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Mit der Reihe „IAB-Discussion Paper“ will das Forschungsinstitut der Bundesagentur für Arbeit den

Dialog mit der externen Wissenschaft intensivieren. Durch die rasche Verbreitung von Forschungs-

ergebnissen über das Internet soll noch vor Drucklegung Kritik angeregt und Qualität gesichert
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The “IAB Discussion Paper” is published by the research institute of the German Federal Employ-

ment Agency in order to intensify the dialogue with the scientific community. The prompt publication

of the latest research results via the internet intends to stimulate criticism and to ensure research
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Abstract

The basic concept of multiple imputation is straightforward and easy to understand, but

the application to real data imposes many implementation problems. To define useful

imputation models for a dataset that consists of categorical and of continuous variables

with distributions that are anything but normal, contains skip patterns and all sorts of logical

constraints is a challenging task. In this paper, we review different approaches to handle

these problems and illustrate their successful implementation for a complex imputation

project at the German Institute for Employment Research (IAB): The imputation of missing

values in one wave of the IAB Establishment Panel.

Zusammenfassung

Die Grundidee der multiplen Imputation ist einfach zu verstehen, aber die Anwendung

des Verfahrens auf reale Datensätze stellt den Anwender vor etliche zusätzliche Heraus-

forderungen. Viele Datensätze bestehen sowohl aus kategorialen als auch aus kontinuier-

lichen Variablen, wobei letztere alles andere als normalverteilt gelten können. Zusätzlich

verkomplizieren Filterfragen und verschiedene logische Restriktionen die Modellbildung. In

diesem Papier stellen wir verschiedene Möglichkeiten vor, mit diesen Herausforderungen

umzugehen und veranschaulichen eine erfolgreiche Implementierung anhand eines kom-

plexen Imputationsprojekts am Institut für Arbeitsmarkt- und Berufsforschung (IAB): Die

Imputation der fehlenden Werte einer Welle des IAB Betriebspanels.

JEL classification:C52, C81, C83

Keywords: Multiple imputation; joint modeling; fully conditional specification; IAB

Establishment Panel

Acknowledgements: I would like to thank Hans Kiesl, Susanne Kohaut and Jerome

P. Reiter for valuable comments.
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1 Introduction

For many datasets, especially for non mandatory surveys, missing data are a common

problem. Deleting units that are not fully observed, using only the remaining units is a

popular, easy to implement approach in this case. This can possibly lead to severe bias

if the strong assumption of a missing pattern that is completely at random (MCAR, Rubin

(1987)) is not fulfilled. Imputing missing values can help to handle this problem. How-

ever, ad hoc methods like, e.g., mean imputation can destroy the correlation between the

variables. Furthermore, imputing missing values only once (single imputation) generally

doesn’t account for the fact that the imputed values are only estimates for the true values.

After the imputation process, they are often treated like truly observed values leading to an

underestimation of the variance in the data and by this to p values that are too significant.

Multiple imputation as proposed by Rubin (1978) overcomes these problems. With multiple

imputation, the missing values in a dataset are replaced by m > 1 simulated versions,

generated according to a probability distribution for the missing values given the observed

data. More precisely, let Yobs be the observed and Ymis the missing part of a dataset Y ,

with Y = (Ymis, Yobs), then missing values are drawn from the Bayesian posterior predictive

distribution of (Ymis|Yobs), or an approximation thereof.

But even though the general concept of multiple imputation is easy to implement and soft-

ware packages that will automatically generate multiply imputed datasets from the original

data exist for most standard statistical software, application to real datasets often imposes

additional challenges that need to be considered and often can not be handled with of-the-

shelf imputation programs. Maintaining all skip patterns and logical constraints in the data

is difficult and cumbersome. Besides, depending on the variable to be imputed, it might be

necessary to define different imputation models for different subsets of the data to increase

the quality of the model and to exclude some variables from the imputation model to avoid

multicollinearity problems. These model specifications usually can not be included in the

standard software. Furthermore, the quality of the imputations needs to be monitored even

if the implicit assumption of a missingness pattern that is missing at random (MAR) can

not be tested with the observed data. This does not mean, the imputer can not test the

quality of his or her imputations at all. Abayomi/Gelman/Levy (2008) suggest several ways

of evaluating model based imputation procedures.

In this paper we suggest some adjustments for the standard multiple imputation routines to

handle the real data problems mentioned above and illustrate a successful implementation

of multiple imputation for complex surveys by describing the multiple imputation project for

a German establishment survey, the IAB Establishment Panel.

The remainder of the paper is organized as follows: In Section 2 we recapitulate the basic

concept of multiple imputation. In Section 3 we briefly introduce the two main approaches

for multiple imputation, joint modeling and sequential regression, and discuss their advan-

tages and disadvantages. In Section 4 we present some adjustments for standard multiple

imputation routines to handle problems that often arise with real data. We don’t claim that

the ideas presented in this section are new. They have been suggested in several other
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papers. The main aim of this section is to give an overview of potential problems that

are likely to arise in real data applications and to provide a summary of possible solutions

in one paper to free the potential multiple imputation user from the burden of a complete

literature review in hopes of finding a solution to his specific problem. In Section 5 we de-

scribe results from the multiple imputation project at the German Institute for Employment

Research (IAB) that heavily relies on the methods described in Section 4: The multiple

imputation of missing values in the German IAB Establishment Panel. In this section we

also discuss the methods we used to evaluate the quality of the imputations. The paper

concludes with some final remarks.

2 The Concept of Multiple Imputation

Multiple imputation, introduced by Rubin (1978) and discussed in detail in Rubin (1987,

2004), is an approach that retains the advantages of imputation while allowing the un-

certainty due to imputation to be directly assessed. With multiple imputation, the missing

values in a dataset are replaced by m > 1 simulated versions, generated according to a

probability distribution for the true values given the observed data. More precisely, let Yobs

be the observed and Ymis the missing part of a dataset Y , with Y = (Ymis, Yobs), then

missing values are drawn from the Bayesian posterior predictive distribution of (Ymis|Yobs),
or an approximation thereof. Typically, m is small, such as m = 5. Each of the imputed

(and thus completed) datasets is first analyzed by standard methods designed for complete

data; the results of the m analyses are then combined to produce estimates, confidence

intervals, and test statistics that reflect the missing-data uncertainty properly. In this pa-

per, we discuss analysis with scalar parameters only, for multidimensional quantities see

Little/Rubin (2002), Section 10.2.

To understand the procedure of analyzing multiply imputed datasets, think of an analyst

interested in an unknown scalar parameter Q, where Q could be, e.g. the population mean

or a regression coefficient from a linear regression.

Inferences for this parameter for datasets with no missing values usually are based on a

point estimate q , a variance estimate u, and a normal or Student’s t reference distribution.

For analysis of the imputed datasets, let qi and ui for i = 1, 2, ...m be the point and variance

estimates achieved from each of the m completed datasets. To get a final estimate over all

imputations, these estimates have to be combined using the combining rules first described

by Rubin (1978).

For the point estimate, the final estimate simply is the average of the m point estimates

q̄m = 1
m

∑m
i=1 qi. Its variance is estimated by T = ūm + (1 + m−1)bm, where ūm =

1
m

∑m
i=1 ui is the "within-imputation" variance, bm = 1

m−1

∑m
i=1(qi − q̄m)2 is the "between-

imputation" variance, and the factor (1 + m−1) reflects the fact that only a finite number of

completed-data estimates qi, are averaged together to obtain the final point estimate. The

quantity γ̂ = (1 + m−1)bm/T estimates the fraction of information about Q that is missing

due to nonresponse.
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Inferences from multiply imputed data are based on q̄m , T , and a Student’s t reference

distribution. Thus, for example, interval estimates for Q have the form q̄m± t(1−α/2)
√

T ,

where t(1−α/2) is the (1−α/2) quantile of the t distribution. Rubin/Schenker (1986) pro-

vide the approximate value νRS = (m− 1)γ̂−2 for the degrees of freedom of the t distribu-

tion, under the assumption that with complete data, a normal reference distribution would

have been appropriate. Barnard/Rubin (1999) relax the assumption of Rubin/Schenker

(1986) to allow for a t reference distribution with complete data, and suggest the value

νBR = (ν−1
RS + ν̂−1

obs)
−1 for the degrees of freedom in the multiple-imputation analysis,

where ν̂obs = (1 − γ̂)(νcom)(νcom + 1)/(νcom + 3) and νcom denotes the complete-data

degrees of freedom.

3 Two Approaches to Generate Imputations for Missing Values

Over the years, two different methods emerged to generate draws from P (Ymis|Yobs): joint

modeling and fully conditional specification (FCS), often also referred to as sequential re-

gression multivariate imputation (SRMI) or chained equations. The first assumes that the

data follow a specific multivariate distribution, e.g. a multivariate normal distribution. Under

this assumption a parametric multivariate density P (Y |θ) can be specified with θ represent-

ing parameters from the assumed underlying distribution. Within the Bayesian framework,

this distribution can be used to generate draws from (Ymis|Yobs). Methods to create multi-

variate imputations using this approach have been described in detail by Schafer (1997),

e.g., for the multivariate normal, the log-linear, and the general location model.

FCS on the other hand does not depend on an explicit assumption for the joint distribution of

the dataset. Instead, conditional distributions P (Yj |Y−j , θj) are specified for each variable

separately. Thus imputations are based on univariate distributions allowing for different

models for each variable. Missing values in Yj can be imputed for example by a linear or

a logistic regression of Yj on Y−j , depending on the scales of measurement of Yj , where

Y−j denotes all columns of Y excluding Yj . The process of iteratively drawing from the

conditional distributions can be viewed as a Gibbs sampler that will converge to draws

from the theoretical joint distribution of the data, if this joint distribution exists.

In general, imputing missing values by joint modeling is faster and the imputation algo-

rithms are simpler to implement. Furthermore, if the underlying joint distribution can be

specified correctly, joint modeling will guarantee valid results with the imputed dataset.

However, empirical data will seldom follow a standard multivariate distribution, especially if

they consist of a mix of numerical and categorical variables. Besides, FCS provides a flex-

ible tool to account for bounds, interactions, skip patterns or constraints between different

variables. None of these restrictions that are very common in survey data can be handled

by joint modeling. In practice the imputation task is often centralized at the methodological

department of the statistical agency and imputation experts will fill in missing values for all

the surveys conducted by the agency. Imputed datasets that don’t fulfill simple restrictions

like non-negativity or other logical constraints will never be accepted by subject matter an-

alysts from other departments. Thus, preserving these constraints is a central element of

the imputation task.
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Overall, joint modeling will be preferable, if only a limited number of variables need to

be imputed, no restrictions have to be maintained, and the joint distribution can be ap-

proximated reasonably well with a standard multivariate distribution. For more complex

imputation tasks only fully conditional specification will enable the imputer to preserve con-

straints inherent in the data. In this case, convergence of the Gibbs sampler should be

carefully monitored. A simple way to monitor problems with the iterative imputation proce-

dure is to store the mean of every imputed variable for every iteration of the Gibbs sampler.

A plot of the imputed means over the iterations can indicate if there is only the expected

random variation between the iterations or if there is a trend between the iterations indicat-

ing problems with the model. Of course no observable trend over the iterations does not

guarantee convergence since the monitored estimates can stay stable for hundreds of iter-

ations before drifting off to infinity. Nevertheless, this is a straightforward method to identify

flawed imputation models. More complex methods to monitor convergence are discussed

in Arnold/Castillo/Sarabia (1999) and Gelman et al. (2004).

4 Real Data Problems and Possible Ways to Handle Them

The basic concept of multiple imputation is straightforward to apply and multiple imputa-

tion software like IVEware in SAS (Raghunathan/Solenberger/van Hoewyk, 2002), mice
(Van Buuren/Oudshoorn, 2000) and mi (Su et al., 2009) in R, ice in Stata (Royston, 2005)

(for FCS), and the stand alone packages NORM, CAT, MIX, and PAN (Schafer, 1997)(for

joint modeling) further reduce the modeling burden for the imputer. However, simply apply-

ing standard imputation procedures to real data can lead to biased or inconsistent impu-

tations. Several additional aspects have to be considered in practice, when imputing real

data. Unfortunately most of the standard software with the positive exceptions of IVEware

and the new mi package in R can only handle some of these aspects:

4.1 Imputation of Skewed Continuous Variables

One problem that especially arises when modeling business data is that most of the contin-

uous variables like turnover or number of employees are heavily skewed. To control for this

skewness, we suggest to transform each continuous variable by taking the cubic root be-

fore the imputation. We prefer the cubic root transformation over the log transformation that

is often used in the economic literature to model skewed variables like turnover, because

the cubic root transformation is less sensitive to deviations between the imputed and the

original values in the right tail of the distribution. Since the slope of the exponential function

increases exponentially whereas the slope of f(x) = x3 increases only quadratically, a

small deviation in the right tail of the imputed transformed variable has more severe con-

sequences after backtransformation for the log transformed variable than for the variable

transformed by taking the cubic root.
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4.2 Imputation of Semi-Continuous Variables

Another problem with modeling continuous variables that often arises in surveys, is the

fact that many of these variables in fact are semi-continuous, i.e. they have a spike at

one point of the distribution, but the remaining distribution can be seen as a continuous

variable. For most variables, this spike will occur at zero. To give an example, in our

dataset the establishments are asked how many of their employees obtained a college

degree. Most of the small establishments do not require such high skilled workers. In this

case, we suggest to adopt the two step imputation approach proposed by Raghunathan et

al. (2001): In the first step we impute whether the missing value is zero or not. For that,

missing values are imputed using a logit model with outcome 1 for all units with a positive

value for that variable. In the second step a standard linear model is applied only to the

units with observed positive values to predict the actual value for the units with a predicted

positive outcome in step one. All values for units with outcome zero in step one are set to

zero.

4.3 Imputation Under Non-Negativity Constraints

Many survey variables can never be negative in reality. This has to be considered during

the imputation process. A simple way to achieve this goal is to redraw from the imputation

model for those units with imputed values that are negative until all values fulfill the non-

negativity constraint. In practice, usually an upper bound z has to be defined for the number

of redraws for one unit, since it is possible that the probability to draw a positive value for

this unit from the defined model is very low. The value for this unit is set to zero, if z

draws from the model never produced a positive value. However, there is a caveat with this

approach. Redrawing from the model for negative values is equivalent to drawing from a

truncated distribution. If the truncation point is not at the very far end of the distribution, i.e.

the model is misspecified, even simple descriptive analyses like the mean of the imputed

variable will significantly differ from the true value of the complete data. For this reason, this

approach can only be applied, if the probability to draw negative values from the specified

model is very low and we only want to prevent that some very unlikely unrealistic values

are imputed. If the fraction of units that would have to be corrected with this approach is

too high, the model needs to be revised. Usually it is helpful to define different models for

different subgroups of the data. To overcome the problem of generating too many negative

values, a separate model for the units with small values should be defined.

4.4 Imputation Under Linear Constraints

In many surveys the outcome of one variable by definition has to be equal to or above the

outcome of another variable. For example, the total number of employees always has to be

at least as high as the number of part-time employees. When imputing missing values in

this situation, Schenker et al. (2006) suggest the following approach: Variables that define

a subgroup of another variable are always expressed as a proportion, i.e. all values for

the subgroup variable are divided by the total before the imputation and thus are bounded
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between zero and one. A logit transformation of the variables guarantees that the variables

will have values in the full range ] − ∞,∞[ again. Missing values for these transformed

variables can be imputed with a standard imputation approach based on linear regressions.

After the imputation all values are transformed back to get proportions again and finally all

values are multiplied with the totals to get back the absolute values. To avoid problems

on the bounds of the proportions, we suggest setting proportions greater than 0.999999

to 0.999999 before the logit transformation and to use the two step imputation approach

described in Section 4.2 to determine zero values.

4.5 Skip Patterns

Skip patterns, e.g. a battery of questions are only asked if they are applicable, are very

common in surveys. Although it is obvious that they are necessary and can significantly

reduce the response burden for the survey participant, they are a nightmare for anybody in-

volved in data editing and imputation or statistical disclosure control. Especially, if the skip

patterns are hierarchical, it is very difficult to guarantee that imputed values are consistent

with these patterns. With fully conditional specification, it is straightforward to generate

imputed datasets that are consistent with all these rules. The two step approach described

in Section 4.2 can be applied to decide if the questions under consideration are applica-

ble. Values are imputed only for the units selected in step one. Nevertheless, correctly

implementing all filtering rules is a labor intensive task that can be more cumbersome than

defining good imputation models. Furthermore, skip patterns can lead to variables that are

answered by only a small fraction of the respondents and it can be difficult to develop good

models based on a small number of observations.

5 Multiple Imputation of Missing Values in the IAB Establish-

ment Panel

In this section we describe results from the multiple imputation project at the German Insti-

tute for Employment Research: The imputation of missing values in the wave 2007 of the

IAB Establishment Panel.

5.1 The Dataset

The IAB Establishment Panel is based on the German employment register aggregated via

the establishment number as of 30 June of each year. The basis of the register, the German

Social Security Data (GSSD) is the integrated notification procedure for the health, pension

and unemployment insurances, which was introduced in January 1973. This procedure

requires employers to notify the social security agencies about all employees covered by

social security. As by definition the German Social Security Data only include employees

covered by social security - civil servants and unpaid family workers for example are not

included - approx. 80% of the German workforce are represented. However, the degree of

coverage varies considerably across the occupations and the industries.
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Since the register only contains information on employees covered by social security, the

panel includes establishments with at least one employee covered by social security. The

sample is drawn using a stratified sampling design. The stratification cells are defined by

ten classes for the size of the establishment, 16 classes for the region, and 17 classes for

the industry. These cells are also used for weighting and extrapolation of the sample. The

survey is conducted by interviewers from TNS Infratest Sozialforschung. For the first wave,

4,265 establishments were interviewed in West Germany in the third quarter of 1993. Since

then the Establishment Panel has been conducted annually - since 1996 with over 4,700

establishments in East Germany in addition. In the wave 2007 more than 15,000 establish-

ments participated in the survey. Each year, the panel is accompanied by supplementary

samples and follow-up samples to include new or reviving establishments and to compen-

sate for panel mortality. The list of questions contains detailed information about the firms’

personnel structure, development and personnel policy. For a detailed description of the

dataset we refer to Fischer et al. (2008) or Kölling (2000).

5.2 The Imputation Task

Most of the 284 variables included in the wave 2007 of the panel are subject to nonre-

sponse. Only 26 variables are fully observed. However, missing rates vary considerably

between variables and are modest for most variables. 65.8% of the variables have missing

rates below 1%, 20.4% of the variables have missing rates between 1% and 2%, 15.1%

rates between 2% and 5% and only 12 variables have missing rates above 5%. The five

variables with missing rates above 10% are subsidies for investment and material expenses

(13.6%), payroll (14.4%), intermediate inputs as proportion of turnover (17.4%), turnover

in the last fiscal year (18.6%), and number of workers who left the establishment due to

restructuring measures (37.5%). Obviously, the variables with the highest missing rates

contain information that is either difficult to provide like number of workers who left the es-

tablishment due to restructuring measures or considered sensitive like turnover in the last

fiscal year. The variable number of workers who left the establishment due to restructuring

measures is only applicable to 626 establishments in the dataset, who declared they had

restructuring measures in the last year. Of these 626 only 391 establishments provided

information on the number of workers that left the establishment due to these measures.

Clearly, it is often difficult to tailor exactly which workers left as a result of the measures

and which left for other reasons. This might be the reason for the high missing rates. The

low number of observed values is also problematic for the modeling task, so this variable

should be used with caution in the imputed dataset.

5.3 Imputation Models

Since the dataset contains a mixture of categorical variables and continuous variables with

skewed distributions and a variety of often hierarchical skip patterns and logical constraints,

it is impossible to apply the joint modeling approach. We apply the fully conditional spec-

ification approach, iteratively imputing one variable at a time, conditioning on the other

variables available in the dataset. For the imputation we basically rely on three differ-

ent imputation models. The linear model for the continuous variables, the logit model for
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binary variables and the multinomial logit for categorical variables with more than two cat-

egories. Multiple imputation procedures for these models are described in Raghunathan

et al. (2001). In general, all variables that don’t contain any structural missings are used

as predictors in the imputation models in hopes of reducing problems from uncongeniality

(Meng, 1994). In the multinomial logit model for the categorical variables the number of

explanatory variables is limited to 30 variables found by stepwise regression to speed up

the imputation process. To improve the quality of the imputation we define several sepa-

rate models for the variables with high missing rates like turnover or payroll. Independent

models are fit for East and West Germany and for different establishment size classes. All

continuous variables are subject to non-negativity constraints and the outcome of many

variables is further restricted by linear constraints. To complicate the imputation process

most variables have huge spikes at zero and as mentioned before the skip patterns are

often hierarchical. We therefore have to rely on a mixture of the adjustments presented

in Section 4. Since the package mi was not available at the beginning of this project and

other standard packages could not deal with all these problems or did not allow detailed

model specification, we use own coding in R for the imputation routines to generate m = 5
datasets.

5.4 Evaluating the Quality of the Imputations

It is difficult to evaluate the quality of the imputations for missing values, since information

about the missing values usually by definition is not available and the assumption that the

response mechanism is ignorable (Rubin, 1987), necessary for obtaining valid imputations

if the response mechanism is not modeled directly, can not be tested with the observed

data. A response mechanism is considered ignorable, if, given that the sampling mech-

anism is ignorable, the response probability only depends on the observed information.

The additional requirement that the sampling mechanism is also ignorable (Rubin, 1987),

i.e. the sampling probability only depends on observed data, is usually fulfilled in scien-

tific surveys. The stratified sampling design of the IAB Establishment Panel also satisfies

this requirement. If these conditions are fulfilled, the missing data is said to be missing at

random (MAR) and imputation models only need to be based on the observed information.

As a special case, the missing data is said to be missing completely at random (MCAR), if

the response mechanism does not depend on the data (observed or unobserved), which

implies that the distribution of the observed data and the distribution of the missing data

are identical. If the above requirements are not fulfilled, the missing data is said to be miss-

ing not at random (MNAR) and the response mechanism needs to be modeled explicitly.

Little/Rubin (2002) provide examples for non-ignorable missing-data models.

As noted before, it is not possible to check, if the missing data is MAR with the observed

data. But even if the MAR assumption can not be tested, this does not mean, the imputer

can not test the quality of his or her imputations at all. Abayomi/Gelman/Levy (2008) sug-

gest several ways of evaluating model based imputation procedures. Basically their ideas

can be divided in two categories: On the one hand, the imputed data can be checked for

reasonability. Simple distributional and outlier checks can be evaluated by subject mat-

ter experts for each variable to avoid implausible imputed values like a turnover of $ 10
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million for a small establishment in the social sector. On the other hand, since imputa-

tions usually are model based, the fit of these models can and indeed should be tested.

Abayomi/Gelman/Levy (2008) label the former as external diagnostic techniques, since the

imputations are evaluated using outside knowledge and the latter internal diagnostic tech-

niques, since they evaluate the modeling based on model fit without the need of external

information.

To automate the external diagnostics to some extent, Abayomi/Gelman/Levy (2008) sug-

gest to use the Kolmogorov Smirnoff test to flag any imputations for which the distribution

of the imputed values significantly differs from the distribution of the observed values. Of

course a significant difference in the distributions does not necessarily indicate problems

with the imputation. Indeed, if the missing data mechanism is MAR but not MCAR, we

would expect the two distributions to differ. The test is only intended to decrease the num-

ber of variables that need to be checked manually, implicitly assuming that no significant

difference between the original and the imputed data indicates no problem with the impu-

tation model.

However, we are skeptical about this automated selection method, since the test is sen-

sitive to the sample size, so the chance of rejecting the null hypothesis will be lower for

variables with lower missing rates and variables that are answered only by a subset of the

respondents. Furthermore, it is unclear what significance level to choose and as noted

above rejection of the null hypothesis does not necessarily indicate an imputation problem,

but not rejecting the null hypothesis is not a guarantee that we found a good imputation

model either. However, this is implicitly assumed by this procedure.

For the continuous variables, we searched for possible flaws in the imputations by plot-

ting the distributions for the original and imputed values for every variable. We checked,

if any notable differences between these distributions can be justified by differences in the

distributions of the covariates. Figure 1 displays the distributions for two representative

variables based on kernel density estimation. Original values are represented with a solid

line, imputed values with a dashed line. Both variables are reported on the log-scale. The

left variable (payroll) represents a candidate that we did not investigate further, since the

distributions almost match exactly. The right variable (number of participants in further

education (NB.PFE)1 ) is an example for a variable for which we tried to understand the dif-

ference between the distribution of the observed values and the distribution of the imputed

values before accepting the imputation model.

Obviously, most of the imputed values for the variable NB.PFE are larger than the observed

values for this variable. To understand this difference, we examined the dependence be-

tween the missing rate and the establishment size. In Table 1 we present the percentage

of missing units in 10 establishment size classes defined by quantiles and the mean of

NB.PFE within these quantiles. The missing rates are low up to the sixth establishment

1 In the questionnaire the respondents can indicate whether the number they are reporting represents the
number of cases or the number of participating persons. The graph presented here only includes those
establishments that reported the number of participating persons. The distributions for establishments that
reported cases did not differ significantly between observed and imputed values.
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Figure 1: Observed (solid line) and imputed (dashed line) data for payroll and number of
participants in further education (NB.PFE). Both variables are reported on the log-scale.

Table 1: Missing rates and means per quantile for NB.PRE.

est. size
quantile

missing
rate in %

mean(NB.PFE)
per quantile

1 0.09 1.61
2 0.00 2.49
3 0.57 3.02
4 0.36 4.48
5 0.44 6.09
6 0.37 9.53
7 0.85 15.48
8 1.16 26.44
9 3.18 56.39
10 6.66 194.09

size class. Beyond that point the missing rates increase significantly with every class. The

average number of further education participants increases steadily with every establish-

ment size class with largest increases in the second half of the table. With these results in

mind, it is not surprising that the imputed values for that variable are often larger than the

observed values.

We inspected several continuous variables by comparing the distributions of the observed

and imputed values in our dataset and did not find any differences in the distributions

that could not be explained by the missingness pattern. However, these comparisons are

only meaningful, if enough observations are imputed. Otherwise the distributions between

observed data and imputed data might look completely different, only because using kernel

density estimation to produce a smooth distribution graph is not appropriate in this context.

For this reason we restricted the density comparisons to variables with more then 200

imputed values above zero. For the remaining variables we plotted histograms to check for

differences between the observed and imputed values and to detect univariate outliers in

the imputed data.
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We also investigated if any weighted2 imputed value for any variable lay above the maxi-

mum weighted observed value for that variable. Again, this would not necessarily be prob-

lematic, but we did not want to produce any unrealistic influential outliers. However, we

did not find any weighted imputed value that was higher than the maximum of its weighted

observed counterpart.

For the internal diagnostics, we used three graphics to evaluate the model fit: A Normal

Q-Q plot, a plot of the residuals from the regression against the fitted values and a binned

residual plot (Gelman/Hill, 2006). The Normal Q-Q plot indicates if the assumption of a

normal distribution for the residuals is justified by plotting the theoretical quantiles of a

normal distribution against the empirical quantiles of the residuals. The residual plot visu-

alizes any unwanted dependencies between the fitted values and the residuals. For the

binned residual plot the average of the fitted values is calculated within several predefined

bins and these average fitted values are plotted against the average of the residuals within

these bins. This is especially helpful for categorical variables since the output of a simple

residual plot is difficult to interpret if the outcome is discrete.

Figure 2 again provides an example of one model (one of the models for the variable

turnover) that we did not inspect any further and one model (for the variable number of

participants in further education with college degree (NB.PFE.COL)), for which we checked

the model for necessary adjustments.

For both variables the assumption that the residuals are more or less normally distributed

seems to be justified. For the variable turnover, the two residual plots further confirm the

quality of the model. Only a small amount of residuals fall outside of the grey dotted 95%

confidence bands for the residual plot and non of the averaged residuals falls outside the

grey 95% confidence bands for the binned residuals. This is different for NB.PFE.COL.

Although still most of the points are inside the 95% confidence bands, we see a clear re-

lationship between the fitted values and the residuals for the small values and the binned

residuals for these small values all fall outside the confidence bands. However, this phe-

nomenon can be explained if we inspect the variable further. Most establishments don’t

have any participants in further training with college degree and we fitted the model only

to the 3,426 units that reported to have at least one participant. 648 of these units report

that they had only 1 participant, leading to a spike at 1 in the original data. Since we simply

fit a linear model to the observed data, the almost vertical line in the residual plot is not

surprising. It contains all the residuals for all the units with only 1 participant in the original

data. The binned residual plot indicates that the small fitted values sometimes severely un-

derestimate the original values. The reason for this again is the fact that the original data

is truncated at 1 whereas the fitted values are predictions from a standard linear model

that would even allow negative fitted values, since we computed the fitted values before

the adjustments for non-negativity described in Section 4.3. The consequence is a slight

overestimation for the larger fitted values.

We found similar patterns in some other variables that had huge spikes at 1. We could

2 Weights were available for all records, since the stratifying variables necessary for the generation of the
weights were always fully observed.
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Figure 2: Model checks for turnover and number of participants in further education with
college degree.

have tried to model the data with a truncated distribution or we could have applied the

semi-continuous approach described in Section 4.2 to model the spike at 1 separately, but

since we expect that the non-negativity adjustments reduce this effect, we decided to avoid

making the already complex modeling task even more difficult.

Missing rates are substantially lower for the categorical variables. Only 59 out of the close

to 200 categorical variables in the dataset have missing rates above 1% and we limited our

evaluation to these variables. We compared the relative number of responses in each cate-

gory for the observed and the imputed values and flagged a variable for closer inspection, if

the relative number of responses in one imputed category differed more than 20% from the

relative number in the observed category. We further limited our search to categories that

contained at least 25 units, since small changes in categories with less units would lead

to significant changes in the relative differences for these categories. All 15 variables that

were flagged by this procedure had a missing rate below 5% and the differences between

the imputed and original response rates could be explained by the missingness pattern for

all of them. We select one variable here to illustrate the significant differences between ob-

served and imputed values that can arise from a missingness pattern that is definitely not

missing completely at random. The variable under consideration asks for the expectations

about the investment in 2007 compared to 2006. Table 2 provides some summary statistics

for this variable. We find a substantial difference for the second and the third category, if we

simply compare the observed response rates (column 1) with the imputed response rates
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Table 2: Expectations for the investments in 2007 compared to 2006 (response rates in %
for each category).

category obs.
data

imp.
data

obs. units with
investment 2006

obs. units without
investment 2006

will stay the same 36.57 37.96 41.33 0.59
increase expected 38.79 57.66 30.74 99.41
decrease expected 20.33 0.73 23.05 0.00
don’t know yet 4.31 3.65 4.88 0.00

(column 2). But the missing rate is only 0.2% for this variable for units with investments in

2006 but soars to 10.5% for units without investments in 2006. Thus, the response rates

across categories for the imputed values will be influenced by the expectations for those

units that had no investments in 2006 (column 4) even though only 12.9% of the partici-

pants who planned investments for 2007 reported no investments in 2006. These response

rates differ completely from the response rates for units that reported investments in 2006

(column 3). Thus the percentage of establishments that expect an increase in investments

is significantly larger in the imputed data than it is in the original data.

For categorical data the Normal Q-Q plot is not appropriate as an internal diagnostic tool

and the residual plot is difficult to interpret if the outcome is discrete. Therefore, we only

examined the binned residual plots for the 59 categorical variables with missing rates above

1%. All plots indicate a good model fit. We move all graphics to the Appendix for brevity.

To check for possible problems with the iterative imputation procedure, we stored the mean

for several continuous variables after every imputation round. We did not find any inherent

trend for the imputed means for any of the variables. Of course, this is no guarantee for

convergence. A possible strategy to measure the convergence of the algorithm that we did

not implement in our imputation routines is discussed in Su et al. (2009).

6 Concluding Remarks

More than 30 years after its initial proposal by Rubin (1978), multiple imputation has been

widely accepted as the best practice to deal with item nonresponse in surveys. Neverthe-

less, the implementation of good imputation routines is a difficult and cumbersome task

and an unsupervised imputation using standard imputation software can harm the results

more than simple complete case analysis. In this paper we discussed several problems

that often arise when imputing real datasets, severely complicating the imputation process.

We summarized several ideas to handle these problems, and the detailed discussion of

the imputation of missing values in the German IAB Establishment Panel illustrates that

generating multiply imputed datasets with high data quality for complex surveys is not an

impossible task. However, there are still several ways for improvements and open research

questions. We found that defining several independent models for each variable can lead to

significant improvements in the imputations. To reduce the runtime of the procedure and to

keep the programming burden low, we applied this strategy only to a few variables with very
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high missing rates. Using this strategy for all variables whenever possible would further im-

prove the quality of the imputations. A definitive shortcoming in our implementation is the

limitation to only 30 explanatory variables in the multinomial variables that was necessary

due to multicollinearity problems and to speed up the imputation process. This might lead

to uncongeniality problems (Meng, 1994) if the analyst uses explanatory variables in his or

her model that were not included in the imputation model. A possible strategy to overcome

these limitations would be to use CART models for the categorical variables. Reiter (2005)

suggests this strategy in the context of multiple imputation for statistical disclosure control.

Further research is needed to investigate under which circumstances this approach is also

applicable for multiple imputation for nonresponse.

Appendix

Figures 3-9 present the binned residual plots for all 59 categorical variables with missing

rates≥ 1%. For variables with more than two categories, we present a graph for each

category (the first category is always defined as the reference category in the multinomial

imputation model). For readability, we use the internal labeling for the variables. A detailed

description of all variables can be obtained from the author upon request.
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Figure 3: Binned residual plots for all categorical variables with missing rates above 1%.
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Figure 4: Binned residual plots for all categorical variables with missing rates above 1%.
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Figure 5: Binned residual plots for all categorical variables with missing rates above 1%.
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Figure 6: Binned residual plots for all categorical variables with missing rates above 1%.
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Figure 7: Binned residual plots for all categorical variables with missing rates above 1%.

IAB-Discussion Paper 6/2010 23



−12 −8 −6 −4 −2 0

−
0.

15
0.

00
0.

10

o79f

Expected Values

A
ve

ra
ge

 r
es

id
ua

l

−5 −3 −1 0 1
−

0.
15

0.
00

0.
15

o79g

Expected Values

A
ve

ra
ge

 r
es

id
ua

l
−2 0 2 4 6

−
0.

10
0.

00

o79h

Expected Values

A
ve

ra
ge

 r
es

id
ua

l

−3 −2 −1 0 1

−
0.

10
0.

00
0.

10

o84a(category2)

Expected Values

A
ve

ra
ge

 r
es

id
ua

l

−1.5 −0.5 0.5 1.5

−
0.

15
0.

00
0.

10

o84a(category3)

Expected Values

A
ve

ra
ge

 r
es

id
ua

l

−4 −3 −2 −1 0

−
0.

10
0.

00
0.

10

o84a(category4)

Expected Values
A

ve
ra

ge
 r

es
id

ua
l

−6 −4 −2 0 1

−
0.

05
0.

05

o86b

Expected Values

A
ve

ra
ge

 r
es

id
ua

l

−4 −2 0 2 4−
0.

10
0.

00
0.

10

o88(category2)

Expected Values

A
ve

ra
ge

 r
es

id
ua

l

−6 −4 −2 0 2 4−
0.

10
0.

00
0.

10
o88(category3)

Expected Values

A
ve

ra
ge

 r
es

id
ua

l

−5 −4 −3 −2 −1−
0.

10
0.

00
0.

10

o88(category4)

Expected Values

A
ve

ra
ge

 r
es

id
ua

l

−10 −5 0 5

−
0.

05
0.

05

o89

Expected Values

A
ve

ra
ge

 r
es

id
ua

l

−2 0 2 4

−
0.

10
0.

00
0.

10

o90(category2)

Expected Values

A
ve

ra
ge

 r
es

id
ua

l

−6 −4 −2 0

−
0.

05
0.

05

o90(category3)

Expected Values

A
ve

ra
ge

 r
es

id
ua

l

Figure 8: Binned residual plots for all categorical variables with missing rates above 1%.
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Figure 9: Binned residual plots for all categorical variables with missing rates above 1%.
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