# Labor Market Institutions and the Macroeconomy

A Conference Organized by the IAB, Friedrich-Alexander University Erlangen-Nuremberg, and the Kiel Institute for the World Economy

# New Evidence on Labor Market Flows and the Hiring Process

Steven J. Davis University of Chicago and NBER

> June 2011 Nuremberg

# Overview, Part I

- 1. Examine joint behavior of worker flows and job flows in the CS of employer growth rates.
- 2. Interpret joint behavior in light of search and matching theories.
- 3. Use statistical models of worker flows in the CS to explain aggregate flows. How much gain?
- 4. Combine statistical models with administrative data on distribution of establishment growth rates to construct synthetic measures of hires, separations, quits and layoffs

# Two U.S. Data Sets

#### □ Job Openings and Labor Turnover Survey (JOLTS)

- Monthly sample of 16,000 establishments covering nonfarm economy. Rotating panel design.
- Each establishment reports employment, hires, quits, layoffs, other separations, and (end-of-month) vacancies
- Our micro sample covers Jan-2001 to June-2010 and includes all establishments with data for all three months in a quarter.

#### □ Business Employment Dynamics Data (BED)

- Quarterly administrative data on nearly all US establishments in the private sector
- □ Micro Data cover 1990Q1 to 2010Q2
- Micro data are longitudinally linked allows calculation of establishment-level growth (i.e., job flows)

#### Quarterly Worker Flows in the Cross Section, United States, Pooled JOLTS Sample, 2001-2010



#### U.S. Worker Flows in the Cross Section of Employer Growth Rates (Zoomed In)



#### Quarterly Worker Flows in the Cross Section of Employer Growth Rates, Mystery Country



#### Quarterly Worker Flows in the Cross Section of Employer Growth Rates, Austria



# **Theory Sketch**

Search models in the spirit of Mortensen and Pissarides (1994) but with multi-worker firms

- E.g., Cooper-Haltiwaner-Willis (2007), Elsby-Michaels (2008)
- "Iron link" of hires to job creation & separations to destruction
- Learning about match quality as in Jovanovic (1979, 1985) and Moscarini (2005)
  - Pries & Rogerson (2005) is a hybrid of MP and learning
- On-the-job search with match-specific productivity and aggregate fluctuations (Barlevy, 2002)
  - Workers are more likely to quit bad matches when aggregate conditions are strong
- Employer search with persistent idiosyncratic firm profitability (Faberman & Nagypal, 2009)
  - Workers are more likely to quit employers with low productivity and slow growth (an "abandon-ship" effect)

#### Standard Model with "Iron Link" Implications

- □ Consider an MP model with multi-worker firms
  - Cooper-Haltiwanger-Willis (2007, CHW)
  - Hires, vacancies and layoffs are endogenously determined subject to fixed and variable costs of posting vacancies and layoffs
  - Firms face aggregate and idiosyncratic profit shocks
  - Quit rate is exogenous and uniform
  - Workers are ex ante homogenous
  - **I** Frictional search as in other MP models
- □ Write employer-level growth (hires separations) as

$$e_{it} - e_{i,t-1} = h_{it} - l_{it} - \overline{q} e_{i,t-1}$$
$$= \eta(U_t, V_t) v_{it} - l_{it} - \overline{q} e_{i,t-1}$$

where  $\eta(\cdot)$  is the job-filling rate, which depends on aggregate unemployment  $(U_t)$  and vacancies  $(V_t)$ 

#### **CHW Model Properties**



- Movements in aggregate hires and layoffs arise entirely from shifts over time in CS distribution of employer growth rates.
- Adjustment costs and shock properties affect the shape and location of growth rate distribution, but not the iron link.

# **Relaxing the Iron Link**

Simplest extension of CHW model:
 Quit rate remains exogenous but varies procyclically

$$q_t = \overline{q}(G_t)$$

where  $G_t$  = aggregate employment growth

- □ Iron link continues to hold in a given cross section, but time variation in  $q_t$  shifts the micro hiring and and layoff relations
- □ Fluctuations in aggregate worker flows now arise from shifts in the growth rate distribution and shifts in the micro-level CS relations

# **Exogenously Pro-Cyclical Quit Rates**



□ Quit rate drops when aggregate growth rate falls.

Inducing rightward shifts in the hiring and layoff relations, including the kink point.

### Endogenous Quits, 1 Higher Quit Rate at Weaker Employers

#### □ Faberman-Nagypál (2008) model

- Employers vary in idiosyncratic component of productivity
- More productive firms grow faster
- Employers engage in costly search, contact workers, and make offers
- Bargained wage rises with employer productivity
- Because they earn lower wages, workers at less productive employers are more likely to accept outside offers
- Thus, quit rate declines with employer growth rates in CS
- Rationalizes positive value and a negative slope in the CS hires relation to the left of zero.
- See, also, Trapeznikova (2010)

### Endogenous Quits, 2 Higher Quit Rates in Stronger Labor Market

#### □ Barlevy (2002) model with OTJ search

- Employed workers quit when better offers arrive
- Vacancies are scarcer and workers have fewer outside options in recessions → lower quit rate
- Leads to shift and dilation of match quality distribution over business cycle
  - Shift: negative aggregate shock causes dissolution of bad matches (cleansing effect)
  - Dilation: lower outside options cause workers in bad matches to remain in those matches (sullying effect)

This model implies that CS quit-growth relation varies with business cycle, shifting up in booms

#### Endogenous Quits, 3 Separation Rates Decline with Job Tenure

- Learning about match quality as in Jovanovic (1979, 1985), Moscarini (2005), Pries and Rogerson (2005) and many others
  - Stochastic match quality
  - Employer and worker learn about match quality over time
  - Good matches survive, bad ones don't
  - Separation rate declines with match tenure
  - If growing employers have a larger proportion of young matches, then separation rate rises with employer growth rates in the cross section.

#### **Relating Micro and Macro Behavior**

□ Express aggregate worker flow rates,  $W_t$  (rate of hires, quits, layoffs or separations), as

$$W_t = \sum_g f_t(g) W_t(g)$$

- Group establishments by employment growth rates, g, and calculate the employment-weighted mean rate for each g in period t,  $w_t(g)$
- To recover the aggregate flow rate at *t*, weight each growth rate bin by its employment mass in period *t*,  $f_t(g)$
- **D** Obtain  $w_t(g)$  from JOLTS and  $f_t(g)$  from BED

□ Changes over time in aggregate flow rates arise from:

- 1. Changes in average worker flow rates for a given g, or
- 2. Shifts in the distribution of establishment-level employment growth
- 3. Interaction between 1 and 2.

### Statistical Specifications for CS Relations

#### 1. Fixed Cross-Section

Motivated by time-invariant "iron link" relations in basic multiworker MP model, but we do not constrain the location of kinks:

$$w_t(g) = \alpha(g) + \varepsilon_t^D(g)$$

where w<sub>t</sub>(g) is worker flow rate at establishment with growth rate g
Estimate this relation on the pooled sample of establishment-level observations from 2001 to 2010Q2.

# **C-S Relations in Three Periods**

Hires

**Total Separations** 



#### Layoffs

#### Quits



# Statistical Specifications, cont'd

#### 2. **Baseline**

Allow vertical shifts in CS relation as functions of cycle indicators :

$$w_t(g) = \alpha(g) + \beta_1 G_t^+ + \beta_2 G_t^- + \beta_3 \Delta G_t + \beta_4 JF_t + \varepsilon_t^B(g)$$

□  $G_t$  = aggregate employment growth rate (+, -, change) □  $JF_t$  = job-finding rate of unemployed workers

#### 3. <u>Flexible</u>

- Allow for more complex cyclical behavior
- Interact cycle indicators with 5 dummy variables for broad growth rate intervals → Allows shape and location of CS relations to vary with cycle.

#### Worker Flows Implied by Statistical Specifications

 $\hat{W}_t = \sum_g f_t(g) \hat{w}_t(g)$ 





#### Leftward Shift in Growth Rate Distribution And Interaction with the CS Layoff Relation



# How Much Does Fixed CS Model Improve Fit for Aggregate Flows?

|                 | <b>R-Squared Values in Time-Series</b>         |                                  |  |  |
|-----------------|------------------------------------------------|----------------------------------|--|--|
|                 | <b>Regressions of the Indicated Rate on:</b>   |                                  |  |  |
|                 | Aggregate Variables Adding One Variable: Worke |                                  |  |  |
|                 | (4 Cycle Indicators)                           | Rate Predicted by Fixed CS Model |  |  |
| Hiring Rate     | 0.808                                          | .966                             |  |  |
|                 | 0.000                                          | [.000]                           |  |  |
| Separation Rate | 0.652                                          | .944                             |  |  |
|                 | 0.052                                          | [.000]                           |  |  |
| Quit Rate       | 0.020                                          | .961                             |  |  |
|                 | 0.929                                          | [.000]<br>.961<br>[.011]         |  |  |
| Layoff Rate     | .880                                           |                                  |  |  |
|                 | 0.525                                          | [.000]                           |  |  |

The entry in brackets reports the *p*-value of the coefficient on the prediction of the model that imposes a time-invariant cross-sectional relation.

# **Constructing Synthetic JOLTS Data**

□ Baseline statistical model + quarterly data on the cross-sectional distribution of establishment-level growth rates → synthetic data for aggregate worker flows

$$\hat{W}_t = \sum_g f_t(g) \hat{w}_t(g)$$

- BED data on f + model-based  $\hat{\mathbf{w}}$  from 1990 to 2001
- BED data on f + JOLTS-based w from 2001 to 2010.

# Quit, Layoff, and Job Destruction Rates



- □ Layoffs move with job destruction.
- □ Quits moves opposite to both.

# Hiring and Job Creation Rates



□ Hires tend to move with job creation but are more volatile.

□ On the secular declines in worker flow rates, see DHJM (2006), Davis (2008) and DFHJM (2010).

# **Overview, Part II**

- 5. Use a simple model of daily hiring dynamics to identify the job-filling rate for vacancies
- 6. Big CS variation in job-filling rates. Why?
  - Heterogeneity in the efficiency of search and matching
  - Scale economies (or diseconomies) in the hiring technology at the establishment or sectoral level
  - Employers use other instruments, in addition to vacancy numbers, to influence the pace of hiring.

# **Overview, Part II**

- 5. Use a simple model of daily hiring dynamics to identify the job-filling rate for vacancies
- 6. Big CS variation in job-filling rates. Why?
  - Heterogeneity in the efficiency of search and matching
    - Scale economies (or diseconomies) in the hiring technology at the establishment and/or sectoral
    - Employers use other instruments, in addition to vacancy numbers, to influence the pace of hiring.

# **Overview, Part II**

- 7. Generalized matching function (GMF) defined over unemployment, vacancies, and other recruiting instruments.
  - Estimate scale economies in the employer hiring technology
  - Estimate how recruiting intensity varies with hires rate
  - Construct a time-series index of recruiting intensity per vacancy
  - GMF outperforms standard MF in explaining fluctuations in the job-finding rate and the job-filling rate. GMF also yields a more stable Beveridge Curve.
  - GMF accounts for CS behavior of job-filling rates.
     Standard matching function does not.

# **A Model of Daily Hiring Dynamics**

Daily laws of motion for flow of hires and vacancy stock:

$$h_{s,t} = f_t v_{s-1,t}$$
$$v_{s,t} = [(1 - f_t)(1 - \delta_t)] v_{s-1,t} + \theta_t$$

□Where *s* indexes days,  $f_t$  is the daily jobfilling rate in month *t*,  $\delta_t$  is the rate at which unfilled vacancies lapse, and  $\theta_t$  is the daily flow of new vacancies.

# Solving for the job-filling rate and vacancy flows

Use laws of motion to derive two equations relating end-of-month vacancy stock and hires flow during month, both observed, to two unknowns,  $\{f_t, \theta_t\}$ .

$$v_{t} = (1 - f_{t} - \delta_{t} + \delta_{t} f_{t})^{\tau} v_{t-1} + \theta_{t} \sum_{s=1}^{\tau} (1 - f_{t} - \delta_{t} + \delta_{t} f_{t})^{s-1}$$
  
$$H_{t} = f_{t} v_{t-1} \sum_{s=1}^{\tau} (1 - f_{t} - \delta_{t} + \delta_{t} f_{t})^{s-1} + f_{t} \theta_{t} \sum_{s=1}^{\tau} (\tau - s)(1 - f_{t} - \delta_{t} + \delta_{t} f_{t})^{s-1}$$

Given data on  $\delta_t$ ,  $v_t$ ,  $v_{t-1}$ ,  $H_t$ , and a value for tau, solve numerically for  $f_t$  (daily job-filling rate) and  $\theta_t$  (daily flow of new vacancies).

# Vacancy Flows and Job-Filling Rate Relationships to Employer Growth Rates



## Job-Filling Rate and Gross Hires Rate



#### Job-Filling Rate and Gross Hires Rate



# **Generalized Matching Function**

$$H_{et} = \mu \left(\frac{v'_t}{u_t}\right)^{-\alpha} q(v_{et}, x_{et}), \text{ where } \sum_e q(v_{et}, x_{et}) = v'_t$$

- Job-filling rate is now  $f_{et} = \tilde{f}_t q(v_{et}, x_{et}) / v_{et}$
- For  $q(v_{et}, x_{et}) \equiv v_{et}$ , aggregation delivers standard Cobb-Douglas matching function
- For  $q(v_{et}, x_{et}) \equiv v_{et} \tilde{q}(x_{et})$ , the hiring function satisfies CRS in vacancies at the micro level, and differences in  $f_{et}$  identify the effects of employer actions on other margins.

**Quantifying the Roles of Other** Instruments and Scale Economies Let  $q(v_{et}, x_{et}) \equiv v_{et}^{\gamma} \tilde{q}(x_{et})$  so that job-filling rate becomes  $f_{ot} = \tilde{f}_t v_{et}^{\gamma-1} \tilde{q}(x_{et})$  $\frac{d\log(f_{et})}{d\log(H_{et})} = \frac{d\log(\tilde{f}_t)}{d\log(H_{et})} + (\gamma - 1)\frac{d\log(v_{et})}{d\log(H_{et})} + \frac{d\log(\tilde{q}(x_{et}))}{d\log(H_{et})}$  $0.821 = 0 + (\gamma - 1)(0.336) + \frac{d \log(\tilde{q}(x_{et}))}{d \log(H_{et})}$ 

• To preclude a role for employer actions on other margins requires a scale economy parameter value of  $\gamma \approx 3.44$ .

# Estimating Scale Economies in the Establishment-Level Hiring Technology

- <u>Basic idea</u>: Exploit differences in scale of vacancies and hiring across industry-size cells to estimate returns to scale in employer hiring technology.
- Do NOT use time variation, because it is contaminated by the intensity, x. Control for celllevel growth rate for same reason.
- Control for differences in matching efficiency across industries and across employer size classes.
- Instrument using level of employment to deal with potential division bias.

# Scale-Economy Regressions Dependent Variable: Log(Job-Filling Rate)

| Explanatory<br>Variable <del>&gt;</del> | Log Beginning-of-Month<br>Vacancies (Level) |        | Log Monthly<br>Flow (L | Vacancy<br>evel) |
|-----------------------------------------|---------------------------------------------|--------|------------------------|------------------|
| Estimation $Method \rightarrow$         | .OLS                                        | IV     | OLS                    | IV               |
| Coefficient                             | 059                                         | .001   | .065                   | .001             |
| (std. error)                            | (.049)                                      | (.051) | (.049)                 | (.051)           |
| $R^2$                                   | .779                                        | .772   | .780                   | .772             |
| First-stage $R^2$                       |                                             | .985   |                        | .986             |
| Implied $\gamma$                        | 0.941                                       | 1.001  | 1.069                  | 1.001            |

- 1. N=70 in all regressions. 5 or 6 size classes per industry (12).
- 2. All regressions include industry and size class fixed effects and the employment growth rate in the industry-size cell.
- 3. IV is two-stage LS regression using log(Employment Level) as the instrument. N=70 in all regressions.

# **Aggregate Implications**

GMF with CRS at the employer-level implies:

$$H_{t} = \sum_{e} H_{et} = \mu \left(\frac{v_{t}'}{u_{t}}\right)^{-\alpha} \sum_{e} v_{et} \tilde{q}(x_{et}) = \mu \left(\frac{v_{t}'}{u_{t}}\right)^{-\alpha} v_{t}' = \mu v_{t}^{1-\alpha} u_{t}^{\alpha} \overline{q}_{t}^{1-\alpha},$$
  
where  $\overline{q}_{t} = \sum_{e} (v_{et} / v_{t}) \tilde{q}(x_{et})$  and  $v_{t}' = v_{t} \overline{q}_{t}.$ 

 $\Delta \log H = \alpha \Delta \log u + (1 - \alpha) \Delta \log v + (1 - \alpha) \Delta \log \overline{q}$ 

Working  
Hypothesis: 
$$\frac{\Delta \log \overline{q}}{\Delta \log H} = \frac{\Delta \log q_{et}}{\Delta \log H_{et}} = 0.821$$

# Recruiting Intensity Per Vacancy Series Implied by Working Hypothesis



# Market Tightness and the Role of Recruiting Intensity Per Vacancy



# Testing Performance of Standard vs. GMF

|                                                                               | Std                                 | RMSE<br>Using                    | Percent<br>Dron in         | Non-Nested Test of Added<br>Predictive Ability |                                                           |  |
|-------------------------------------------------------------------------------|-------------------------------------|----------------------------------|----------------------------|------------------------------------------------|-----------------------------------------------------------|--|
| Specification                                                                 | Deviation,<br>Dependent<br>Variable | Standard<br>Matching<br>Function | RMSE,<br>Generalized<br>MF | $p-value, H_0$ $= Standard$ Model              | <i>p</i> -value, H <sub>0</sub> =<br>Generalized<br>Model |  |
| Job-finding rate (Un                                                          | employment I                        | Escape Rate)                     | Regressed on '             | <b>Fightness Rati</b>                          | 0 (v'/u)                                                  |  |
| National Data                                                                 | 0.19                                | 0.05                             | -2.4                       | 0.02                                           | 0.98                                                      |  |
| Job-finding rate (Hires Per Unemployed) Regressed on Tightness Ratio $(v'/u)$ |                                     |                                  |                            |                                                |                                                           |  |
| National Data                                                                 | 0.38                                | 0.07                             | -19.8                      | 0.00                                           | 0.00                                                      |  |
| Northeast                                                                     | 0.34                                | 0.13                             | -46.1                      | 0.00                                           | 0.00                                                      |  |
| Midwest                                                                       | 0.39                                | 0.08                             | -31.2                      | 0.00                                           | 0.00                                                      |  |
| South                                                                         | 0.41                                | 0.12                             | -19.2                      | 0.00                                           | 0.00                                                      |  |
| West                                                                          | 0.45                                | 0.12                             | -31.9                      | 0.00                                           | 0.00                                                      |  |
| Unemployment Rate Regressed on Effective Vacancy Rate (v')                    |                                     |                                  |                            |                                                |                                                           |  |
| National Data                                                                 | 0.28                                | 0.11                             | -17.6                      | 0.00                                           | 0.00                                                      |  |
| Northeast                                                                     | 0.25                                | 0.16                             | -10.4                      | 0.00                                           | 0.94                                                      |  |
| Midwest                                                                       | 0.27                                | 0.10                             | -8.0                       | 0.00                                           | 0.79                                                      |  |
| South                                                                         | 0.28                                | 0.15                             | -17.3                      | 0.00                                           | 0.09                                                      |  |
| West                                                                          | 0.32                                | 0.16                             | -24.3                      | 0.00                                           | 0.00                                                      |  |

## A Summary: Tools and Methods

- 1. A useful descriptive tool: Relate worker flows and job-filling rates to growth rates in the CS.
  - Yields empirical objects for assessing, calibrating and developing theory
  - Highlights the importance of nonlinear aggregation in labor market fluctuations
- 2. How to combine CS statistical models with administrative data on employer growth rates to construct synthetic data.
- 3. A simple model + moment-fitting method that identifies job-filling rates from periodic data on the stock of vacancies and the flow of hires

## **A Summary: Tools and Methods**

- 4. A generalized matching function (GMF):
  - How to estimate the degree of scale economies (or diseconomies) in the employer hiring technology
  - How to identify the elasticity of recruiting intensity per vacancy with respect to the hires rate
  - A time-series index for recruiting intensity per vacancy
  - An aggregate time series for effective vacancies that outperforms the standard measure of vacancies in accounting for fluctuations in job-finding rates and jobfilling rates, and that yields a more stable Beveridge Curve.

# References (Incomplete)

- Borovickova, Katarina, 2011, "Impact of Productivity Shocks on Hiring, Separations and Hazard Rates Across Tenures," University of Chicago, in progress.
- □ Cooper, Haltiwanger and Willis, 2007, "Search Frictions: Matching Aggregate and Establishment-Level Observations," Journal of Monetary Economics, 54, 56-78.
- Davis, 2008, "The Decline of Job Loss and Why It Matters," American Economic Review P&P, 98, no. 2.
- Davis, Faberman and Haltiwanger, 2010 "The Establishment-Level Behavior of Vacancies and Hiring," NBER Working Paper 16265. Revision coming soon.
- Davis, Faberman, Haltiwanger, Jarmin and Miranda, 2010, "Business Volatility, Job Destruction, and Unemployment," American Economic Journal: Macroeconomics
- Davis, Faberman and Haltiwanger, 2011 "Labor Market Flows in the Cross Section and Over Time," working paper, 15 May.
- Davis, Haltiwanger, Jarmin and Miranda, 2006, "Volatility and Dispersion in Business Growth Rates: Publicly Traded versus Privately Held Firms," NBER Macro Annual.
- Mortensen and Pissarides, 1994, "Job Creation and Job Destruction in the Theory of Unemployment," Review of Economic Studies, 61, no. 3, 397-415.
- Trapeznikov, Ija, 2010, "Employment Adjustment and Labor Utilization," working paper, Northwestern University.

# **ADDITIONAL SLIDES**

### U.S. Employment Growth Rate Distribution, Selected Periods, BED Data

| Fraction of Employment                                           |      |         | 2001q2- |      | 2008q3- |
|------------------------------------------------------------------|------|---------|---------|------|---------|
| at                                                               | 1991 | 1998-99 | 2003q1  | 2006 | 2009q2  |
| Establishments with<br>Contractions > 10%, including<br>Closings | 16.0 | 14.0    | 14.5    | 12.6 | 14.0    |
| Establishments with Contractions $\geq 10\%$                     | 27.4 | 26.9    | 29.3    | 28.0 | 30.8    |
| Establishments with No Net<br>Change in Employment               | 14.3 | 13.9    | 14.8    | 15.5 | 16.1    |
| Establishments with<br>Expansions < 10%                          | 27.4 | 30.0    | 28.0    | 30.7 | 27.4    |
| Establishments with<br>Expansions >=10%, including<br>Openings   | 14.8 | 15.2    | 13.4    | 13.2 | 11.6    |

#### Fit of the Establishment-Level Regressions Used to Estimate the CS Worker Flow Relations

- □ Table entries show R-squared values for employmentweighted regressions on the indicated statistical models.
  - "Fixed Cross-Section" corresponds to the regression model used to fit the time-invariant CS relations displayed on the previous slides
  - "Augmented Fixed Cross-Section" relaxes the model slightly to allow for within-bin differences in the worker flow relations.

|                                         | Model Specification |                           |                       |                       |
|-----------------------------------------|---------------------|---------------------------|-----------------------|-----------------------|
| Dependent variable<br>in descriptive CS | Fixed Cross-        | Augmented<br>Fixed Cross- | Augmented<br>Baseline | Augmented<br>Flexible |
| regression                              | Section             | Section                   | Specification         | Specification         |
| Hiring Rate                             | 0.542               | 0.543                     | 0.545                 | 0.588                 |
| Separation Rate                         | 0.507               | 0.509                     | 0.511                 | 0.556                 |
| Quit Rate                               | 0.159               | 0.162                     | 0.170                 | 0.239                 |
| Layoff Rate                             | 0.463               | 0.466                     | 0.467                 | 0.521                 |

#### Layoff Rates Compared to Other Job Loss Data



# **Closely Related Work in Progress**

- □Apply the same statistical approach to the analysis of vacancies:
  - Assess theoretical models
  - Construct synthetic JOLTS-like vacancy measures back to 1990
  - Construct highly disaggregated vacancy measures by region, industry, employer size, etc. (with the intention to overcome smallsample problems in disaggregated vacancy measures calculated directly from JOLTS).

# Is It Just "Lucky" Employers Growing Faster?

Stochastic nature of job filling induces a positive relationship between realized employment growth and job-filling rates at the establishment level.

- "Lucky" employers fill jobs faster and, as a result, grow faster.
- To quantify this effect, we simulate hires and employment growth at the establishment level for fitted values of f,  $\theta$ ,  $\delta$ , and the distribution of vacancies, allowing parameters and vacancy distributions to vary freely by employer size class.
  - <u>Result:</u> Luck effect is much too small to explain the observed C-S relationship between job-filling rate and growth rate:
    - Luck alone → job-filling rate rises by 2 percentage points in moving from 0% to 10% monthly growth rate.
    - It rises by another 1 point in moving from 10 to 30%.

# Simulated and Empirical Job-Filling Rates Compared



# Textbook Equilibrium Search Model

- No role for "recruiting intensity" per vacancy
- Pissarides (2000, chapter 5) extends standard model to incorporate variable recruiting intensity per vacancy
  - Costs per vacancy are increasing and convex in intensity
  - His hiring technology and matching function are consistent with our generalized matching function (micro CRS case)
- Optimal recruiting intensity is insensitive to aggregate conditions and same for all employers in the cross-section.
   Why? Employers use vacancies to vary hires, and choose intensity to minimize cost per vacancy.
- Rejected by our CS evidence, specifically positive relationship of job-filling rates to employer growth and hires rate.
- Cannot explain role of other instruments for aggregate hires.

# Additional Theoretical Implications

- A major role for recruiting intensity per vacancy is not fatal to standard equilibrium search models with random matching, but it calls for re-evaluation of widely used building blocks in the standard model
  - Dropping the standard free-entry condition for new jobs (and dispensing with the convenient result that equilibrium vacancy value is 0) leads to a meaningful role for recruiting intensity per vacancy. See Davis (2001), "Quality Distribution of Jobs …"
- The CS evidence on slides is hard to square with the basic mechanism stressed by mismatch models.
- Directed search models are readily compatible with the CS evidence, because these models come built-in with an extra recruiting margin, typically in the form of posted offer wages. See Kass and Kircher (2010).

# Are All Hires Mediated through Vacancies? A Specification Test

 Number of hires in month t accounted for by the flow of new vacancies in t:

$$H_{t}^{NEW} = f_{t}\theta_{t}\sum_{s=1}^{\tau} (\tau - s)(1 - f_{t} - \delta_{t} + \delta_{t}f_{t})^{s-1}$$

 So, according to the model, the percent of hires in t accounted for by establishments with no vacancies at start of month is:

$$E_t^{NoVac}H_t^{NEW}/H_t$$

where the first variable is the employment share at establishments with no vacancies at start of month.

# **Model Specification Test Results**

| Percent of Hires in t by Establishments with No Vacancies at end of t-1 | 41.6 |
|-------------------------------------------------------------------------|------|
|                                                                         |      |
| Percent Implied by Model for Alternative Sectoral Breakdowns            |      |
| Size Class (6) by Worker Turnover Rate (6) – 36 cells                   | 27.0 |
| Industry (12) by Size Class (2) by Worker Turnover (6) Rate – 144 cells | 26.7 |
| Industry (2) by Size Class (6) by Worker Turnover Rate (15) – 180 cells | 27.4 |
|                                                                         |      |

27.4/41.6 = 66%  $\rightarrow$  Our model of daily hiring accounts for about 2/3 of hires at establishments with no vacancies at start of month. So a big share of hires are not mediated through vacancies Figure B.5: Scatter Plot of the Log Vacancy Rate against the Log Hires Rate across Growth Rate Bins and Hires-Weighted Least Squares Regression Results

