are added in parentheses. The cluster identifier is

also included within the parentheses separated from the random effect variables(s) by a

vertical bar. To illustrate, a possible model specification might be y ~ x1 + x2 + x3 *
x4 + (1 + x2|ID). In this model an intercept, four main effects and one interaction are

specified as fixed effects. The intercept and x2 also have random effects. The variable ID
contains the cluster identifier.

If interactions are specified in model_formula, they are also used as predictors in the

imputation models of all other variables in an effort to achieve congeniality. Note that the

package currently does not follow the sophisticated approach suggested by Carpenter/

Goldstein/Kenward (2011) for dealing with interactions in the analysis model, instead it

uses passive imputation meaning that after each iteration the interaction term is updated by

multiplying the current imputed versions of the main effects (cf. e.g. Seaman/Bartlett/White

2012).

5.4 Imputation cycles

In the first cycle of the sequential regression imputation routine, the variables are sorted

and imputed by increasing number of missing observations following the approach of
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Raghunathan et al. (2001). In this cycle only those variables with no missing values or vari-

ables that have been previously imputed are used as predictors in the imputation model. If

all variables have missing values, the variable with the lowest missing rate will be imputed

by taking random samples from the observed cases of this variable. In all other imputation

cycles, all variables are included as main effects in the imputation model, unless pvalue
is specified. If model_formula is specified, the imputation model follows this model as

closely as possible. This implies that the imputation and analysis model coincide when the

dependent variable in the analysis model needs to be imputed. If, on the other hand, a

covariate in the analysis model needs imputation, this variable takes the place of the de-

pendent variable in the imputation model and the actual dependent variable in the analysis

model becomes an independent variable in the imputation model. For example, if the anal-

ysis model is y ~ 1 + x1 + x2 + (1 + x1|ID) and the covariate x1 needs imputation,

the imputation model becomes x1 ~ 1 + y + x2 + (1 + y|ID).

Depending on the situation the imputation model can either be a single or multilevel model.

If model_formula contains a single level model, or when no analysis model is specified,

the imputation model always will be a single level model. However, specifying a multilevel

model in model_formula generally implies that a multilevel model will also be used for all

imputation models. In the first cycle it can happen that the random effect covariate(s) have

missing values. In such cases single level models are estimated until the random effect

covariates(s) have been imputed. If the cluster ID has missing values, we recommend to

remove the missing cases from the data set. In case the user opt against this, the missing

cases are imputed using a single level model for categorical variables.

The number of cycles is defined by maxit unless only one variable contains missing val-

ues. In this situation, imputed values will be drawn from the correct distribution in the very

first iteration (because all predictor variables are fully observed), and thus the number of

iterations can be set to 1. The default number of imputation cycles, for situations with more

than one missing variable, is 10. For a more cautious approach the user might set maxit
to a larger value. After maxit cycles, the imputed values are stored, building a completed

(imputed) data set. Then the process starts again, until M (default value: 5) imputed data

sets have been generated.

5.5 The different supported types of variables

Different variable types (continuous, binary, etc.) require different imputation routines. For

example, for binary variables it is not desirable in most cases to get imputed values different

from 0 or 1. And factor variables with levels "A", "B" and "C" need an imputation routine

different from the routines for binary and continuous variables.

The package hmi distinguishes nine different types of variables. The following section

describes the internal strategies to assign a type to each variable and how the imputation

model works for that type. Users not satisfied with these default choices can specify the

types of variables in advance by setting up a list_of_types. Section 5.6 explains how

this is done.
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5.5.1 Binary variables (keyword "binary")

Variables are considered to be binary if there are only two unique values in the observed

data. This includes for example 0 and 1 or "m" and "f". This default classification might

fail for small data sets or if a third possible category is unobserved. For example, in a small

health survey it could happen that non of the respondents reported to have had two (or

more) Bypass surgeries. So here a count variable would falsely be classified as binary.

(Multilevel) logistic regression models are used to impute binary variables.

5.5.2 Continuous variables (keyword "cont")

Any numeric vector that is not one of the other types is considered to be continuous. Im-

putation models are based on (multilevel) linear regression models described in Section

2.4.

5.5.3 Semi-continuous variables (keyword "semicont")

If a variable is not defined explicitly (via list_of_types) or implicitly (via an entry for this

variable in spike), a variable is identified as semi-continuous by hmi if more than 10 percent

of the observations share the same value (this value is then called spike), but the remainder

of the observations can be considered continuous. To which spike the variable is tested,

depends on the specifications in spike: if it is explicitly or implicitly defined, the value in

spike is used (i.e. the numeric values of spike or the list element in spike for this variable

- dependent on how spike is specified). If those elements are empty, hmi uses the mode

(most frequent observation) of the variable, irrespectively of the 10 percent threshold. This

threshold is only relevant if the variables are not explicitly or implicitly specified as semi-

continuous. In theses cases, the mode, or spike if it is a numeric value, is used to check

whether the 10 percent threshold is exceeded or not.

The approach for imputing semi-continuous variables implemented in hmi follows the ideas

presented in Rubin (1987) and Raghunathan et al. (2001). The variable is imputed in two

steps. In the first step a temporary indicator variable is generated that equals 0 if the ob-

served value is equal to the spike and 1 otherwise. Missing values in this indicator variable

are then imputed using (multilevel) logit models. In the second step, missing observations

with an imputed value of 1 for the temporary indicator variable are imputed based on a

(multilevel) linear regression imputation model, using only those observed cases of the

semi-continuous variable that are not equal to the spike. The missing observations with

an imputed value of 0 for the temporary indicator variable are replaced by the value of the

spike.
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5.5.4 Interval variables (keyword "interval")

Variables where some observations contain only interval information (e.g. [2000; 3000]) are

called interval variables. The technical implementation requires a specification for interval

data. To our knowledge there is no general technical standard for handling interval data in

R. The packages survival (Therneau, 2018) and linLIR (Wiencierz, 2012) provide func-

tionalities to handle interval data. Both packages generate auxiliary objects in which the

information for the lower and upper bound are stored separately. We did not follow this ap-

proach for our package since it would require an inconvenient workflow to link both interval

bounds (for all interval variables) appropriately. Instead we define a new class interval
for interval variables. Technically each observation in such an interval variable is coded as

"l;u" with l and u denoting the lower and upper bound of the interval. Both bounds can

either be numerical values, NA, -Inf or Inf. Two examples would be "1234.56;3000" and

"-1234.56;Inf".

We also implemented functions to run basic calculations on interval data (+, -, *, /, %%,

exp, log, ˆ, sqrt, floor, ceiling, and round), to generate interval data based on one

(as.interval) or two vectors (generate_interval), or to split interval data into their lower

and upper bounds (split_interval). How to use these functions is illustrated in Section

6.2.

For interval variables, the imputation routine described in Section 3 is used. As mentioned

in Section 5.2, interval variables are treated as factor variables during the first imputation

cycle - until the variable itself has been imputed. Once plausible values have been gener-

ated for this variable, these imputed values will be used instead of the interval information

in the following cycles whenever the (former) interval variable is used as a predictor in one

of the other imputation models.

5.5.5 Rounded continuous variables (keyword "roundedcont")

Whether a variable is treated as “rounded continuous”, (i.e., when the variable is affected by

heaping), depends on the information contained in the attributes list_of_types,

rounding_degrees and rounding_formula.

list_of_types is always binding. If there is an entry in list_of_types for the

variable, it will be imputed using imputation routines appropriate for the specified

type irrespective of the information provided in any of the other attributes. Thus, if

the variable is registered as roundedcont in list_of_types, it will be treated as

affected by heaping irrespective whether potential degrees of rounding are specified

in rounding_degrees or not. Vice versa, if the variable is registered to be of any

other type, its missing values will be imputed using imputation methods appropriate

for this variable type, but the heaping in this variable will be ignored even if rounding

degrees are specified for this variable.

If no explicit method is specified for the variable in list_of_types, hmi checks

whether
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rounding_degrees or a rounding_formula are specified for it, implying that the

variable should be treated as rounded continuous.

If no explicit or implicit classification is found, hmi classifies the variable internally.

The classification tests for rounding degrees 1, 10, 100, 1, 000 or, if given, the gen-

eral vector in rounding_degrees. A variable is classified as “rounded continuous”

if more than 50 percent of the values in this variable are divisible by the specified

rounding degrees (ignoring rounding to the nearest integer).

Variables classified to be rounded continuous (including variables having heaps, missing

values and intervals at the same time) are imputed following the methodology described in

Section 4. Which rounding degrees are used for generating plausible values depends on

the provided specifications:

For variables explicitly or implicitly specified to be rounded continuous, the informa-

tion provided in rounding_degrees is decisive. If rounding_degrees contains a

vector, the values of this vector are used for all variables specified to be affected

by heaping. If it contains a list and this list has an element for the variable under

consideration, the rounding degrees specified in this list element are used. If the list

element or rounding_degrees is NULL, the heuristic explained in Appendix A.1 is

used for suggesting rounding degrees.

For variables classified by hmi as rounded continuous, the rounding degrees 1, 10,

100, 1000 or, if given, the general vector in rounding_degrees is used.

5.5.6 Count variables (keyword "count")

Except for variables which are identified to be semi-continuous all variables containing no

more than 20 different integers are treated as count data per default. Variables with more

than 20 integers are considered to be continuous to avoid treating continuous variables for

which only integers are reported in the data (such as income data) as count data. The user

can override these rules by simply specifying a variable with more than 20 different integers

to be count or a variable with less than 20 integers to be cont in the list_of_types.

Imputations are generated based on a Poisson model for this variable type. MCMCglmm is

used to obtain the required draws of the model parameters from their respective posterior

distributions for both, single and multilevel models.

5.5.7 Categorical variables (keyword "categorical")

Unordered factor variables (or variables with more than two categories - if they are not one

of the previous types) are considered to be categorical variables.

To impute these variables in a single level setting hmi uses the cart approach implemented

in mice. The approach constructs a classification tree based on the observed data and
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then samples imputed values from suitable leaves of this tree for individuals for which the

variable is missing.

In the multilevel setting, we use the categorical specification in MCMCglmm to obtain draws

of the model parameters from their posterior distribution based on a multilevel multinominal

regression model. Imputations for the missing values are generated using own routines

implemented in hmi.

5.5.8 Ordered categorical variables (keyword "ordered_categorical")

If a factor variable is ordered, hmi treats it as "ordered_categorical". Missing values in

this variable are imputed based on an ordered logistic (for single level models) or ordered

probit regression (for multilevel models). For single level models mice is used to generate

the imputations. For multilevel models MCMCglmm is used to obtain the required draws of

the model parameters from their posterior distribution and imputations are generated using

own routines implemented in hmi.

5.5.9 Intercept variable (keyword "intercept")

A variable for which all observed records share the same value is considered a constant

variable and thus registered as an intercept variable. Missing values in this variable are

replaced by the value observed for the other records.

If the user defines a model_formula containing an intercept variable (even if it is only

implicit like in y ~x1 + x2) and there is no intercept variable in the data set, hmi tem-

porarily includes such a variable for the imputation process. This can be suppressed by

using y ~0 + x1 + x2 or y ~-1 + x1 + x2. Vice versa, as mentioned in Section 5.2, if

model_formula contains constant variables in addition to the intercept, these variables are

automatically removed from the imputation model to keep the model identified.

5.6 Pre-definition of the variable types

The package hmi tries to make an educated guess, which imputation model is most suit-

able for which variable. Still, we encourage users to explicitly specify which imputation

model should be used for each variable or at least to check whether the imputation models

suggested by the package are reasonable. Imputation models for each variable can be

specified using list_of_types. This attribute expects a list in which each element of it

has the name of a variable in the data frame. The named element has to contain a single

character string denoting the type of the variable (the keywords from the previous section).

The user can pass her or his data to the function list_of_types_maker to see which

imputation model would be suggested by hmi for which variable. Calling this function can

also be useful to obtain an object which already contains a list with entries for all variables

in the data set. This object can then be modified as required. Examples for generating and

modifying this list are shown in Section 6.1.
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We emphasize again that the specifications provided in list_of_types will dominate any

other specifications. For example, if the attribute rounding_degrees contains specific

degrees of rounding for variable x11, but this variable is specified as continuous in list_-
of_types, the variable will be treated like any other continuous variables, meaning that only

the missing values in this variable will be imputed based on a (multilevel) linear regression

model. No adjustments will be performed to deal with the heaps in the data.

5.7 Output of hmi

The package is build to allow a seamless integration into mice. Most importantly, the out-

put generated by hmi can be treated like a multiply imputed data set generated with mice,

that is, all the tools available in mice for analyzing and modifying the imputed data sets can

be applied directly. The technical details regarding the structure of the hmi output are de-

scribed here, practical examples are shown in the Monitoring convergence and Analyzing

the imputed data paragraphs of Section 6.1.

Similar to mice, hmi returns a so called mids-object (multiply imputed data sets). These ob-

jects contain the original data set, the imputed values, the chain means and variance of the

imputed values, and several additional elements (see van Buuren/Groothuis-Oudshoorn

2011). The fact that hmi returns a mids-object enables users familiar with mice to use

functions designed for mice-outputs without switching barriers. For example, running the

generic plot()-function on a mids-object calls the function plot.mids showing the means

and standard deviations of the imputed values for all variables over the different imputa-

tions and cycles, regardless whether the mids-object came from mice or hmi. Another

example is the complete-function delivered by mice which returns the imputed data set.

The function hmi returns two additional elements within the mids-object which are not avail-

able from mice: gibbs and pooling. The former allows checking the convergence of the

gibbs-sampler chains generated by MCMCglmm (a convenient tool for checking convergence

is available through the function chaincheck, see Section 5.8 for details). The later gives

the pooled results (that is the final inferences based on the combining rules for multiply

imputed data) from passing the model_formula to the pooling functions from mice (see

Section 5.9 for details).

5.8 Convergence checks

For every imputed variable, the function plot.mids (delivered by mice) shows the mean

and standard deviation of the imputed values across the maxit iterations and M impu-

tation cycles. See Figure 1 in Section 6.1 as an example. This tool helps to evaluate

whether draws based on the sequential regression approach converged to draws from

the underlying joint distribution of the missing data given the observed data (see van

Buuren/Groothuis-Oudshoorn 2011 for more details on this convergence measure).

If multilevel models are used for imputation (or if a Poisson model is used in general) addi-

tional convergence tests are necessary since the posterior draws of the model parameters
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are obtained using a Gibbs sampler in these cases. Thus, we need to ensure that the

Gibbs sampler actually converged before the parameters were drawn. Detailed informa-

tion about all the MCMC chains from all models is available through the element gibbs.

This is a multidimensional list. The first dimension distinguishes the different imputation

runs. The elements in this layer are therefore called "imputation1", "imputation2",

. . ., "imputation[M]". The second layer is for the cycles with names "cycle1", . . .,

"cylce[maxit]". The next layer is for the variable that has been imputed. For example,

an element named "x1" stands for the imputation of "x1". The last layer distinguishes

between "Sol" and "VCV". The names are adopted from MCMCglmm where the elements

"Sol" and "VCV" in the output represent the point estimates (of the fixed effects and cluster

specific effects) and the variance parameter estimates (the elements of the random effects

covariance matrix and the residual variance), receptively. hmi only exports the fixed effects

point estimates from "Sol" due to workspace considerations: MCMCglmm estimates nitt
cluster specific effects for every random effects variable in every cluster. This would imply

that if the user wants to run nitt = 5000 iterations for a random intercepts and slopes

model with only one fixed effects variable on a data set with 60 clusters, the dimension of

the resulting matrix would already be 5000×(2+2 ·60). If such a matrix would be saved for

two variables and the imputation procedure is based on maxit = 10 iterations and M = 20
imputations, the final output would already contain 20×10×2×5000× (2+2 ·60) ≈ 2 mil-

lion elements. Thus, to keep the size of the generated output manageable even if several

variables are imputed based on multilevel models and/or the number of clusters is large,

convergence can only be monitored for the fixed effects and the variance components.

To facilitate the convergence evaluations, the user can apply the function chaincheck to

the output provided by hmi. The function implements the stationarity test proposed by

Geweke (1992) and plots the results. The null hypothesis of the stationary test is that the

expected values behind the means x̄A and x̄B of the first 10 percent and last 50 percent

of the chain (after discarding the burn in) are equal. The test statistic for this test is T =

(x̄A − x̄B)/
√
σ̂(x̄A)2 + σ̂(x̄B)2, where σ̂(x̄A)2 and σ̂(x̄B)2 are the estimated variances of

the arithmetic means of the first 10 percent and last 50 percent of the chain after discarding

the burn in. T asymptotically follows a standard normal distribution. So if |T | exceeds the

1 − α/2 quantile of the standard normal distribution, the null hypothesis can be rejected.

The test is implemented in the function geweke.diag from the R package coda (Plummer

et al., 2006) and chaincheck calls this function. Beyond the mids-object generated by

hmi the user can also pass the desired significance level alpha for the test statistic and

the desired burnin (expressed as a percentage of the total length of the chain) to the

chaincheck function. By default (plot = TRUE), chaincheck will plot all chains for which

the null hypothesis was rejected. Each plot contains the information which parameter and

which variable, in which cycle and imputation is depicted. Furthermore, the test statistic

T is shown. Note that no adjustments are made for the multiple testing problem and

thus a certain number of tests will show significant results (“chain did not converge”) by

chance (Type I error). For example in a setting with maxit = 5, M = 5, two variables to

impute and an imputation model with 2 fixed effects and two random effects variables and

a significance level of alpha = 0.01, the number of expected false positives is 5 · 5 · 2 ·
(2+4+1) ·α = 3.5. The function chaincheck will print the actual and expected number of
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failed test. Note that the test is only meant to highlight potentially convergence problems.

The provided plots can then be used to decide, whether the identified chains really indicate

problems of the Gibbs sampler.

For large numbers of chains and thus larger numbers of expected false positives, it might

be more convenient not to plot the chains failing the convergence test. This can be done

by setting the function parameter plot = FALSE. We note that users are free to use their

own convergence diagnostics since results from all the chains are available in the gibbs
attribute of the mids-object generated by hmi.

High autocorrelation can increase the number of false positives. The parameter thinning
allows to increase the thinning of the Chains to reduce auto correlation (the default value

is 1). As a rule of thumb, the number of values in the chain should not fall below 1000.

By setting thinning = NULL, the number of remaining values is set to be approximately

1000. Note that setting a value for thinning will not affect the imputation procedures. The

parameters will only affect which chain values are used when computing Geweke’s test.

If the Gibbs sampler apparently did not converge, (currently) a new call of hmi has to be

initiated with an increased number of iterations for the Gibbs-sampler (parameter nitt).

5.9 Pooling

The functions with and pool from mice are flexible tools for analyzing and pooling multiply

imputed data sets. hmi uses these functions to obtain the final results for the analysis model

specified by model_formula and family. The results can be accessed in the mids-object

through its element pooling. Currently, mice only pools global fixed effects of multilevel

regression model. In some situations, other parameters such as the variance components

from the different levels of the hierarchical model might be relevant for the user. Therefore

hmi delivers the function hmi_pool as a flexible alternative to the functionality available in

mice. The function needs two inputs:

1. the multiply imputed data set (the mids object created with hmi or mice) and

2. a predefined analysis function which takes a completed data set as input, and returns

a vector with the desired complete data statistics (e.g. the regression coefficients or

random effects variance estimates).

hmi_pool calculates the parameters defined in the analysis function on each of the com-

pleted data sets in the mids-object and averages them, that is hmi_pool will only provide

point estimates but not their associated estimated variances. The pooling is only valid

when averaging is reasonable. For example it would be invalid to pool factor loadings from

factor analysis where the signs of loadings have no meaning (comparable to whether "m"
or "f" is the reference category in a regression model). Examples how to use hmi_pool
are given in the Analyzing the imputed data paragraph in Section 6.1 and on the help page

?hmi_pool.
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6 Application examples

To illustrate the generation of plausible values for multilevel data, interval data and variables

affected by heaping three step-by-step examples from three real data sets are given.

6.1 Multilevel data

To illustrate the main functionality of the package hmi, we use the data set Gcsemv con-

taining information on the General Certificate of Secondary Education (GSCE) in the UK.

The data set, which was collected in 1989 and contains 1905 students in 73 schools, is

one of the data sets used in Goldstein (2011). It is freely available on the website of the

Centre for Multilevel Modelling (CMM) at the University of Bristol under the following URL

http://www.bristol.ac.uk/cmm/media/team/hg/msm-3rd-ed/gcsemv.xls. It is also

included in the package hmi to allow users to replicate the examples given in this section.

We thank Harvey Goldstein and the CMM for allowing us to incorporate the data into the

hmi package. The variables contained in the data set are described in Table 2. A more

detailed description of the data can be found in Creswell (1991).

Table 2: Variables included in the Gcsemv data.
variable description
school School ID
student Student ID within this school1

gender Gender (0 = boy, 1 = girl),
written (Numeric) score in a written questionnaire
coursework (Numeric) score for a coursework

Source:
http://www.bristol.ac.uk/cmm/learning/mmsoftware/data-rev.html#gcsemv

6.1.1 Before starting imputation

If the package has not been installed previously, the very first step is to install the hmi
package via install.packages("hmi"). Once the package has been installed it can be

attached to the current session, and the Gcsemv data can be loaded. The code for these

two steps is:

library("hmi")
data(Gcsemv)

A short summary of the data shows (among other information) that the data set has 202

missing values in the written exam covariate and 180 missing values in the coursework

covariate. Thus, the missing rate in those variables is 10.6 percent and 9.4 percent respec-

tively. There are no rows with missing values in both variables, so the number of incomplete

observations in total is 382 or 20.0 percent.

1 the student ID is not unique since students in different schools can have the same ID
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summary(Gcsemv)
school student gender written coursework

68137 : 104 77 : 14 0: 777 Min. : 0.625 Min. : 9.259
68411 : 84 83 : 14 1:1128 1st Qu.:37.500 1st Qu.: 62.963
68107 : 79 53 : 13 Median :46.875 Median : 75.926
68809 : 73 66 : 13 Mean :46.798 Mean : 73.435
22520 : 65 27 : 12 3rd Qu.:55.625 3rd Qu.: 86.111
60457 : 54 110 : 12 Max. :90.000 Max. :100.000
(Other):1446 (Other):1827 NA’s :202 NA’s :180

A list containing the suggested variable types for each variable in the data set can be

obtained by:

list_of_types_maker(Gcsemv)
$school
[1] "categorical"

$student
[1] "categorical"

$gender
[1] "binary"

$written
[1] "cont"

$coursework
[1] "cont"

If the user is not satisfied with the suggested types, he or she might save the list, modify

it, and pass the modified list to hmi. For example, if coursework contained the average

grade of every student and the user prefers to treat that variable as ordered categorical, he

or she can type:

modified_list <- list_of_types_maker(Gcsemv)
modified_list$coursework <- "ordered_categorical"

The modified list would then be passed to hmi by setting the attribute list_of_types =
modified_list.

6.1.2 Running the imputation

The next (optional) step is to set up the model_formula, i.e. the final model of interest

which should be estimated based on the multiply imputed data (see Section 5.3). In the
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example given below, interest lies in the influence of gender and performance in previous

coursework on the written exam. The intercept and the effect of gender are allowed to vary

across the schools. They are added as random effects in the model_formula.

model_formula <- written ~ 1 + gender + coursework + (1 + gender|school)

Now the data and model_formula can be passed to the wrapper function hmi. The results

are saved in an object called dat_imputed. Note that for full reproducibility a seed for the

pseudo-random number generator is specified. Since no value is specified for the number

of imputations, the default number of M=5 imputed data sets will be generated. hmi will

provide a progress bar during the imputation process.

set.seed(123)
dat_imputed <- hmi(data = Gcsemv, model_formula = model_formula)
Imputation progress:
0% 20% 40% 60% 80% 100%
|----|----|----|----|

6.1.3 Monitoring convergence

Before running any analysis models on the newly generated mids-object, it is always a

good idea to check the convergence of all imputation routines. Some examples of how to

do this based on the output generated by hmi are presented in this section.

Diagnostic plots regarding the convergence of the sequential regression procedure can be

obtained for example by plot(dat_imputed). The command will plot the arithmetic mean

and standard deviation of the imputed values for each imputed variable across the maxit
cycles separately for each of the M imputations. In the given example calling the plot
command will produce graphs for the variables "written" and "coursework" since these

are the only two variables which have been imputed previously. Each graph contains five

different lines for each of the M = 5 imputations. Each line consists of ten points for each

of the maxit = 10 iterations.

plot(dat_imputed, layout = c(2, 2)))

Convergence (potentially after some burnin iterations) can be assumed if the following two

points are fulfilled:

1. There is no inherent trend in any of the lines.

2. The lines from the different imputations mix well, i.e. there is sufficient overlap be-

tween the different lines.
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Figure 1: Mean (left) and standard deviation (right) for the imputed variables in the Gcsemv
data across 10 iterations for 5 imputations.
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Examining the plots in Figure 1, both requirements seem to be met.

Given that the model specified in model_formula is a hierarchical model, multilevel models

have also been used as imputation models. Since these models can only be estimated

using MCMC methods, formal checks regarding the convergence of these models are also

required. The function chaincheck runs convergence tests using the Geweke statistic for

each chain of the MCMC method and plots traceplots for all those parameters for which the

test indicates a failure of convergence (see Section 5.8 for details on the test). The function

also provides the information how often the null hypothesis is rejected and compares this

number to the expected number of false rejections due to type I error.

chaincheck(dat_imputed, thin = NULL)
12 out of 695 chains (1.73%) did not pass the convergence test.
For alpha = 0.01 the expected number is 6.95.

For the given example the traceplots for the fixed effects in the models which did not pass

the stationarity test show no problematic pattern (one traceplot is shown in Figure 2 the

others are omitted for brevity). But the plots for the variance parameters show signs of

autocorrelation (one chain is shown in Figure 3). For highly autocorrelated chains it is

more likely that the mean of the first 10 percent of the chain differs from the mean of the

last 50 percent of the chain and thus the null hypothesis of the Geweke test (which basically

assumes equivalence of the two means) is rejected. Note however, that autocorrelation

would only be a problem, if multiple draws from the same chain would be used. Since

only one value from a chain is used for each imputation in hmi, autocorrelation within a
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chain is generally irrelevant for hmi. Therefore it can be concluded, that for the package’s

purposes, all parameters in all imputation models show good convergence properties.

Figure 2: Traceplot of one fixed effects parameter which formally did not pass the station-
arity test.
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Figure 3: Traceplot of a variance parameter showing signs of high autocorrelation.
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6.1.4 Analyzing the imputed data

In this section different possibilities for obtaining valid inferences based on the imputed

data are shown. In general, valid inferences can be obtained by analyzing each completed

data set separately and combining the results according to Rubin’s combining rules (Rubin,

1987).

The package mice offers the functions with and pool to obtain final inferences based on

the imputed data sets for a broad class of analyses. These functions can also be used

with objects generated by hmi since they only require a mids-object as input. We refer

to van Buuren/Groothuis-Oudshoorn (2011) for more details how to use these functions.

Note that hmi also calls these functions internally if a model is specified in model_formula
and pool_with_mice = TRUE (which is the default). The regression results are directly

available through the element pooling from the mids object. This element is not available

in mids objects generated by mice; it is a special feature of hmi. It will not be included if

pool_with_mice = FALSE.

summary(dat_imputed$pooling)
est se t df Pr(>|t|)

(Intercept) 21.4285513 1.54661329 13.855145 228.08527 0.000000e+00
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gender1 -5.4004356 0.59328192 -9.102647 153.58281 4.440892e-16
coursework 0.4042744 0.01919767 21.058509 64.10292 0.000000e+00

lo 95 hi 95 nmis fmi lambda
(Intercept) 18.3810747 24.476028 NA 0.1306011 0.1230109
gender1 -6.5724822 -4.228389 NA 0.1642805 0.1534680
coursework 0.3659238 0.442625 180 0.2666766 0.2441485

However, pool can only be used with estimation commands that return a list of coefficients

and their variance matrix. Thus, for example, no information is returned regarding the

variance components on the different levels if pool is used to provide the results of a

multilevel analysis. However, the estimated variances on the different levels can be of

interest in some applications. For this reason hmi offers the option to pass an analysis

function setup by the user to the function hmi_pool which will run the specified analyses

on each imputed data set and return the final point estimates but not their variances. Thus,

this function can be used in situations in which the variance of the point estimates cannot

be estimated (or is not of interest to the analyst), but averaging the point estimates from

the different data sets is still a valid approach.

In the following example, the user is interested in the global fixed effects and the elements

of the random effects covariance matrix of the multilevel model from the running example.

To obtain the final results, she or he would first need to specify the analysis function:

#The input of the function is a complete data set
#(which will be provided by hmi_pool later).

analysis_function <- function(complete_data){

# Generate an empty list for storing the results of interest
parameters_of_interest <- list()

# Specify the analysis model of interest
my_model <- lmer(written ~ 1 + gender + coursework + (1 + gender | school),

data = complete_data)

# Specify, which parameters from the model should be returned.
# The fixed effects:
parameters_of_interest[[1]] <- fixef(my_model)
# The covariance matrix of the random effects:
parameters_of_interest[[2]] <- VarCorr(my_model)[[1]][ , ]

# Turn the list into a vector to simplify labeling:
ret <- unlist(parameters_of_interest)

# Optionally: label the output:
names(ret) <- c("intercept", "gender", "coursework",
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"sigma0", "sigma01", "sigma10", "sigma1")

#Return the results.
return(ret)

This function can then be passed to hmi_pool to obtain the final point estimates for the

specified parameters. As the analysis_function in this example calls lmer from the

lme4 package, this packages has to be loaded in advance.

library("lme4")
hmi_pool(mids = dat_imputed, analysis_function = analysis_function)

intercept gender coursework sigma0 sigma01 sigma10 sigma1
21.4285513 -5.4004356 0.4042744 42.3474332 -2.7057949 -2.7057949 3.1604561

The final results for the global fixed effects are identical to the results obtained with mice,

but the output now also contains the final point estimates of the covariance matrix of the

random effects.

6.2 Interval data

To illustrate the usage of the provided functions for interval-objects and the imputation of

interval data, hmi includes three versions of a subset of the 2015-2016 Income File of the

National Health and Nutrition Examination Survey (NHANES) (Centers for Disease Con-

trol and Prevention (CDC) and National Center for Health Statistics (NCHS), 2015-2016).

The data set nhanes_sub (accessible by typing data(nhanes_sub) once the package is

loaded) contains the data in their original format (compared to the version available on the

NCHS website the data have been slightly modified, for example by coding some variables

as factors or collapsing several nonresponse categories into a single category). In the

data set nhanes_mod some variables have been changed to the internal interval variable

format, which is required if plausible values should be imputed for these variables. Finally,

nhanes_imp contains a multiply imputed data set in which missing and interval information

has been replaced with plausible values following the methodology outlined in Sections 2

and 3. These data sets are included for illustrative purposes so that users of the package

can compare different versions of the data sets to get a better understanding of how this

imputation function works. Table 3 lists the variables present in the nhanes data sets.

As an illustrative example, the required steps to prepare the variable ind310 for generat-

ing plausible values, that is, the transformation of the categorical variable from nhanes_-
sub to the interval variable in nhanes_mod, are presented here (the interval variable for

ind235 was generated in a similar fashion). Separate lower and upper bounds are de-

fined for each observation (based on the description of https://wwwn.cdc.gov/Nchs/
Nhanes/2015-2016/INQ_I.htm); subsequently they are merged to an interval object by

the function generate_interval
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Table 3: Variables included in the nhanes data sets.
variable description
inq020 Income from wages/salaries (1 = Yes, 2 = No)
inq012 Income from self employment (1 = Yes, 2 = No)
inq030 Income from Social Security or Railroad Retirement (1 = Yes, 2 = No)
inq060 Income from other disability pension (1 = Yes, 2 = No)
inq080 Income from retirement/survivor pension (1 = Yes, 2 = No)
inq090 Income from Supplemental Security Income (1 = Yes, 2 = No)
inq132 Income from state/county cash assistance (1 = Yes, 2 = No)
inq140 Income from interest/dividends or rental (1 = Yes, 2 = No)
inq150 Income from other sources (1 = Yes, 2 = No)
ind235 Monthly family income (13 categories/an interval object)
ind310 Total savings/cash assets for the family (8 categories/an interval object)
inq320 How do you get to the grocery store? (10 categories)

Source: https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/INQ_I.htm

#generate an empty vector of length n
data(nhanes_sub)
low <- array(dim = nrow(nhanes_sub))
up <- array(dim = nrow(nhanes_sub))

#fill in the lower bounds depending on the reported savings category
low[nhanes_sub$ind310 == 1] <- 0
low[nhanes_sub$ind310 == 2] <- 3001
low[nhanes_sub$ind310 == 3] <- 5001
low[nhanes_sub$ind310 == 4] <- 10001
low[nhanes_sub$ind310 == 5] <- 15001
low[nhanes_sub$ind310 == 6] <- 0
low[nhanes_sub$ind310 == 7] <- 20001
low[nhanes_sub$ind310 == 8] <- 0

#fill in the upper bounds depending on the reported savings category
up[nhanes_sub$ind310 == 1] <- 3000
up[nhanes_sub$ind310 == 2] <- 5000
up[nhanes_sub$ind310 == 3] <- 10000
up[nhanes_sub$ind310 == 4] <- 15000
up[nhanes_sub$ind310 == 5] <- 20000
up[nhanes_sub$ind310 == 6] <- 20000
up[nhanes_sub$ind310 == 7] <- Inf
up[nhanes_sub$ind310 == 8] <- Inf

#generate the interval variable
ind310interval <- generate_interval(low, up)

#inspect the first few entries in the generated object
head(ind310interval)
"20001;Inf" "3001;5000" "0;3000" "3001;5000" "0;3000" "3001;5000"
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Once the variables are registered as interval variables, the data set can be passed to

the hmi wrapper function. hmi will automatically generate plausible values for all variables

registered as interval variables. For the imputation of the missing and interval data

in nhanes_mod, we increased the number of iterations to 50, as diagnostic plots showed

that the sequential regression procedure did not converge after the default number of 10

iterations.

set.seed(123)
nhanes_imp <- hmi(nhanes_mod, maxit = 50)

6.2.1 Some useful functions for interval data

The package hmi also includes some useful functions to analyze and manipulate interval

data. This section provides a short summary of some of the functions available.

table.interval: Variables stored in interval format are interpreted as a vector of charac-

ters or a factor by most R functions including the table command. Without table.interval,

table would order the intervals alphabetically, which can be arbitrary. The function

table.interval offers improved sorting options. By default, it orders the intervals first

by the value of their lower bound and if they are equal, by the value of the upper bound.

If the attribute sort is set to "mostprecise_increasing", the intervals are first ordered

by their length (from small to large) and if the lengths are equal, by the value of the lower

bound (from small to large). Using the table command on an interval variable will auto-

matically invoke table.interval if hmi is loaded.

table(nhanes_mod$ind310)

0;3000 0;20000 0;Inf 3001;5000 5001;10000 10001;15000
5426 128 814 588 450 237

15001;20000 20001;Inf
110 2218

plot.interval: To inspect interval variables graphically, the generic plotting function plot
can be used, which will call plot.interval. For example, Figure 4 containing the results

for the savings variable from nhanes_mod is generated using the following code:

plot(nhanes_mod$ind310, ylab = "Savings", sort = "mostprecise_increasing")

The figure shows the interval values for ind310 sorted first by the interval lengths and then

by the lower bound. A second option is sort = "lowerbound_increasing" sorting the

intervals first by the lower bound and then by the upper bound. If no argument is specified

for sort, the intervals are sorted by their appearance in the data. For each observation the
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Figure 4: An interval-data scatter plot.
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plot draws a line from its lower to its upper bound (plus a small margin to make very small

intervals and point precise observations visible). As the lines for observations sharing the

same interval are grouped together, they form an area. Thus, the width of the area is an

indicator for the relative frequency of this interval. Note that in the example the upper bound

for the highest savings category and for the nonrespondents is∞ which cannot be plotted.

Therefore the upper limit of the y-axis by default is the highest finite bound observed (plus

a small margin). The axis bounds can be manually altered by the parameters xlim and

ylim.

center.interval: This function simply returns a numeric vector containing the midpoint

of the reported interval for each observation (for example 1,500 if the interval is "0;3000").

Intervals including Inf or -Inf will return Inf or -Inf, unless the interval is "-Inf;Inf"
or the parameter inf2NA was set to be TRUE. In those cases NA will be returned for these

intervals. This function can potentially be useful for some descriptive statistics, but we

caution the user that treating the midpoint of the reported interval as if it were the originally

reported value is rarely a good idea.

midpoints <- center.interval(nhanes_mod$ind310)
table(midpoints)
x

1500 4000.5 7500.5 10000 12500.5 17500.5 Inf
5426 588 450 128 2371 110 3032

idf2interval and interval2idf: Interval variables are also accepted in some other R
packages. For example, the package linLIR by Wiencierz (2012) provides methods for
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regression models with interval variables. However when using this package, the data

containing the interval information need to be coded as idf (imprecise data frame). To

ensure that users can switch easily between idf and interval objects, we implemented

idf2interval and interval2idf which convey an object from one format to the other.

Technically, idf objects can contain multiple interval variables, so when transforming an

idf object to fit to the interval setting, the (multiple) interval variables from idf are stored

as variables in a data.frame.

idf <- interval2idf(nhanes_mod$ind310)
intervaldf <- idf2interval(idf)

split_interval: This function is basically the inverse function of generate_interval. It

returns a two column matrix containing the lower bound for each reported interval in the

first column and the upper bound in the second column:

bounds <- split_interval(nhanes_mod$ind310)
head(bounds)

[,1] [,2]
[1,] 20001 Inf
[2,] 3001 5000
[3,] 0 3000
[4,] 3001 5000
[5,] 0 3000
[6,] 3001 5000

Finally, we note that basic arithmetics (+, -, *, /, %%) and transformations (log, exp, ˆ,

sqrt, round, floor, ceiling) can be applied to interval data (for example to change the

currency for the reported values):

log_savings_in_euro <- log(nhanes_mod$ind310 * 0.8)

6.3 Variables affected by heaping

To briefly illustrate how to generate plausible values for a variable affected by heaping, we

use the selfreport data from the mice package. The data set contains 2060 records and

15 variables, merged from multiple Dutch data sets. The left panel of Figure 5 shows a

histogram of the self reported weight (variable wr in the data set). Heaps at multiples of 5

and 10 are clearly visible and thus, it seems plausible to assume that many respondents

round their true weight to the closest 5 or 10 kilograms. Counting the number of records

that are divisible by 5 and 10 reveals that almost 40 percent of the records are divisible by

5 and approximately 20 percent of the reported values are divisible by 10:
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Figure 5: Selfreported weight from the selfreport data as originally observed (left) and after
generating plausible values accounting for potential rounding of the reported values.
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library("mice")
data(selfreport)
sum(selfreport$wr %% 5 == 0)/nrow(selfreport)
0.3800971

sum(selfreport$wr %% 10 == 0)/nrow(selfreport)
0.1941748

Note that these fractions are slightly below the thresholds setup in the heuristic for sug-

gesting rounding degrees as implemented in list_of_rounding_degrees_maker. The

heuristic would identify 5 as a rounding degree if 40 percent of the data would be divisible

by this value and register 10 as a rounding degree if 20 percent of the data are divisible by

this value (see Appendix A.1 for details). For this reason, explicit rounding degrees must

be provided in this example when calling hmi. For the purpose of a short runtime, only two

variables are used for imputation in this illustration: the self reported weight (wr) and the

self reported height (hr):

set.seed(123)
selfreport_imputed <- hmi(selfreport[, c("hr", "wr")],

rounding_degrees = list(wr = c(1, 5, 10)))

By default, every variable in the data set is included in the model for the rounding behav-

ior, that is, into the model specified in Equation (8). The model can be adjusted using

rounding_formula. For example, if only the weight variable (and the intercept) should be

IAB-Discussion Paper 16/2018 46



used in the rounding behavior model, this could be achieved by setting rounding_formula
= ~wr. The right panel of Figure 5 shows the histogram after imputation. The heaps in the

data have disappeared.

7 Conclusion

With hmi we provide comprehensive, but easy to handle tools for multiple imputation for

hierarchical data sets. The package supports imputation methods for all common types

of variables. Furthermore, imputation tools for interval and heaped variables are provided.

Several internal features of the package ensure that sensible default settings are selected

automatically. Thus, even inexperienced users will find the package convenient to use

since all they need to provide is their data and potentially the analysis model they want to

run on the imputed data. The final results (according to the given analysis model) will also

be returned by default. Still, the package offers great flexibility since almost all settings

can be defined manually if desired. Multiple imputation point estimates for analyses not

supported in mice can also be obtained using an additional function provided with the

package.

Currently, hmi still has some limitations which we hope to address in future releases of

the package: Most importantly, the package does not provide any tools for imputing vari-

ables from the second level of the hierarchical model, that is, variables which are constant

within clusters. A convenient tool for imputing such variables is available in mice. Fur-

thermore, the multilevel imputation models are currently limited to two levels of hierarchy

and homoscedastic error terms. Finally, ensuring that all Gibbs samplers of the multilevel

imputation models have converged is currently left to the user. In future versions of the

package, we hope to implement some routines that will automatically ensure that all chains

run long enough to ensure convergence.
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A Appendix

A.1 Suggestion for rounding degrees

If the user registers a variable as potentially being affected by heaping (by setting the

variable type to roundedcont) but does not provide rounding_degrees for this variable,

hmi tries to make an educated guess, regarding the possible degrees of rounding which

should be used when modeling the heaping. The following heuristic is used to suggest the

rounding degrees:

1. For a given continuous variable all possible rounding degrees (factors or divisors

in mathematical terms), are derived for each observation. To give an example, the

factors of 10 are 1, 2, 5, 10. We will call 1, 2, 5 subfactors of 10.

2. For each possible factor identified in step 1, the number of observations divisible by

this factor is tabulated.

3. A rough estimate (based on the assumption of a discrete uniform distribution between

0 and∞) for the expected number of observations being divisible by a factor s is n/s,
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where n is the number of records in the data set. For example, the expected number

of observations being divisible by s = 5 for a data set containing 10,000 records is

n/s = 2000. If the observed number of individuals being divisible by factor s is at

least twice the expected number, s is a “candidate rounding degree”.

4. Starting with the highest candidate rounding degree, each candidate has to fulfill two

conditions to be stored as an actual rounding degree.

At least 20 percent of the data have to be divisible by this candidate; obser-

vations which are also divisible by larger rounding degrees which has been

previously identified to be an actual rounding degree are not considered. The

removal of these records ensures that the currently considered candidate actu-

ally contributes to the heaping. For example when 40 percent of the data are

divisible by 100, at least 40 percent of the data have to be divisible by 50. By

requesting that at least 60 percent of the data are divisible by 50 (if 100 has

been identified previously as an actual rounding degree) it is ensured that the

fact that a large proportion of the data is divisible by 50 is not only a spurious

effect because many observations are rounded to the closest 100.

The considered candidate must be a subfactor of at least two other factors

found in the data. This prevents that a rounding degree only “explains itself”.

For example 4, 000 would not be considered to be an actual rounding degree

if 27 percent of the individuals reported a value of 4, 000, but no one reported

8, 000 or 12, 000 etc. This condition ensures that lower (and thus more general)

rounding degrees such as 1000 are favored.
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