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Abstract 

The labour-market policy-mix in Germany is increasingly being decided on 

a regional level. This requires additional knowledge about the regional de-

velopment which (disaggregated) national forecasts cannot provide. 

Therefore, we separately forecast employment for the 176 German la-

bour-market districts on a monthly basis. We first compare the prediction 

accuracy of standard time-series methods: autoregressive integrated 

moving averages (ARIMA), exponentially weighted moving averages 

(EWMA) and the structural-components approach (SC) in these small spa-

tial units. Second, we augment the SC model by including autoregressive 

elements (SCAR) in order to incorporate the influence of former periods of 

the dependent variable on its current value. Due to the importance of spa-

tial interdependencies in small labour-market units, we further augment 

the basic SC model by lagged values of neighbouring districts in a spatial 

dynamic panel (SCSAR). 

The prediction accuracies of the models are compared using the mean ab-

solute percentage forecast error (MAPFE) for the simulated out-of-sample 

forecast for 2005. Our results show that the SCSAR is superior to the 

SCAR and basic SC model. ARIMA and EWMA models perform slightly bet-

ter than SCSAR in many of the German labour-market districts. This re-

flects that these two moving-average models can better capture the trend 

reversal beginning in some regions at the end of 2004. All our models 

have a high forecast quality with an average MAPFE lower than 2.2 per-

cent. 

 

JEL-Classifications: C53, J21, O18 
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1 Introduction 
Due to large differences in the regional labour-market performance in Ger-

many, the labour-market policy-mix is increasingly being decided on a re-

gional level. This implies that the local institutions, i.e. the districts of the 

Federal Employment Agency (Agenturbezirke), have an increased need for 

regional forecasts as a guideline for their decision process. In this paper, 

we focus on employment forecasts for these regional units. 

There is a large variety of time-series models which can potentially be 

used for our purposes. These models range from simple univariate models 

to complicated multivariate methods. For the latter, appropriate leading 

indicators on a small regional scale are hardly available. Moreover, it has 

often been shown (cf. for example the overview in Stock 2001) that sim-

ple methods perform nearly as well as more complex ones. Further, as we 

forecast employment for 176 labour-market districts and want to compare 

the results amongst the districts, we need to apply standardised methods. 

Therefore, our focus is on three standard univariate methods: autoregres-

sive integrated moving average (ARIMA) models, exponentially weighted 

moving averages (EWMA) according to the seasonal Holt-Winters method 

and structural-component (SC) estimators. Then, we augment the basic 

SC model for autoregressive and spatial components. Using simulated out-

of-sample forecasts we are then in a position to compare the results of the 

augmented models with the other models. 

The paper is organised as follows: After describing the data and the re-

gional variation in employment in Germany, we provide an overview of 

different approaches to regional forecasting. Section 4 describes the ap-

plied forecasting methods of our models. The presentation and discussion 

of our results follows, before a conclusion ends the paper. 

2 Data and Regional Variation in Employment in 
Germany 

Employment forecasts for the whole of Germany are relatively robust. 

However, such forecasts do not yield much information about the regional 

development within the country. Due to different industry structure, quali-

fication, wage level, or other sources of local labour-market disparities, 

forecasts for a small spatial unit can differ from national forecasts and 
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even predict opposite results. Considering regional distinctions, we fore-

cast employment in the 176 German labour-market districts1, which are, 

with the exception of Berlin and Hamburg, between NUTS 2 and NUTS 3 

regions. First, we describe our data and the current labour-market situa-

tion in Germany particularly emphasising regional differences. 

To analyse the current employment situation and to perform our fore-

casts, we use register data from the German Federal Employment Agency. 

This data covers all registered employees who are subject to obligatory 

social insurance in the German labour-market districts on a monthly basis. 

Our employment data at this level of aggregation starts in January 1996 

and ends in December 2005. This relatively long time lag is caused by the 

time span necessary for deliverance and processing the data. Therefore, 

our employment forecasts for 2006 and 2007 are based on data which end 

in December 2005 but first become available in September 2006. 

Figure 1 shows the average employment rate2, the growth rate3 and sea-

sonal span4 of employment. These represent the basic elements of a time 

series: level, trend and season. 

                                                 
1  With the exception of Berlin, all forecasts are at this regional level. In Berlin the la-

bour-market districts were reorganised spatially several times in recent years so that 
the data here was not available for all districts for all periods. For this reason, the dis-
tricts in Berlin were aggregated at all times to one district so that we forecast the re-
gional employment levels for 176 and not for 178 districts. 

2 The average employment rate is defined as popemp YY / , where empY  is the average num-

ber of employees registered at their place of work and popY the average population in 

the year. This is not identical to the labour-force participation rate where both the 
numerator and denominator are counted at the place of residence. This measurement 
is the only one which can be calculated for all labour-market districts as the population 
is only available at this regional level. A better reference parameter than the whole 
population would be the employable population. However, one problem persists for 
both measurements: Our data for the employees count them at their place of work, 
whereas the population is counted at their residency. This leads to an overestimation 
of the employment rate in districts where a relatively large number of employees 
commute in and to an underestimation in districts where the employees commute out. 

3 This is defined as the average of 1,1,, /)( −−− tDectDectDec YYY  for every year, where tDecY ,  is 

the number of employed in December of year t. 
4 Defined as the average of YYY /)minmax( −  for every year, where maxY  is the maximum, 

minY  the minimum and Y  the average number of employed in the respective year. 



IABDiscussionPaper No. 2/2007 8

The often emphasised East-West perspective only holds for the growth 

rate of employment (and even here only partially) which is negative in 

nearly all eastern labour-market districts. High negative growth rates in 

western Germany exist in Recklinghausen and Gelsenkirchen (both situ-

ated in the Ruhr area). High positive growth rates can be observed espe-

cially in middle Bavaria. 

No East-West differences can be seen for the employment rate and the 

seasonal span. High employment rates but low seasonal spans can gener-

ally be found in urbanised labour-market districts. Cities tend to have 

higher employment rates than their neighbourhood. This can be seen par-

ticularly well in the triangle between Bremen, Hamburg and Hanover. This 

may be due to the commuters who live in the regions of the triangle and 

work in the three cities. Often touristy regions and those where agriculture 

is important have high seasonal spans. Both can be mainly found along 

the coast of the East and North Sea, in eastern German low mountain 

ranges and in Bavaria. A dichotomy between eastern and western Ger-

many can be seen in the right map of Figure 1. Interestingly, this dichot-

omy does not correspond to the former inner-German border. 
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Figure 1: Average employment rate, Growth rate and relative seasonal span of employment in Germany from 1996 to 2004 
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3 A Review of the Literature 
In this section we provide an overview of approaches of regional labour-

market forecasts, and present – whenever they exist – examples of corre-

sponding empirical specifications for Germany. However, the number of 

studies on regional forecasting is not as numerous as one would perhaps 

expect. Figure 2 shows a taxonomy of methods used for regional labour-

market forecasts. 

Figure 2: Taxonomy of Methods of Regional Labour-Market Forecasting 

 

Methods of labour-market forecasting can roughly be divided into methods 

based mainly on labour-market theory, such as demand-oriented, supply-

oriented and demand- and supply-oriented models and mathematical-

statistical methods. A well-known demand-oriented regional model is the 

economic base concept which divides the regional economy into a base- 

(local needs-serving sector) and a non-base sector (export sector). Ac-

cording to this concept, regional export activity is crucial for the regional 

growth process: The higher the local income from the export sector, the 

higher is the demand for local products and services. For this reason, the 

economic base concept models the whole employment development as a 

function of employment in the regional export sector. Developed in the 

1950s, the concept can in times of high import rates and complex regional 

economic relationships no longer be considered appropriate. The obvious 

shortcomings of this demand-based method have been described repeat-

edly (see e.g. Fritsch, 1991; Eckey, 1988; Wulf, 1970), the model is no 

longer used as a forecasting tool for local employment (Jaeger 1996, 5). 

Great importance for the regional development is still being attributed to 

the determinants of production. In particular, the shift-share analysis 

(SSA) as a supply-oriented model is widely used to analyse regional em-
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ployment (for a German example of regional labour-market forecasts with 

the SSA, see Tassinopoulos 1996). This approach interprets a variation in 

regional employment as a product of a structural (shift) and a local 

(share) component. The structural component focuses on the regional in-

dustrial structure and shows how a region would develop if the regional 

employment growth in an industry were analogous to the national devel-

opment of the corresponding industry. The local component is defined as a 

residuum that remains once the structural influences have been removed 

from the observed variation. The conventional shift-share method has of-

ten been criticised as it does not permit a model-assisted procedure, the 

observation of causality is problematic and it is not possible to incorporate 

additional exogenous variables (Blien/Wolf 2002, Tassinopoulos 1996, 

Bade 1991). Sweeney (2004) has generally criticised supply-oriented 

models for their implicit assumption of an infinitely elastic labour supply. 

He proposes a model which incorporates demographic influences into sup-

ply-oriented projections. Nonetheless, the value of shift-share techniques 

as an analytical tool for regional analyses is generally considered as high. 

There are two concepts of demand-supply-oriented regional models. The 

concept of labour-market accounts contrasts the development of labour 

supply and labour demand. Like in a balance sheet, labour-market data is 

either classified as asset (labour demand) or as liability (labour supply). 

The resulting negative gap to the totals (the working population in the re-

gion) is the number of unemployed on the liability side and the number of 

vacancies on the asset side of the balance sheet. Developments of the 

several balance sheet items are observed separately and assigned to busi-

ness cycle or structural changes. This rather descriptive method of re-

gional labour-market analysis can provide as a very good starting point for 

forecasting (as an example of a German labour-market account study, see 

Eltges/Maretzke/Peters 1993, Eltges/Wigger 1994, Klaus/Maußner 1988, 

Eckey/Stock 1996). However, as it implies no genuine forecasting device 

itself, the resulting predictions tend to be extremely conservative and 

need to be interpreted with extreme caution. The second concept is known 

as regional input-output analysis, an analytical tool to analyse inter-

industry relationships in a region. They depict how the output of one in-

dustry serves as an input of another one, and thereby shows the interde-

pendencies of different industries, as a customer on the one hand and as 

a supplier on the other. Input-output models are widely used in economic 
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forecasting to predict flows between sectors (see e.g. Rickman/Miller 

2003, Schindler/Israilevich/Hewings 1997). Problems with this concept 

can arise when the assumption of constant coefficients is violated and not 

incorporated by trend estimations (Jaeger 1996, 20). 

Regressions, time-series analysis, the method of linear programming and 

the neural-network approach are considered as mathematic-statistical 

methods. The basic purpose of a regression analysis is the determination 

of the relationship between a dependent variable and an arbitrary number 

of exogenous variables, where the latter can for example consist of eco-

nomic indicators or artificial structural components. In the former case, 

theoretically and empirically validated economic indicators which antici-

pate the labour-market development are needed to construct the regres-

sion model (see Oberhofer/Blien/Tassinopoulos 2000 for an example of a 

mixed approach of common extrapolation techniques and regression 

analysis). This often proves to be difficult even at a highly aggregated 

level and is nearly impossible at a regional level (see Hamm/Wienert 

1989, 210). Further, in small spatial units, the risk of biased results 

caused by single events and influences which are not captured by the re-

gressors, tends to be much higher than at an aggregate level. Thus, as a 

tool for regional forecasting, results of multivariate regression analysis are 

not fully satisfactory. Regression models do not necessarily require ex-

planatory economic data. Instead, the dependent variable can be ex-

plained by structural components such as level, trend or seasonal patterns 

(see De Gooijer/Hyndman 2005). However, structural-component models 

have not been widely used as a forecasting tool for regional develop-

ments, mainly due to their limited explanatory power as deterministic 

models (cf. Ray 1989, Proietti 2000). As we show in our paper, these 

models can be augmented by non-deterministic components such as tem-

poral or spatial lags to remove these limitations and to obtain both stabil-

ity from the deterministic and flexibility from the stochastic models. 

The most commonly used approach for (regional) forecasting is time-

series analysis. A good overview is given by De Gooijer/Hyndman (2005). 

Unlike regressions, time-series analyses do not require any definitions of 

causalities. These methods assess regularities in the time series and try to 

describe the data-generating process either deterministically or stochasti-

cally. The simplest form of trend analysis and forecasting consists in 
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smoothing techniques. Especially the method of exponentially weighted 

moving averages where the forecast values are calculated by averaging 

past data and more recent data is incorporated with an exponentially 

higher weight, performs surprisingly well (Satchell/Timmermann 1995, 

Chatfield et al. 2001). 

An alternative approach to analysing and forecasting time series is based 

on autoregressive (AR) as well as on moving-average (MA) components 

(see Section 4.2). Forecasts can either only rely on past values of the de-

pendent variable (univariate ARIMA models) or include exogenous eco-

nomic information (multivariate extension of ARIMA). Dynamic regression 

models (also known as transfer functions, see e.g. Weller 1989, Weller 

1990) and multivariate vector autoregressive (VARMA) models (see e.g. 

Patridge/Rickman 1998; Lutkepohl 2006) have been more commonly used 

in labour-market forecasts. However, parsimonious ARIMA models or 

transfer functions can still outperform VARMAs, as Edlund/Karlsson (1993) 

show for Swedish unemployment rates. A further extension of time-series 

models is to include spatial elements. It has been shown that neglecting 

spatial dependency can produce highly inaccurate forecasts (Giacomini/ 

Granger 2004). Several recent studies have thus included spatial autocor-

relation elements into VARMA models (cf. for example Arbia/Bee/Espa 

2006, Beenstock/Felsenstein 2006). However, to the best of our knowl-

edge, the only labour-market related study in this field is Hernandez-

Murillo/Owyang (2006), but there are no German regional labour-market 

forecasts which include spatio-temporal elements. As the number of la-

bour-market districts in Germany exceeds 64, the incorporation of spatial 

elements is not feasible with VARMA estimation techniques (see Arbia/ 

Bee/Espa 2006). 

The mathematical method of linear programming is used to maximise or 

minimise a function under constraints. The power of this method lies in 

considering forecast relevant information via restrictions, prediction floors 

and sensitivity analyses. However, a regional application for labour-

market forecasts tends to be difficult as detailed regional data and func-

tional relationships are required. For an empirical application of this ap-

proach to Germany we have to go back to the 1980s (see Thoss/Klein-

schneider 1982, who use this approach for the district Borken/West-

phalia). Instead, recent empirical work has been based on methods of 
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non-linear programming. For example, Blien/Tassinopoulos (2001) pro-

duce regional employment forecasts for all western German districts based 

on a combination of top-down and bottom-up techniques.  

Another recent approach in the set of mathematic-statistical methods for 

analysing and forecasting regional employment is to use artificial neural 

network (ANN) models (for an example of German labour-market fore-

casts see Patuelli et al., 2006). Longhi et al. 2005 use this approach and 

partially combine it with the SSA. In contrast to traditional statistical mod-

els, they neither require an identification process for the set of regressors 

they use, nor a linear specification of the relationships between the de-

pendent and independent variables. The technique essentially consists in 

modelling non-linear relationships among variables as inputs to a forecast, 

where the inputs are transformed through weighted combinations and 

substituted into one or more non-linear indicators. Whereas some authors 

report positive results from labour-market forecasts using ANNs (Swan-

son/White 1997 as well as Stock/Watson 1998, who state that ANNs per-

form at least slightly better than time-series techniques), others think that 

they are more powerful for financial variables than for labour-market fore-

casts (see amongst others Diebold 1998, 182). 

Various authors have developed forecast models for single German la-

bour-market regions (Bruch-Krumbein/Friese/Kollros 1994 for the South 

of Lower Saxony, Eltges/Wigger, 1994, for the district of Borken/West-

phalia and Klaus/Maußner 1988, for 18 Bavarian regions). Others have 

applied one model to all German labour-market regions (Bade 1991, 

1996, 1999, 2004, Blien/Tassinopoulos, 2001, Longhi et al. 2005, and 

Patuelli et al. 2006). However, to our knowledge, there have so far not 

been any attempts to systematically perform German labour-market fore-

casts with individually specified regional models for all labour-market dis-

tricts. Moreover, the benefit of spatial lag components for regional fore-

casting has so far been neglected in German regional forecast studies. 

These gaps are filled by our paper. 

4 Applied Forecast Methodology 
Despite the common critique that pure time-series decompositions neglect 

economic theory, we focus on them for three reasons. First, many vari-

ables which would be necessary to model economic relations are not 
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available at the required regional level. Second, as the relevant future val-

ues of the economic covariates are not known at the time the forecasts 

are performed, they have to be approximated by their past. Third, if the 

same variables which currently influence the employment level also influ-

enced it in the past, then this information is automatically included when 

using past values of the series of interest in order to forecast its future 

development. Moreover, focusing on lagged values of the series has the 

advantage that it uses past information efficiently in the statistical sense. 

Therefore, we apply two univariate time-series models, exponentially 

weighted moving averages and ARIMA. These simple models often per-

form nearly as well as more complex methods. Here they are used as ref-

erence models against which more complicated models can later be 

tested. In a second step, we present a deterministic structural-

components model and extend this basic model by including either auto-

regressive elements or spatial dependencies. Then, the results from the 

extended models can be compared with those from the simpler ones to 

test whether the forecast accuracy improves or not. In order to evaluate 

the models, we perform simulated out-of-sample forecasts for the last 

year where data is available. 

To a large extent, the variable-selection procedure is automised. We test 

which variables have a systematic influence and improve the model fit in 

each agency and include only these variables in the final regressions. In a 

last step, we check the final specification for violations of the underlying 

assumptions of the respective models as described below in more detail. 

4.1 Exponentially Weighted Moving Averages 
As stated in the name, exponentially weighted moving average (EWMA) 

models base their predictions on a large number of previous observations 

of the endogenous variable where the weights of the previous values de-

cline exponentially the further they are in the past. Hence, the basic struc-

ture of the model is given by: 

 ( ) ( ) ( ) ( ) 02
2

11 111| yaayaayaaayIyE t
ttttt −++−+−+= −−+ L  (1) 

where tI  is the information available at time t and a is the weight. The fo-

cus of these models is on the autoregressive structure and on an underly-

ing stochastic process. As well, they can be split into a level, trend and 
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seasonal component. As employment follows a regular cyclical pattern, the 

seasonal Holt-Winters method is applied. Here it is assumed that the am-

plitude of the seasonal variance remains constant over time, hence the 

additive method is used.5 The equation to be estimated is given by: 

 tLtttt sbay ετ ττ ++⋅+= −++  (2) 

where ta  denotes the level, tb  the trend and ts  the seasonal figure at time 

t . The level, trend and seasonal component are modelled stochastically. 

They are determined by the parameters α , β  and γ  which are simultane-

ously estimated using maximum likelihood. These parameters define the 

update equations for the components as: 

 ( )[ ] ( )( )111 −−− +−+−= ttLttt basya αα  (3) 

 [ ] ( ) 11 1 −− −+−= tttt baab ββ  (4) 

 ( ) ( ) ( )Ltttt says −−+−= γγ 1  (5) 

where L denotes the number of lags in months. Hence, with monthly data, 

L=12 shows seasonal patterns. 

4.2 Autoregressive Integrated Moving Averages  
Autoregressive integrated moving average (ARIMA) models are a standard 

procedure when forecasting time series. Usually, these models are imple-

mented according to the Box-Jenkins forecast method (cf. Box/Jenkins 

1970 and Greene 2003) which proceeds in four steps: 

(1) In order for ARIMA-models to yield consistent results, it must first be 

ensured that the autoregressive process is stationary. 

(2) It is tested which previous periods are necessary to best explain the 

current observation. This is done using the autocorrelation (AC) func-

tion for error correlation and the partial autocorrelation (PAC) values 

for the lagged dependent variable. 

(3) After determining the possible autoregressive structures, stepwise 

tests are performed to test whether inclusion of these lags or errors 

                                                 
5  If the multiplicative method had been used, then (2) would have been estimated as: 

 ( ) tLtttt sbay ετ ττ +⋅+= −++  

However, this model is only justified if it is assumed that the seasonal variance in-
creases with time. The model was tested here and it indeed turned out that the addi-
tive method delivered better results than the multiplicative approach. 
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into the regression improves the model fit. Typically, for selection ei-

ther measures of simulated forecast errors such as the mean squared 

error (MSE) or information criteria such as those of Akaike (AIC) or 

Schwartz (BIC) are used. 

(4) When no additional lag diminishes the selection criterion, the residuals 

are tested for white noise (Portmanteau test), i.e., if the estimation 

has minimum variance. If the test is not rejected, the efficient esti-

mate is used for the forecast. 

To remove seasonal effects, we first use yearly differences of regional em-

ployment. The resulting data is tested for unit roots using the augmented 

Dickey-Fuller test (cf. Bierens 2001). If the test indicates the presence of 

unit roots with and without a trend, we first compute (monthly) differ-

ences of the regional series, test this again and differentiate further until 

stationarity is achieved. A detailed description of the sequential procedure 

is given by Hassler (2000). 

Let y denote the stationary series related to the observed time series Y. 

Then the model can be described by the following ARMA equation: 

 t

p

k
kkttt uyy ++= ∑

=
−

1
αμ            with t

q

k
kktt uu ερ += ∑

=
−

1
 (6) 

In most applications, all lags up to lag p (q) are included into the regres-

sion, where p (the highest autoregressive lag) and q (the correlated error 

furthest in the past) are determined by an analysis of the correlogram. 

However, some lags might not provide relevant information about the de-

velopment of the time series: One looses degrees of freedom without im-

proving the estimation, and particularly small samples perform better if 

these coefficients are set to zero. Therefore, we rank the lags according to 

their absolute PAC and AC values respectively, and, starting with the high-

est, add them stepwise to the equation. This procedure is known as “sim-

ple-to-general”. 

Many studies conclude that lag selection based on information criteria per-

forms better than other methods, see e.g. Inoue/Kilian (2006) or Stock 

(2001). Here, the decision whether a lag is maintained in the further esti-

mations is based on the corrected Akaike information criterion (AICC): 

 
( )

2
ln 2

−−
+

+=
kT

kTAICC σ  (7) 
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where T is the number of observations, k the number of estimated pa-

rameters and σ the estimated standard deviation. This information crite-

rion often yields a more appropriate parameter selection than those of 

Akaike or Schwartz: Typically the AIC leads to more variables than neces-

sary while the BIC leads to an underfit (cf. Hurvich/Tsai 1989). 

4.3 Basic Structural-Components Model 
In the structural-components (SC) approach applied here, it is assumed 

that there is a deterministic process which explains the endogenous vari-

able. To this end, the observations are decomposed into a level, trend, 

seasonal and business-cycle component (see Harvey 2004, Ch. 2), i.e.: 

 tttttY εψγμ +++=  (8) 

with 

 tY  the dependent variable (employment) in monthly differences 

 tμ  level and trend component 

 tγ  seasonal component 

 tψ  business-cycle component 

 tε  remaining stochastic error (irregular component) 

Other components can be added if required. 

Hence, this basic version of the model neither includes exogenous vari-

ables, nor, in contrast to the ARIMA and EWMA models, autoregressive 

processes (see Harvey 2004, Ch. 3 & 4).  

Under the assumption that there is no damped trend, the system of level 

and trend component can be transformed into: 

 tt t υβμμ ++= 00  with ( )( )2,0...~ tdiit υσυ  (9) 

where 0μ  is the initial level, 0β  the slope parameter and tυ  the error term 

at time t. With a damped trend, the above equation becomes non-linear. 

Therefore, in addition to the linear trend, we also include a quadratic and 

cubic trend component. 

The seasonal component can be modelled by adding dummies for each 

month (with the exception of one arbitrary month). Alternatively, in order 

to reduce the number of parameters which need to be estimated, it can be 
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captured by various trigonometric functions whose length is defined by λ 

and amplitude by α and δ respectively (see Harvey 2004, Ch. 5.1): 

 ( )
[ ]

∑
=

+=
2/

1
sincos

s

j
jjjjt tt λδλαγ  with sjj /2πλ =  (10) 

Once the level, trend and seasonal components have been included, a first 

regression is run. All subsequent regressions use the linear trend in addi-

tion to those variables which are significant at the 10 percent-level. How-

ever, if multicollinearity between the quadratic and cubic trend compo-

nents arises either the quadratic or cubic term is kept depending on which 

is more significant. 

Economic theory differentiates between short-, medium- and long-term 

business cycles. As the data for our simulated out-of-sample forecasts 

only covers eight years, we can at best capture short-term cycles.6 Just 

like the seasonal component, business cycles are modelled by cosine and 

sine functions. As the duration of a cycle in a labour-market district is un-

known, its length is determined by the peaks in the autocorrelation func-

tion of the residual in a regression without a cycle component. Thereby, 

we assume that the cycle length must be at least thirteen months to make 

sure that we are indeed capturing cycles and not just short irregular fluc-

tuations. If it turns out that both cycle components are insignificant, we 

test for joint significance and if the test is not rejected include the one 

with the (in absolute terms) higher t-statistics. Once all (significant) com-

ponents have been established, the full model can be regressed using 

standard OLS-regression techniques. 

4.4 Structural Components with Autoregressive Elements 
The aim of the structural-components method is to detect structural prop-

erties of time-series data. In contrast, autoregressive processes use the 

correlation structure of time lags. Both methods have their advantages: 

Especially for long stable time series, the structural-components method is 

appropriate when the aim is to capture recurring elements such as sea-

sonal fluctuations or business cycles. Therefore, once a structure is de-

tected, the forecasts are very robust and do not place much emphasis on 

                                                 
6  As we require roughly at least half the sample length to perform reliable estimations, 

the maximum cycle length is limited to 40 months. 
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short-term fluctuations. Autoregressive processes detect long-term struc-

tures differently. They represent time-series data by the special correla-

tion structure observed in the past. By doing this, autoregressive methods 

do a good job in capturing short-term movements and are able to react 

quite flexibly to changes in the current data. 

Both properties are important for our purposes as we perform short to 

medium term forecasts with moderate sample sizes. Therefore, the com-

bination of both methods seems adequate for improving the short-term 

behaviour of the forecasts without losing the long-term properties of the 

data-generating process. 

The integration of autoregressive elements into the basic structural-

components model is straight forward. We denote this augmented model 

by SCAR. It can be written as: 

 ttttttY εθψγμ ++++= ,  (11) 

where tμ , tγ , tψ  and tε  are defined as in Section 4.3 and tθ  represents the 

autoregressive component modelled as: 

 ∑
=

=
−=

26

1

S

s
stst Yϑθ . (12) 

where sϑ  are the parameters to be estimated. 

To work with a comparable lag-structure to the one chosen in the ARIMA 

approach and to capture at least influences of the last two years, the 

number of tested lags S is set to a maximum of 26. Obviously not all lags 

should be added in the final model. To guarantee parsimonious parameter 

usage, we apply the same lag selection procedure as in the ARIMA model. 

We sort the lagged values according to their absolute partial autocorrela-

tion function (PAC) values, include them stepwise while maintaining the 

components of the basic SC model as well as all previously tested lags 

which have improved the AICC (cf. Section 4.2). 

4.5 Structural Components with Spatial Interdependen-
cies 

Particularly when forecasting on a small regional scale, it seems plausible 

that the development of the dependent variable in neighbouring regions 

has an impact on the region being analysed (cf. Section 2). This relation-
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ship between neighbours can be described as a spatial autoregressive 

process. To model the spatial relationship between regions we use a row 

normalised contiguity matrix. Because the simultaneous spatial lags are 

unknown in the forecast period, it is only possible to include the spatial 

lags of previous periods in the estimation (cf. Giacomini/Granger 2004). 

Due to the reciprocal connections between regions, it is necessary to re-

gress and forecast with panel techniques. To keep up the basic idea of the 

structural-components model, i.e. to account for the regional heterogene-

ity, the data is written in block diagonal form. This “seemingly unrelated 

regression estimation” (SURE) form allows for specific coefficients for each 

labour-market district and the spatial process parameters.  

Hence, the structural-component model with spatial autoregressive ele-

ments (which we abbreviate by SCSAR) can be written as: 

 ttttttY εξψγμ
rrrrrr

++++= , (13) 

where )'',...,'( ,,1 tNtt YYY =
r

 denotes the vector of employment at time t over 

all regions, and the components are defined analogously to Section 4.3. 

The spatial component in region i, itξ , is defined as: 

 τ
τ

τ κξ itjij

N

j
it Yw∑∑ −

=

= )(,
1

, { }13,...,1∈τ , (14) 

where ijw  is the spatial weight defined by contiguity, i.e. 1=ijw  if a region j 

shares a border with region i and 0 otherwise. τκ i  are the parameters to 

be estimated. We maintain all components that were significant in the ba-

sic structural-components model. In addition, we include up to thirteen 

months lagged values of the neighbours’ average. Note that in contrast to 

most estimations of spatial autoregressive processes, we allow for indi-

vidually specified parameters of spatial dependence for each region.  

We rank the thirteen lagged vectors of the spatial elements according to 

their correlation to the residual measured by a partial spatial autocorrela-

tion function, PSAC, similar to the PAC function in time-series analysis. 

Then, we apply a sequential two-step selection procedure. In the first step 

we add all elements of the vector of τ  month lagged spatial lags to the 

estimation, in order to receive their t-statistics. In the second step, we 
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test whether the inclusion of the significant elements of this vector im-

proves the AICC as compared to the previous estimation.  

To sum up, for each labour-market district we estimate five different mod-

els: EWMA, ARIMA, SC, SCAR and SCSAR. In order to evaluate the model 

performance, we check the quality of the forecast results by running simu-

lated out-of-sample forecasts using the last twelve months in which data 

is available (01/2004-12/2004). By doing this, we are able to calculate 

several error measures, on which the discussion of the results in the fol-

lowing section is based. 

5 Results and Discussion 
Whilst the mean square forecast error (MSFE) is a suitable accuracy 

measure to compare the forecast performance of the models for the same 

region, we are also interested in comparing the quality of the forecasts of 

the individual models amongst the different labour-market districts. When 

doing this, it is important to explicitly account for the size of the districts. 

Therefore, we need a relative accuracy measure. To this end, the focus 

here is on the mean absolute percentage forecast error (MAPFE). This 

measure is calculated as the difference of the forecasts with the observed 

values relative to the observed value for each month and labour-market 

district and then averaging over the twelve months of the simulated fore-

cast period. Finally, we compare the model forecasts using this accuracy 

measure as well as a discussion of the models’ strengths and weaknesses. 

5.1 Results of the Models 
In our standardised ARIMA model selection, the time series are first differ-

enced annually. This new time series is tested for stationarity. If it is not 

stationary, we further difference on a monthly basis and again test for sta-

tionarity. In nearly all labour-market districts (173) both differences are 

needed and only in three labour-market districts is the seasonal difference 

sufficient. The stepwise lag selection first of autoregressive and subse-

quently of moving-average terms follows. On average, nearly six (5.86) 

AR lags and slightly more than three (3.36) MA lags are included to obtain 

the final estimation model. Despite the differentiation, the most frequently 

used autoregressive lags are the typically seasonal lags of 12 and 24 

months (see Figure 3). The one-year lag is selected in 83 percent and the 

two-year lag in 68 percent of all cases. The next most common lags of 1 
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and 3 months have frequencies of 40 percent and 34 percent, respec-

tively. With the exception of four lags, all other autoregressive elements 

are selected in more than 10 percent but less than 30 percent of the 

ARIMA estimations. Moving-average terms are added afterwards if they 

further improve the model fit. Thus, the moving-average terms add infor-

mation that is not captured by the autoregressive elements. Here, the 

twelve period lagged error dominates the other lags and is chosen in 

nearly half of all cases. The lags which capture the one-month till the six-

month errors, still occur in more than 20 percent of the districts.  

Figure 3: Frequencies of the Selected AR and MA-Lags in the ARIMA Estimates 
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Lt: t month lagged values of the dependent variable 
 

As shown in Table 1 on page 29, our ARIMA-models have an average 

MAPFE of 0.90 percent across the 176 labour-market districts in the simu-

lated out-of-sample forecasts. The best result is achieved for the labour-

market district of Bremen which has a MAPFE of only 0.09 percent. By 

contrast, the prediction for Zwickau deviates from the actual figures by 

5.66 percent. The standard deviation as a measure for the variation is 

0.75 percentage points and can be used as a further indicator when com-

paring the accuracy of the predictions. Interesting is also the spatial dis-

tribution of the forecast errors. Geographically concentrated patterns of 

lower (higher) MAPFEs indicate that the model fits better (worse) for these 

regions. The ARIMA predictions have relatively low MAPFEs e.g. in central 
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Bavaria. High prediction errors mainly occur in Rhineland-Palatinate and 

Mecklenburg-Western Pomerania. 

The EWMA model forms its predictions by estimating three labour-market 

district specific parameters for the level, trend and seasonal influences. As 

described above in Section 4.1, the values for the smoothing parameters 

have to be between 0 and 1. High smoothing parameters attach a high 

value to current observations of a time series and lead to a fast adapta-

tion, whereas low values consider past observations as important and sig-

nify a slower adjustment. The level parameter α shows an average value 

of 0.90 and ranges between 0.63 and 1.00. For the trend, the smoothing 

parameter β takes on values between 0.00 and 0.23 with an average of 

0.07, and the seasonal smoother γ covers the complete interval from 0.00 

to 1.00 with a mean value of 0.51. The EWMA model shows a mean 

MAPFE of only 0.66 percent. The minimum MAPFE was calculated for 

Goeppingen with 0.08 percent, the maximum value of 3.52 percent re-

sulted in Helmstedt. The standard deviation is 0.55 percentage points. In 

general, the EWMA method produces good forecast results especially for 

many labour-market districts in the North-East and the South of Germany. 

Some labour-market districts in Mecklenburg-Western Pomerania, Saxony 

and Saxony-Anhalt have relatively high MAPFEs. 

Figure 4: Frequencies of the Selected Components in the Basic Structural-
Components Model 
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The basic SC model contains trend, season and business-cycle compo-

nents. Due to the unique behaviour of the time series in each labour-

market district and our automised selection of only significant compo-

nents, the composition of the selected components differs between the 

labour-market districts. However, some components are more frequently 

used than others (see Figure 4). 

The most important component is the linear time trend, which is kept by 

definition in every labour-market district. Also the quadratic and cubic 

trends are kept in more than 82 percent of the final estimations. Every 

sine and cosines function is included at least in half of all cases. The most 

commonly used seasonal components are the full year cosines and the 

half year sine function, which are kept in nearly all districts. The length of 

the business-cycle component is modelled individually for each labour-

market district and captures cycles with a length of at least 13 months. In 

only 16 districts is the cycle length affected by the censoring (see Section 

4.3) and is hence limited to 40 months. In 53 of 176 regions the cycle 

length is 23 or 35 months. The average length is 27 months. Two different 

types of business cycles are used: one is modelled as a sine and the other 

one as a cosines function. Hence, they are shifted in time but do not differ 

in length and amplitude. The sine cycle is included in nearly 14 percent 

and the cosines cycle in about 11 percent of the 176 simulated out-of-

sample estimations. 

The evaluation of the basic SC model for the simulated out-of-sample 

forecasts shows a mean MAPFE of 1.73 percent. The results also show a 

wide range in the calculated MAPFEs. The best fit was achieved in Celle 

with a MAPFE of 0.12 percent, the highest value was observed in Gotha 

with 8.81 percent. The standard deviation over the 176 labour-market dis-

tricts is 1.09 percentage points. There are also differences in the spatial 

distribution of the MAPFEs. Basic SC models perform better in most parts 

of North Rhine-Westphalia and Saxony-Anhalt, whereas in Thuringia the 

predictions are fairly poor. 

As described in Section 4.4, we augment the basic SC model for autore-

gressive elements to improve the short-term adjustment of the time se-

ries. Starting point is the full set of significant components used in the ba-

sic model. The results of the sequentially added autoregressive elements 
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clearly show the importance of the one-year lag which is used in 120 la-

bour-market districts, and the two-year lag, added in about 24 percent of 

all agencies (see Figure 5). On average, 2.29 AR lags are included in addi-

tion to the basic components. 

Figure 5: Frequencies of the Selected AR-Lags in the Structural-Components 
Model 
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Lt: t month lagged values of the dependent variable 
 
Surprisingly, the inclusion of the autoregressive elements leads to an in-

crease in the mean MAPFE of 0.40 percentage points in comparison to the 

basic model and results in a MAPFE of 2.13 percent. The fits range from 

0.31 percent in Freising up to 5.50 percent in Gotha. In the forecast for 

Freising, the commonly used structural components as mentioned above 

and additionally the lag 6 are used, whereas for Gotha only the twelve-

month lag and the 25-month lag are included. The standard deviation 

over the 176 labour-market districts is with 1.01 percentage points a little 

lower than in the basic model. Geographically, the SC model with autore-

gressive components seems to fit better for most of the eastern federal 

states of Germany, but worse for most regions in Mecklenburg-Western 

Pomerania and Lower Saxony. Compared with the results of the basic es-

timations, the MAPFE of the autoregressive approach is lower in only 25 

(14 percent) labour-market districts and higher in 151 (86 percent) cases. 

For those districts where the SCAR-model is better, the MAPFE improves 

by 0.92 percentage points. If the results are poorer, the MAPFE increases 

by 0.62 percentage points on average. 
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As described in Section 4.5, we also augment the basic SC model to ac-

count for spatial interdependencies across labour-market districts. There-

fore, a panel approach needs to be applied. Thus, the following results 

have two sources of variation in comparison to the basic model: the 

change of the estimation technique and the addition of the spatial lags. To 

calculate the effect of the change in the estimation procedure, we also es-

timate a panel model with only the significant components used in the ba-

sic model. The results for the panel approach show a mean MAPFE of 1.02 

percent, implying that the change of the estimation technique causes an 

average reduction of the forecast error of 0.71 percentage points. Com-

pared to the forecast estimated with the panel approach, the average 

MAPFE of the SC model with spatial interdependencies is again 0.03 per-

centage points lower and amounts to only 0.99 percent. The most com-

monly selected spatial lags are the twelve-month, the nine-month and the 

three-month lag, which are included in nearly 44, 38 and 36 percent of 

the labour-market districts, respectively (see Figure 6). 

Figure 6: Frequencies of the Selected Spatial Lags in the Structural-
Components Model 
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By including a geographical component in which employment in one la-

bour-market district also depends on its neighbours’ development, the 

forecasts and thereby the calculated MAPFEs should become more even 
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across the regions. This is confirmed by the results where the standard 

deviation of the MAPFE decreases from 1.09 percentage points in the basic 

model to 0.68. The results in the spatial model range from 0.12 percent 

deviation in Freiburg to 3.48 percent in Riesa. Districts with high MAPFEs 

are dispersed over the whole of Germany. Low MAPFEs are found in the 

city states Hamburg, Berlin and Bremen as well as in Brandenburg. In 

comparison to the basic model, the results are better in 142 (80.7 per-

cent) labour-market districts. A worsening of the MAPFE can be found in 

34 (19.3 percent) cases. The mean improvement of 0.45 percentage 

points is nearly as high as the worsening of 0.46 percentage points. 

5.2 Comparison of the Models 
According to the accuracy measures of the prediction, at least within the 

SC models a ranking seems obvious, with SCSAR as best and SCAR as 

worst: In contrast to the inclusion of autoregressive elements, the intro-

duction of spatial elements leads to an improvement of the prediction 

measure in form of a lower average, minimum, quantiles and maximum 

MAPFE as well as a lower standard deviation of the prediction measure 

compared to the basic model. A comparison of SCSAR with the ARIMA and 

EWMA models shows that their prediction accuracies do not deviate by 

much. EWMA has the lowest average, minimum and quantiles MAPFE, as 

well as the lowest standard deviation. However, the lowest maximum 

MAPFE is obtained in the SCSAR model which again demonstrates the 

compensatory effect of the spatial component. 

However, looking at each district separately shows the heterogeneity of 

the results. Figure 7 shows the model with the best forecast (lowest 

MAPFE) for each labour-market district. In total, the EWMA model fits best 

in 85 labour-market districts, i.e. in nearly half of all cases. ARIMA per-

forms best in 45 cases (25 percent), followed by SCSAR in 36 labour-

market districts (20 percent). The SCAR model is best in only four districts 

and the basic SC model in six cases. Hence, the SC model in its different 

variations has the lowest MAPFE in 46 labour-market districts (26 per-

cent). The labour-market districts where the spatially augmented model is 

the best are primarily situated in central Bavaria, in Mecklenburg-Western 

Pomerania and Brandenburg on the border to Poland and in Lower Saxony 

on the border to Saxony-Anhalt. In Baden-Wuertemberg, Rhineland Pa-

latinate and Saarland, SCSAR is rarely the best model.  
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Table 1: Results of the Simulated Out-of-Sample Forecasts 
Statistics of MAPFE ARIMA EWMA Basic SC SCAR SCSAR 
Mean 0.90 0.66 1.73 2.13 0.99 
Standard deviation 0.75 0.55 1.09 1.01 0.68 
Minimum 0.09 0.08 0.12 0.31 0.12 
50 %-Quantile 0.71 0.49 1.50 2.15 0.81 
75 %-Quantile 1.21 0.82 2.22 2.79 1.31 
95 %-Quantile 2.06 1.77 3.49 3.83 2.31 
Maximum 5.66 3.52 8.81 5.50 3.48 

Better than 
ARIMA 

 121 
(68.75 %)

28  
(15.91 %) 

17  
(9.66 %) 

77  
 (43.75 %) 

Comparison 
with ARIMA 

Worse than 
ARIMA 

 55 
(31.25 %)

148 
(84.09 %) 

159 
(90.34 %) 

99  
 (56.25 %) 

Better than 
EWMA 

  21  
 (11.93 %) 

17  
 (9.66 %) 

56  
 (31.82 %) 

Comparison 
with EWMA 

Worse than 
EWMA 

  155 
(88.07 %) 

159 
(90.34 %) 

120  
 (68.18 %) 

Better than 
basic SC 

   25 
 (14.20 %) 

142 
(80.68 %) 

Comparison 
with basic 
SC Worse than 

basic SC 
   151 

 (85.80 %) 
34  

 (19.32 %) 
Better than 
basic SC 

    153 
(86.93 %) 

Comparison 
with SCAR 

Worse than 
basic SC 

    23  
 (13.07 %) 
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Figure 7: Spatial Distribution of the Best Models 

 

Figure 7 only shows the geographical distribution of the “best” model, no 

matter how small the gap between the “best” and the “second best” 

model is. However, we want to systematically analyse the quality of all 

models to be sure not to loose any information. Therefore, tests on the 

structures of the calculated MAPFEs of all models need to be applied. 
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5.3 Statistical Analysis of the Forecast Performance 
To confirm our findings, we perform further statistical tests on the forecast 

errors (MAPFEs). First, we check the similarity of the forecast performance 

yielded by the various models in the same region. A second test analyses 

the independence between the MAPFEs and the basic time-series elements 

which are discussed in Section 2. 

All models applied in this paper are pure time-series estimations, i.e. they 

only include the past values to gain information. Hence, patterns found in 

the past should be reproduced well and can be extrapolated into the fu-

ture. On the other hand, structural breaks and turning points due to eco-

nomic trend reversals can hardly be captured. If these presumptions are 

correct, the forecast performance of the models in a region should be 

positively correlated. The pairwise correlation of the MAPFEs is shown in 

Table 2. 

Table 2: Correlation of the MAPFE between the Models 
 MAPFE ARIMA MAPFE EWMA MAPFE SC MAPFE SCAR 

MAPFE EWMA 0.4384***    

MAPFE SC 0.2119*** 0.3413***   

MAPFE SCAR 0.2729*** 0.1926** 0.6995***  

MAPFE SCSAR 0.1347* 0.2931*** 0.0538 -0.0512 

*** Significant at the 1 %-level, ** significant at the 5 %-level,* significant at the 10 %-level 
 

As the significantly positive correlation indicates, the models perform 

poorly in the same regions, or work well, respectively. Noticeable is the 

high correlation between the basic SC and the SCAR model, as well as the 

one between EWMA and ARIMA. These pairs of models tend to cover the 

same structures and consecutively produce similarly precise forecasts. 

However, the correlation coefficients are clearly smaller than one, i.e. the 

models are not close substitutes to each other. In contrast to the correla-

tion between SCSAR and the two moving-average models, the MAPFE of 

SCSAR is not significantly correlated with the other SC models, although 

they partly incorporate the same components. This difference reflects the 

additional information that is provided by the recent development of the 

neighbouring labour-market districts. 
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The test on independence of the forecast performance is carried out by 

regressing the MAPFE of each model on variables representing the basic 

time-series elements. The forecast error does not depend on these ele-

ments, if the coefficients are insignificant. However, if they have a signifi-

cant impact, the information provided by the time series is not exploited 

completely. Hence, in this case there is potential to improve the forecast 

performance. The hypothesis that the model error (MAPFE) does not de-

pend on a time-series component is only rejected in two cases. First, the 

seasonal component shows a significant positive sign for the EWMA, i.e. 

the EWMA model performs less well the higher the seasonal span which 

implies that the seasonal figure could be captured better. Second, the 

growth rate of employment has a negative influence on the MAPFE in the 

basic SC model. The higher the employment losses are, the higher the 

MAPFE. The losses tend to be extrapolated further on, even if the trends 

reverse (as happened in several parts of Germany at the end of 2004). 

The gap between the real value and the forecast can be reduced by in-

cluding temporally lagged elements, if the turning point is observable at 

the end of the data. 

Table 3:   Regression of the MAPFE and Possible Determining Factors for Each 
Model 

 MAPFE 
ARIMA 

MAPFE 
EWMA 

MAPFE 
SC 

MAPFE 
SCAR 

MAPFE 
SCSAR 

Growth rate of 
employment 

0.0028 
(0.04) 

-0.0386 
(0.51) 

-0.1189* 
(1.95) 

0.0141 
 (0.28) 

-0.0355 
 (0.89) 

Seasonal 
span of em-
ployment 

4.2530 
 (1.38) 

13.3695***
 (4.52) 

8.3382 
 (1.58) 

4.7221 
 (0.77) 

1.2518 
 (0.48) 

Average em-
ployment rate 

0.3585 
 (0.29) 

-0.3260 
 (0.51) 

-0.7443 
 (0.53) 

0.2400 
 (0.16) 

0.7141 
 (0.65) 

observations 176 176 176 176 176 
F-Value 0.64 9.06*** 2.61* 0.22 0.37 
r-squared 0.0077 0.1678 0.0532 0.0057 0.0095 
*** Significant at the 1%-level, ** significant at the 5%-level,* significant at the 10%-level 
 

Summing up, the tests indicate that the time-series structures, i.e. level, 

trend, and season, are modelled properly. We exploit the provided infor-

mation to a large extent, and develop improvements such as the augmen-

tation of the basic SC model by autoregressive and spatial autoregressive 

elements. Only in the EWMA model there seems to be some potential to 

improve the seasonal adjustment. Nonetheless, it turns out to be the best 
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model with respect to the number of regions where it performs best as 

well as the distribution of the MAPFEs. Even the other models applied in 

our paper perform well, as can be seen by the average MAPFE which is 

smaller than 2.2 percent for all, and smaller than 1 percent in three mod-

els. 

6 Conclusion 
In this paper we estimate employment with different time-series models 

for all (176) labour-market districts in Germany. As the conditions in these 

districts are very heterogeneous, we employ individually specified models 

which capture the local labour-market conditions. We do this by testing 

which variables have a systematic influence and improve the model fit in 

each labour-market district. Only these variables are included in the final 

regressions. Although we specify the models parsimoniously, it turns out 

that the selection of components greatly varies between the labour-

market districts. This confirms the importance of modelling each labour-

market district individually. 

We evaluate the models using simulated out-of-sample forecasts for 2005 

and calculating different accuracy measures for this time period. Overall, 

we find that the forecast quality of all our models is very high. Three of 

our models have a mean average percentage forecast error of less than 

one percent and the other models of around two percent. Additionally, we 

find a great variation in the best model across the regions. Therefore, it is 

not sufficient to run a forecast with only one model for all labour-market 

districts. Instead, better results can be achieved by forecasting with a 

number of models and subsequently seeing which performs best in which 

region. 

Our results clearly show that the inclusion of spatial information improves 

the forecast quality in the structural-components model by estimating a 

spatial dynamic panel. Ideally, the information on spatial co-development 

should be included in all models. Theoretically, the inclusion of spatial lags 

in the autoregressive models has been developed; unfortunately this is 

not technically possible in the ARIMA model with 176 labour-market dis-

tricts at present. For the EWMA model the theoretical and practical inte-

gration of spatial elements remains work for future research.  
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Although all our models have a high forecast quality, we still see potential 

for improvements by individually combining the different model results for 

each region using appropriate pooling techniques. First results indicate 

that this is indeed the case. However, we leave this work for a planned 

subsequent paper. 
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Appendix 

Table A. 1: Accuracy Measures 

Mean Average Percentage Forecast Error (MAPFE) 
Agency 

ARIMA EWMA SC SCAR SCSAR Best model 

031 AA Neubrandenburg 3.98 3.48 2.86 4.63 2.06 SCSAR 

032 AA Rostock 1.81 1.80 2.62 3.43 1.96 EWMA 

033 AA Schwerin 1.74 1.01 1.15 1.94 1.02 EWMA 

034 AA Stralsund 1.54 2.58 2.50 2.59 1.09 SCSAR 

035 AA Cottbus 0.27 1.65 0.38 0.51 0.87 ARIMA 

036 AA Eberswalde 0.78 1.09 3.56 0.96 0.56 SCSAR 

037 AA Frankfurt (Oder) 0.78 0.80 3.36 2.75 0.31 SCSAR 

038 AA Neuruppin 0.35 0.83 2.89 1.55 1.07 ARIMA 

039 AA Potsdam 0.31 0.40 0.20 0.63 0.32 SC 

042 AA Dessau 0.49 1.60 1.69 2.69 1.55 ARIMA 

043 AA Halberstadt 0.39 0.83 0.46 0.72 0.42 ARIMA 

044 AA Halle 1.24 0.82 0.94 0.68 0.80 SCAR 

045 AA Magdeburg 1.20 0.66 1.16 1.66 1.22 EWMA 

046 AA Merseburg 0.63 1.57 1.02 0.64 0.75 ARIMA 

047 AA Sangerhausen 1.95 1.00 1.20 1.51 1.00 SCSAR 

048 AA Stendal 0.40 0.51 0.84 1.13 0.52 ARIMA 

049 AA Wittenberg 0.77 1.76 1.29 1.36 1.57 ARIMA 

070 AA Altenburg 0.53 0.64 3.38 3.43 0.56 ARIMA 

071 AA Annaberg-Buchholz 0.65 1.53 1.53 1.62 1.59 ARIMA 

072 AA Bautzen 0.44 0.71 0.97 0.85 0.66 ARIMA 

073 AA Chemnitz 0.51 0.77 0.65 0.46 0.44 SCSAR 

074 AA Dresden 0.41 0.27 1.22 1.74 0.29 EWMA 

075 AA Leipzig 0.94 0.36 2.75 0.49 1.02 EWMA 

076 AA Oschatz 0.93 0.67 0.85 1.20 1.00 EWMA 

077 AA Pirna 1.33 1.57 2.07 2.14 1.58 ARIMA 

078 AA Plauen 2.31 1.97 4.76 2.24 1.50 SCSAR 

079 AA Riesa 1.17 1.04 5.44 4.84 3.48 EWMA 

092 AA Zwickau 5.66 1.48 0.85 0.85 1.79 SCAR 

093 AA Erfurt 0.77 0.69 3.31 0.77 0.64 SCSAR 

094 AA Gera 0.31 0.74 3.64 4.17 0.53 ARIMA 

095 AA Gotha 0.35 1.78 8.81 5.50 2.66 ARIMA 

096 AA Jena 1.60 1.95 4.42 3.81 2.80 ARIMA 

097 AA Nordhausen 0.42 0.57 3.97 3.05 1.42 ARIMA 

098 AA Suhl 0.59 0.76 3.45 1.91 2.01 ARIMA 

111 AA Bad Oldesloe 0.65 0.30 1.56 2.15 0.74 EWMA 

115 AA Elmshorn 0.37 0.46 1.83 2.20 0.81 ARIMA 

119 AA Flensburg 0.63 0.29 1.66 2.10 0.46 EWMA 

123 AA Hamburg 1.00 0.13 1.51 2.24 0.91 EWMA 

127 AA Heide 0.78 1.31 2.73 4.27 0.62 SCSAR 

131 AA Kiel 0.24 0.21 0.90 2.81 1.02 EWMA 

135 AA Lübeck 0.27 0.28 1.04 1.62 0.50 ARIMA 

139 AA Neumünster 0.71 0.59 0.47 0.59 0.77 SC 
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Mean Average Percentage Forecast Error (MAPFE) 
Agency 

ARIMA EWMA SC SCAR SCSAR Best model 

211 AA Braunschweig 0.27 1.12 0.54 0.54 0.80 ARIMA 

214 AA Bremen 0.09 1.03 1.90 3.50 0.72 ARIMA 

217 AA Bremerhaven 1.51 0.20 2.16 2.68 1.14 EWMA 

221 AA Celle 0.22 0.20 0.12 0.57 1.85 SC 

224 AA Emden 0.42 2.30 0.58 0.58 0.53 ARIMA 

227 AA Goslar 1.01 0.51 1.23 2.37 0.26 SCSAR 

231 AA Göttingen 1.57 1.09 2.56 3.33 0.36 SCSAR 

234 AA Hameln 0.90 0.46 2.62 3.71 1.49 EWMA 

237 AA Hannover 0.29 0.54 3.48 3.48 2.85 ARIMA 

241 AA Helmstedt 3.56 3.52 2.39 2.86 1.96 SCSAR 

244 AA Hildesheim 0.57 0.95 2.45 2.41 0.55 SCSAR 

247 AA Leer 0.97 0.42 0.91 1.94 0.67 EWMA 

251 AA Lüneburg 0.52 0.49 1.72 2.82 1.47 EWMA 

254 AA Nienburg 1.90 0.60 2.58 4.04 0.82 EWMA 

257 AA Nordhorn 1.09 0.52 0.86 0.73 0.35 SCSAR 

261 AA Oldenburg 0.62 0.44 0.91 1.94 0.22 SCSAR 

264 AA Osnabrück 1.06 0.16 1.25 2.12 0.30 EWMA 

267 AA Stade 0.47 0.55 1.15 1.95 0.15 SCSAR 

271 AA Uelzen 0.96 0.97 2.57 3.64 0.36 SCSAR 

274 AA Vechta 2.01 1.41 0.81 0.47 1.16 SCAR 

277 AA Verden 0.19 0.30 0.96 1.52 1.09 ARIMA 

281 AA Wilhelmshaven 1.58 0.29 1.75 3.19 1.51 EWMA 

311 AA Aachen 1.10 0.75 1.73 3.11 1.40 EWMA 

313 AA Ahlen 0.42 0.65 2.34 2.29 0.70 ARIMA 

315 AA Bergisch Gladbach 0.75 0.17 1.44 2.94 0.99 EWMA 

317 AA Bielefeld 0.35 0.28 1.77 2.54 1.37 EWMA 

321 AA Bochum 1.84 1.07 1.09 1.09 2.76 EWMA 

323 AA Bonn 0.32 0.47 1.64 1.64 1.65 ARIMA 

325 AA Brühl 1.28 0.31 0.81 2.30 0.30 SCSAR 

327 AA Coesfeld 0.13 0.33 1.97 2.44 0.63 ARIMA 

331 AA Detmold 0.34 0.46 2.30 2.64 1.80 ARIMA 

333 AA Dortmund 0.31 0.53 1.06 1.06 0.51 ARIMA 

335 AA Düren 0.37 0.77 1.03 1.03 0.26 SCSAR 

337 AA Düsseldorf 0.92 0.34 1.24 1.24 2.01 EWMA 

341 AA Duisburg 0.33 0.39 1.10 1.10 0.76 ARIMA 

343 AA Essen 0.27 0.33 1.15 2.48 0.64 ARIMA 

345 AA Gelsenkirchen 0.54 1.33 0.24 0.43 0.65 SC 

347 AA Hagen 0.24 0.20 1.34 1.34 0.72 EWMA 

351 AA Hamm 1.50 0.16 1.96 1.96 0.45 EWMA 

353 AA Herford 1.55 0.72 1.92 2.97 1.10 EWMA 

355 AA Iserlohn 0.27 0.49 0.92 1.41 0.62 ARIMA 

357 AA Köln 0.50 0.35 0.87 2.98 1.23 EWMA 

361 AA Krefeld 1.62 0.37 1.88 2.77 0.88 EWMA 

363 AA Meschede 0.30 0.30 1.70 2.15 1.15 EWMA 

365 AA Mönchengladbach 1.34 0.36 1.84 1.84 2.12 EWMA 

367 AA Münster 0.15 0.15 0.92 1.07 0.20 EWMA 
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Mean Average Percentage Forecast Error (MAPFE) 
Agency 

ARIMA EWMA SC SCAR SCSAR Best model 

371 AA Oberhausen 0.13 0.49 0.48 0.86 0.37 ARIMA 

373 AA Paderborn 0.29 0.60 0.90 0.95 1.92 ARIMA 

375 AA Recklinghausen 0.72 1.16 4.60 3.28 0.71 SCSAR 

377 AA Rheine 0.76 0.29 0.92 2.02 0.25 SCSAR 

381 AA Siegen 0.55 0.26 1.79 1.79 0.45 EWMA 

383 AA Soest 0.66 0.40 0.52 0.73 0.56 EWMA 

385 AA Solingen 1.49 0.52 2.33 2.33 2.55 EWMA 

387 AA Wesel 1.09 0.82 2.51 2.51 0.27 SCSAR 

391 AA Wuppertal 0.44 0.42 2.09 2.34 2.14 EWMA 

411 AA Bad Hersfeld 0.57 0.47 0.93 1.07 0.87 EWMA 

415 AA Darmstadt 0.83 0.60 1.91 2.57 1.22 EWMA 

419 AA Frankfurt 2.57 0.27 1.12 3.10 1.34 EWMA 

423 AA Fulda 0.77 0.32 2.20 2.51 0.46 EWMA 

427 AA Gießen 0.71 0.37 1.28 1.83 0.23 SCSAR 

431 AA Hanau 1.66 1.26 2.57 2.57 2.48 EWMA 

435 AA Kassel 0.31 0.92 0.69 0.69 0.66 ARIMA 

439 AA Korbach 0.47 0.60 0.77 1.28 1.07 ARIMA 

443 AA Limburg 1.51 0.54 2.86 2.97 2.22 EWMA 

447 AA Marburg 0.45 0.61 1.33 1.45 0.90 ARIMA 

451 AA Offenbach 0.42 0.15 1.50 1.50 0.92 EWMA 

455 AA Wetzlar 0.80 0.38 1.21 1.94 1.78 EWMA 

459 AA Wiesbaden 0.88 0.28 1.49 2.77 1.11 EWMA 

511 AA Bad Kreuznach 2.37 0.99 2.75 3.29 2.06 EWMA 

515 AA Kaiserslautern 1.68 1.24 2.41 2.80 1.63 EWMA 

519 AA Koblenz 0.37 0.24 0.79 1.86 0.37 EWMA 

523 AA Ludwigshafen 0.51 0.18 1.62 2.02 0.78 EWMA 

527 AA Mainz 0.21 0.29 1.15 1.15 0.25 ARIMA 

531 AA Mayen 1.85 1.42 2.76 3.39 0.50 SCSAR 

535 AA Montabaur 0.56 0.24 1.71 2.68 0.93 EWMA 

539 AA Neunkirchen 0.19 0.37 2.08 2.34 1.25 ARIMA 

543 AA Landau 0.24 0.16 2.50 2.87 0.46 EWMA 

547 AA Neuwied 0.81 0.28 2.21 2.26 0.92 EWMA 

551 AA Pirmasens 0.72 0.43 0.28 0.41 1.95 SC 

555 AA Saarbrücken 1.98 1.80 3.33 4.15 2.19 EWMA 

559 AA Saarlouis 0.34 1.00 1.92 2.06 1.21 ARIMA 

563 AA Trier 1.61 0.68 1.88 2.21 0.80 EWMA 

611 AA Aalen 2.78 0.15 1.50 1.41 0.26 EWMA 

614 AA Balingen 0.21 0.17 1.87 2.96 1.56 EWMA 

617 AA Freiburg 0.79 0.11 1.23 1.92 0.12 EWMA 

621 AA Göppingen 0.24 0.08 1.19 1.19 0.87 EWMA 

624 AA Heidelberg 0.60 0.58 1.37 2.55 1.04 EWMA 

627 AA Heilbronn 0.34 0.24 1.32 2.18 0.66 EWMA 

631 AA Karlsruhe 0.20 0.26 1.16 1.97 0.80 ARIMA 

634 AA Konstanz 2.19 0.13 2.32 3.01 0.61 EWMA 

637 AA Lörrach 1.68 0.20 1.22 2.15 0.49 EWMA 

641 AA Ludwigsburg 0.54 0.36 1.01 2.17 0.31 SCSAR 
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Mean Average Percentage Forecast Error (MAPFE) 
Agency 

ARIMA EWMA SC SCAR SCSAR Best model 

644 AA Mannheim 1.16 0.32 1.30 2.42 0.97 EWMA 

647 AA Nagold 0.66 0.54 1.51 1.91 2.33 EWMA 

651 AA Offenburg 0.95 0.43 0.93 1.48 1.30 EWMA 

654 AA Pforzheim 0.80 0.41 2.11 2.24 0.52 EWMA 

657 AA Rastatt 2.48 0.29 3.44 3.44 2.94 EWMA 

661 AA Ravensburg 0.96 0.09 0.78 2.06 0.54 EWMA 

664 AA Reutlingen 0.62 0.51 1.14 1.06 0.87 EWMA 

667 AA Rottweil 0.27 0.19 0.88 1.05 0.26 EWMA 

671 AA Waiblingen 0.93 0.40 1.82 2.81 0.61 EWMA 

674 AA Schwäbisch Hall 0.14 0.28 1.86 1.86 0.84 ARIMA 

677 AA Stuttgart 0.42 0.22 0.63 1.41 0.24 EWMA 

681 AA Tauberbischofsheim 1.51 0.27 1.74 2.78 1.18 EWMA 

684 AA Ulm 0.27 0.65 0.14 1.60 0.90 SC 

687 AA Villingen-Schwenningen 1.17 0.77 1.39 2.85 0.20 SCSAR 

711 AA Ansbach 0.53 0.35 1.29 1.62 0.22 SCSAR 

715 AA Aschaffenburg 1.66 1.09 3.47 3.47 2.30 EWMA 

719 AA Bamberg 0.26 0.37 1.52 1.87 0.23 SCSAR 

723 AA Bayreuth 0.51 0.42 2.26 2.63 1.06 EWMA 

727 AA Coburg 0.49 0.98 2.34 2.93 0.62 ARIMA 

731 AA Hof 1.98 0.89 3.53 3.71 1.76 EWMA 

735 AA Nürnberg 1.60 0.26 1.30 2.72 0.57 EWMA 

739 AA Regensburg 0.99 0.94 1.61 2.48 0.29 SCSAR 

743 AA Schwandorf 0.77 0.39 1.81 3.87 1.06 EWMA 

747 AA Schweinfurt 0.57 0.82 1.41 1.90 0.25 SCSAR 

751 AA Weiden 0.76 0.47 0.46 0.46 0.94 SCAR 

755 AA Weißenburg 0.94 0.39 1.46 1.55 0.34 SCSAR 

759 AA Würzburg 0.71 0.17 0.87 1.56 0.19 EWMA 

811 AA Augsburg 1.13 0.33 1.47 2.49 0.71 EWMA 

815 AA Deggendorf 0.76 0.57 0.82 0.61 0.95 EWMA 

819 AA Donauwörth 0.28 0.39 1.30 1.70 0.75 ARIMA 

823 AA Freising 0.22 0.42 1.14 0.31 1.15 ARIMA 

827 AA Ingolstadt 0.49 0.57 1.22 2.63 0.36 SCSAR 

831 AA Kempten 0.65 0.40 1.08 2.84 1.69 EWMA 

835 AA Landshut 0.22 0.49 0.84 1.24 0.22 SCSAR 

839 AA Memmingen 1.31 0.31 1.11 1.11 0.25 SCSAR 

843 AA München 1.52 0.56 1.57 2.76 0.46 SCSAR 

847 AA Passau 1.30 0.72 2.66 4.02 0.94 EWMA 

851 AA Pfarrkirchen 0.74 0.25 1.49 2.17 0.59 EWMA 

855 AA Rosenheim 0.24 0.38 1.34 2.63 0.69 ARIMA 

859 AA Traunstein 1.39 0.94 2.48 2.79 1.63 EWMA 

863 AA Weilheim 1.30 0.65 2.10 3.13 1.18 EWMA 

900 Berlin 0.65 0.51 1.96 2.95 0.36 SCSAR 

Mean 0.90 0.66 1.73 2.13 0.99  

Maximum 5.66 3.52 8.81 5.50 3.48  

Minimum 0.09 0.08 0.12 0.31 0.12  

Standard deviation 0.75 0.55 1.09 1.01 0.68  
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