

RECHTS- UND WIRTSCHAFTS-WISSENSCHAFTLICHE FAKULTÄT Institute for Employment Research

The Research Institute of the Federal Employment Agency

Do organizations benefit or suffer from cultural and age diversity?

"Increasing Heterogeneity and its Impact"

Nürnberg, December 2012

Antje Buche (FAU)

Monika Jungbauer-Gans (FAU)

Annekatrin Niebuhr (IAB)

Cornelius Peters (IAB)

Outline

- Introduction
- Theory
- Contribution to the literature
- Data
- Estimation approach
- Diversity measures
- Results

Motivation

- Significant changes in workforce composition
- Demographic change
 - age structure changes, e.g. share of people >65 years will increase from 20% to 34% in 2060 (German Federal Statistical Office 2011)
- International mobility of labour
 - Annual net immigration of 100.000 people is assumed for the future
 - More than 2 million foreign workers in Germany, 140,000 highskilled foreigners (7.3% of all employees)
- → Effects of workforce composition on economic performance?

Trade-off – costs and benefits of diversity (Lazear 1999, 2000)

- Benefits due to complementarities among different skills and ideas that are specific for certain groups of workers
- Costs caused e.g. by barriers to communication and conflicts
- Production function (Ottaviano and Peri 2005):

$$Y_{i} = A(C_{Y}^{i})^{1-\alpha} [1 - \tau(div_{i})]^{\alpha} \sum_{j=1}^{J} (L_{j,Y}^{i})^{\alpha}, \ \tau(div_{i}) \in (0,1)$$

Contribution of the paper

- Evidence on the impact of worker diversity on firm productivity in Germany
- In contrast to others the impact of different dimension of staff diversity (age, and cultural background) is considered simultaneously
- Choosing different diversity measures to disentangle positive and negative effects of diversity
- Deal with unobserved heterogeneity and endogeneity

Data

Sources

- IAB Establishment Panel, survey (~ 1% of all plants)
 - → information on value added, capital stock, ...
- Establishment History Panel
 - → information on industry, region of location, firm's age and size, ...
- Process-produced individual data from the IAB
 - → detailed information on composition of a firm's workforce

Dataset

- unbalanced panel: ~ 2,800 German plants, 1996-2008 (~ 20,000 obs.)
- only firms with at least 3 employees
- exclusion of firms with less than 5 observations
- the whole public sector and NGOs are excluded

Estimation approach: Cobb-Douglas Production function

$$\begin{split} &\ln(Y_{it}) = \ln(A_{it-1}) + \alpha_1 \ln(L_{it-1}) + \alpha_2 \ln(C_{it-1}) + \varepsilon_{it} \\ &= \alpha_1 \ln(L_{it-1}) + \alpha_2 \ln(C_{it-1}) + \sum_{j=1}^{J} \beta_j DIV_{jit-1}^{Culture} + \sum_{k=1}^{K} \gamma_k DIV_{kit-1}^{Age} + \sum_{l=1}^{L} \delta_l Z_{lit-1} + \mu_i + d_t + d_{mt} + \varepsilon_{it} \end{split}$$
 with
$$&\ln(A_{it-1}) = \sum_{l=1}^{J} \beta_j DIV_{jit-1}^{Culture} + \sum_{k=1}^{K} \gamma_k DIV_{kit-1}^{Age} + \sum_{l=1}^{L} \delta_l Z_{lit-1} + \mu_i + d_t + d_{mt} \end{split}$$

Y : value added

A : total factor productivity

L : labor

C : capital

DIV^{Culture} : cultural diversity

DIV^{Age} : age diversity

■ Z : control variables (skill structure, ...)

μ_i : firm level fixed effects

■ d_t : year fixed effect

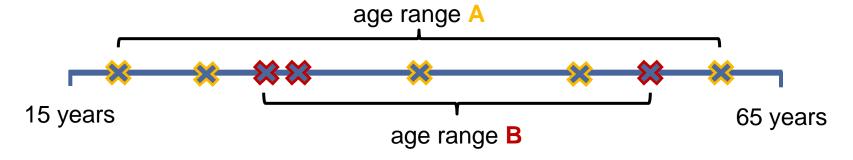
d_{mt} : year-industry fixed effects

IV-Estimation

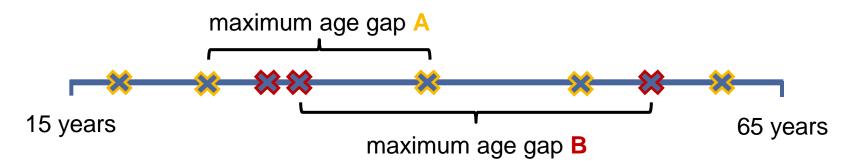
- External instruments: diversity of "identical" firms that are not part of our dataset (< 1 % of all firms are included in our dataset)
- Identification of "identical" firms, 1:1 matching
 - location (east / west & region type: 6 categories)
 - industry (37 categories)
 - firm age (5 categories)
 - firm size (9 categories)
 - share high-skilled worker (4 categories)
 - share low-skilled worker (4 categories)
- Calculation of external instruments, example:

$$\overline{DIV}_{it}^{Cult} = \sum_{j \in S_i} DIV_{jt}^{Cult} / J \qquad \text{(For 11 \% of the observations it is not possible to identify at least one "identical" observation.)}$$
set of all firms that are not part of our dataset but have identical properties as firm i

Lagged diversity measures (referring to t-3)


Cultural diversity

- Number of cultural cluster within a firm as proxy variable for amount of cultural specific knowledge and abilities (Dawson 2007)
 - Cluster based on GLOBE-Cluster (Global Leadership and Organizational Behavior Effectiveness Research Project; House et al. 2004)
 - 13 different cluster:
 Germany; German-speaking Europe & Benelux;
 Northern Europe; Latin Europe (France, Italy, Spain, ...);
 Eastern Europe; South-east Europe;
 Anglo Cluster (US, UK, Australia, ...); Latin America;
 Middle East; Sub-Saharan Africa;
 Confucian Asia; South Asia;
 Rest of the World
- Share of foreign workers



Age diversity (Dawson 2007)

 Age range reflecting the amount of age-specific knowledge and abilities (new technical knowledge vs. work experience)

 Maximum age gap as an indicator for communication barriers, misunderstandings and conflicts between younger and older workers

Results, dep. variable: Value-added

N=17,637 (2,526 firms)	FE	FE-IV (2SLS)	RE	RE-IV (2SLS)	1 st stage F stat. (FE-IV)
Number cult. cluster	0.021*	0.009	0.048***	0.094	20.14
Share foreign worker	0.020	-0.274	0.103	0.177	11.08
Age range	-0.002	-0.007	-0.003*	0.001	16.48
Maximum age gap	0.001	0.023	0.001	-0.012	10.55
Within R ²	0.079				
Between R ²			0.889		
Hausman Test (p-value)	0.000				
Hansen J-Stat. (p-value)		0.593			
Overidentification test (p-value)		0.000			

⁺ p<0,1; * p<0,05; ** p<0,01, p-values are based on robust standard errors (except for RE-IV). control variables: In(labour), In(capital), share high-skilled, share female, mean(age), time fixed effects, dummy variables for year x industry

Findings

- FE & RE model indicates that:
 - age diversity does (not) affect firm productivity
 - cultural diversity matters: lager amount of cultural specific knowledge / abilities has a positive effect on firm productivity
- <u>but</u>: IV estimation do not confirm the significant impact of cultural diversity on firm productivity

Institute for Employment Research

The Research Institute of the Federal Employment Agency

Thank you very much for your attention!

Cornelius Peters

Cornelius.Peters2@iab.de

www.iab.de

Results, dep. variable: Value-added, alternative diversity measures

N=17,637 (2,526 firms)	FE	FE
Number cult. cluster	0.029*	
Blau-Index (HHI) for cult. cluster	0.020	0.028
Share foreign worker		0.138
Age range	-0.001	
Av. distance between age _i & age _j	-0.001	
SD (age)		-0.025
Var (age)		0.001
Within R ²	0.079	0.079

Blau =
$$1 - \sum_{c=1}^{12} \left(\frac{foreign_c}{foreign} \right)^2$$

$$D_{Sdist} = \frac{2}{N(N-1)} \sum_{i=1}^{N} \sum_{j < i} (age_i - age_j)$$

⁺ p<0,1; * p<0,05; ** p<0,01, p-values are based on robust standard errors. control variables: In(labour), In(capital), share high-skilled, share female, mean(age), time fixed effects, dummy variables for year x industry

Results, dep. variable: Value-added

Only small firms (≤ 20 emp.) N=7,574 (1,082 firms)	FE	RE	FE-IV
Number cult. cluster	0.044	0.087*	0.224
Share foreign worker	0.147	0.069	-0.651
Age range	-0.002	-0.002	-0.006
Maximum age gap	0.001	0.000	0.023
Within R ²	0.070		
Between R ²		0.506	
Hausman Test (p-value)	0.000		
Hansen J-Stat. (p-value)			0.839
Overidentification test (p-value)			0.000

⁺ p<0,1; * p<0,05; ** p<0,01, p-values are based on robust standard errors. control variables: ln(labour), ln(capital), share high-skilled, share female, mean(age), time fixed effects, dummy variables for year x industry

# similar observations				
	Percentiles	Smallest		
1%	1	1		
5%	1	1		
10%	2	1	Obs	20365
25%	8	1	Sum of Wgt.	20365
50%	44		Mean	1151.413
		Largest	Std. Dev.	3794.391
75%	355	33539		
90%	2393	33539	Variance	1.44e+07
95%	6713	33539	Skewness	5.177931
99%	21356	33539	Kurtosis	33.22158

Inter- and intra-class standard deviation of diversity measures, class = group of "identical" firms

		Standard Deviation		
		Inter-class SD	Intra-class SD	
Culture	Number cult. cluster	1.975	0.029	
	Blau-Index	0.223	0.004	
	Share foreign worker	0.057	0.002	
AGE	Range	9.088	0.108	
	Max distance	3.624	0.068	
	Av. distance	1.066	0.053	
	SD	1.274	0.040	

Statistics are based on 492,922 observations (year=2007):

1,695 groups of "identical" firms & on average 291 observations per group