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Statistical Notions of Privacy 

• SDL (Statistical Disclosure Limitation) Literature has two 
fundamental notions: identity and value disclosure 

• Best framework – Fuller (1993) 
– Given a de-identified data set where the confidential values are 

masked, an intruder would first try to identify a record in the 
released data set as belonging to an individual (identity 
disclosure) and subsequently attempt to estimate the 
confidential values (value disclosure).  

– Intruder knowledge is modeled as knowledge of the true values 
of a few of the masked confidential variables 

– Useful in evaluating the efficacy of a masking technique 
– Does not incorporate a query-response framework – i.e., 

released data maintains a few statistics closely but does not 
attempt to answer every question well 



Computational Notions of Privacy 

• Framework – Dinur & Nissim (D&N) 

• Given a database with confidential values (WLOG – binary), modify every 
query response with added (bounded) noise 

• Does not preclude static data release where a perturbed data set would 
give perturbed answers when “queried” 

• “privacy is violated if an adversary is capable of computing a confidential 
attribute di from its identity i” - Privacy is preserved if it is computationally 
infeasible to do so 

• D&N contend that statistical definitions are inadequate because: 

– “Firstly, it is not clear that large variance necessarily prevents private 
information from being leaked.  

– Secondly, this kind of definition does not allow us to capitalize on the limits of 
an adversary.” 

• More on these later. 
 

  



• Initial results are for intruder with no prior information, 
but with different levels of computing power 

• Define non-privacy – “if a computationally-bounded 
adversary can expose a 1 − ε fraction of the database 
entries for all constant ε > 0.” 

• Unclear what “expose” means – appears to suggest 
that the computational attack would result in 1 − ε 
fraction of the database’s identified entries to be 
known with certainty 

• However, a closer look at results appear to suggest 
otherwise 

Computational Notions of Privacy 



Computational Notions of Privacy 
(continued) 

• “Our main result is a polynomial reconstruction algorithm 
from noisy subset-sums, that – in case the answer to queries 
are within additive perturbation error ξ = o(√n) – succeeds in 
reconstructing a ‘candidate’ database c whose Hamming 
distance from d is at most o(n). In particular, c agrees with d 
on over 99% of their bits.” 

• Appears to be an impressive compromise at first sight, but for 
most reasonable sized databases there can be a multitude of 
candidates that are within a very small Hamming distance 



Computational Notions of Privacy 
(continued) 

• Consider exponential adversary: Has computing capacity for exponential 
number of queries 

• Regardless of the intruder’s prior information (that is regardless of the 
distribution from which (d) is drawn) D&N result is that we can always find 
a candidate (c) whose Hamming distance from the true database (d) is such 
that dist (c,d) < εn <= 4 ξ  for ε  > 0 when the following algorithm stops: 

• Start with a candidate database (c) 

• Issue all queries and check if (True response – perturbed response) > ξ  for any query 

• If yes, try the next candidate. Else, STOP 

• Algorithm guaranteed to stop because true database (d) is one of the 
candidates 

• Since (c) and (d) will only differ in at most εn bits, n(1- ε) bits are “exposed” 

• But is it disclosure? 



Computational Notions of Privacy 
(continued) 

• Hamming distance only tells us that the “strings” (d) and (c) 
differ in at most 4ξ positions 

• Cannot identify the exact positions in which they differ 

• Example:  
• d = (0 0 0 1 1)  & (ξ = 1)  

• There are 31 different candidate databases within this 
Hamming Distance of 4 for n=5. The intruder cannot be any 
more certain about the true database 
– If n = 1,000,000 and ξ = 10, there are more than 10192 potential 

candidates (c) that are within Hamming distance 4 ξ 

– It is true 10192 is much smaller than 21000000, but not of much use to the 
intruder either in terms of knowing which is the true database 



Computational Notions of Privacy 
(continued) 

• So where is the “Disclosure”? 
• Note that privacy is considered violated if we “disclose” the 

value of the ith observation computationally.  The 
implication is that the value will be revealed with certainty. 

• But we cannot do that with a single candidate (unless it is 
the only candidate) because we will have some uncertainty, 
no matter how close the candidate is to the true database.  

• If we take a guess about the ith observation based on the 
candidate database value, we are very likely to be right but 
not 100% correct always. 

• The only way to compromise n(1- ε) bits with certainty is to 
obtain all possible candidates that are that εn Hamming 
distance away. Then, values for observations common to all 
candidates are revealed with certainty. 
 



Computational Notions of Privacy 
(continued) 

• But.. enumerating all candidates is not computationally feasible even for 
moderately sized databases. The number of candidate databases even for 
small perturbations will be large and the number of queries will rise 
exponentially. 

• We can view the D&N results as relating the perturbation level ξ and  
computational power of the intruder to bounds on the probability of a 
correct guess of the ith value.  Privacy should be expressed in terms of the 
bounds on this probability, rather than number of bits “exposed”. 

• If so, it is the same as the familiar probability of disclosing the true value  
in SDL. Only the means of arriving there are different (statistical inference 
vs computing subset sums) 

• Alternatively, we can use the reciprocal of the number of candidate 
solutions for a particular Hamming Distance as a risk measure for exact 
disclosure of the whole  database – again equivalent to measures used in 
traditional SDL 

 



Other D&N Results for Output 
Perturbation 

• Regardless of perturbation method and regardless of intruder’s 
prior information (that is regardless of the distribution from which d 
is drawn) a Polynomially Bounded adversary can obtain a candidate 
solution c with high probability in polynomial time (i.e., needs only 
polynomial number of queries) such that dist(c,d) < εn if ξ = o(√n) 
(Main Result) 

• Although at first glance it seems like a large perturbation, √n is 
actually very small for very large databases. For a million records, 
this is the equivalent of modifying just over 1000 records or 0.1% of 
the entire database. So the perturbation level is VERY SMALL.  

• If the database is uniformly distributed “over all strings of n bits”, 
that is the intruder has no prior information, privacy is guaranteed if 
ξ = Õ(n) but that “renders the database effectively useless – users 
are extremely unlikely to get any non-trivial information by 
querying the database, and hence they are unlikely to compute any 
non-trivial functionality of it.” 



Computational Privacy & Statistical 
Notions 

• As just discussed, computations result in probabilistic 
and not certain disclosure (no different from SDL). But, 
D&N suggest by not taking into account the 
computational power of the adversary SDL folks have 
missed something. Our argument against this is two-
fold: 

• An apparent steep increase in disclosure through 
computations is attributable either to  

1. very little perturbation relative to utility (every query 
must be answered within a relatively small distance from 
the true answer) and computational power, and to some 
extent (price of high utility),  

2. the choice of perturbation method (output perturbation). 



1) The Price of High Utility 

• Traditional SDL methods assume that only a few statistics (computations) are answered well and 
no bounds are placed on the errors for other (non-essential) computations. 

• The D&N results rely heavily on every answer being with known and relatively small error 
bounds (ξ). 

• Under traditional SDL assumptions above, D&N type computations will not result in any 
substantial privacy violation (privacy as defined in D&N). 

• In other words “capitalizing on the limits of the adversary” requires perturbation schemes in a 
query-response framework that guarantees high utility 

• Typical data releases (even microdata releases) by government agencies face no substantial 
threat by intruders even with substantial computing power. They need to worry more about 
statistical threats that are model-based attacks. 

• D&N hint at this: 

–  If queries are answered such that they are within ξ = Õ(n) for most queries then it is possible to 
guarantee privacy even if perturbation is Õ(√n) (better than Õ(n)) so that some utility is achieved 

• Thus, we need to be careful about the context where computational attacks are relevant. Access 
to query responses where the quality of the response to every query is known and guaranteed 
(such as in remote access databases) is certainly a situation where D&N results are relevant 



2) Choice of Perturbation Method 
Input Perturbation & the CD model 

• D&N claim that their main results are oblivious to intruder’s 
prior information and to the perturbation method (Input or 
Output). 

• CD Model – The basis for extending output perturbation 
results to input perturbation 
– Create a private version (d’) of the database d and answer all 

queries from d’ 
– As long as the answers to all queries are within the bounds 

guaranteed (i.e., utility is the same as an output perturbation 
algorithm), there is no apparent difference between input and 
output perturbation 

– Since a user may retrieve d’ by simply querying each 
observation it is equivalent to releasing a CD of perturbed data 
to the user 



Input vs Output Perturbation 

• Question: 

– Are input and output perturbation really 
equivalent even under the D&N scenario? That 
is, do they lead to the same candidate solutions 
or different candidate solutions with different 
characteristics? 

 

 



Some Definitions 

•     – True response to a query 

•     – Perturbed response to the same query 

• σ represents the amount of input perturbation 

• d represents the original database 

• c represents the candidate database from D&N 
algorithm 

• e represents the input perturbed database 

• ξ represents the maximum perturbation 

•                           ξ  for all queries q 

 



Input vs Output Perturbation – 
Candidate Solutions 

• Input Perturbation CD Model: 

• There are multiple input perturbation schemes possible that can guarantee that all responses 
from all queries are with ξ  of the true response (D&N present one such scheme; other 
schemes are possible as below). 

• To ensure equivalence between input and output perturbation in terms of security measured 
by Hamming distance, we choose the following scheme: Randomly change ξ 0’s in (d) to 1 
and ξ 0’s in (d) to 1 to get the perturbed database (e). 

• Then we can formulate the problem as follows: 

– |ei - di| ≤ ξ when di = 0 and |ei - di | ≤ ξ when di = 1 

– ei = [di + σi] ϵ *0, 1+ and  for all queries q,                          ≤ ξ 

–  For this formulation we will find that the only binding constraint will be: 

 ∑1=1,…,n |(σi )| ≤ 2ξ 

• The perturbed database (e) will be ≤ 2ξ from the true database (d) due to the binding 
constraint. When the D&N algorithm is applied to the released input perturbed data e, every 
candidate solution c obtained will be ≤ 4ξ from (d) and (e).  

 

 



Input vs Output Perturbation – 
Candidate Solutions 

• It may be argued that both input perturbation and 
output perturbation are subject to the same disclosure 
since both result in candidate solutions that are the 
same maximum distance away from the true database. 

• There is one important difference between Input and 
Output perturbation 
– With output perturbation, it is possible that the number of 

candidate solutions is very small. When ξ is very small, it is 
possible that there is only one candidate solution … EXACT 
DISCLOSURE 

– With input perturbation, we are always guaranteed a 
specific minimum number of candidate solutions … EXACT 
DISCLOSURE NEVER OCCURS 

 



Input vs Output Perturbation – 
Candidate Solutions 

• Why does this happen? 
– With input perturbation there is only one binding constraint as seen earlier, permitting a 

full set of candidates (all candidates within 4ξ Hamming distance from (d)) that cannot 

be eliminated. 

– With output perturbation, independent noise is added to the true sums. Every sum 
query represents a constraint that is independent of the other constraints. When the 
maximum amount of noise is bounded, each perturbed sum constrains the values of the 
true sums, resulting in the elimination of candidate databases. In the worst case, we 
may end up with a single candidate which would be the true database. 

• For example, the following simulation involving every possible database of 10 observations and 
employing all possible (1023) queries (that can be easily replicated) shows the following: 

– ξ = 1, Unique candidate solutions = 1022 (only all zero’s and all 1’s have multiple solutions) 

– ξ = 2, Unique candidate solutions = 1002 

– ξ = 3, Unique candidate solutions = 902 

– ξ = 4, Unique candidate solutions = 482 

– ξ = 5, Unique candidate solutions = 0 

– Thus, while there may be no difference in computational security performance 
measured in terms of Hamming distance of the candidates from the true database, if we 
consider the number of potential candidate solutions as  a measure of security, input 
perturbation would be preferred, for the same level of utility.  



Comparison of Input and Output 
Perturbation 

• Thus, while there may be no difference in computational security performance measured in 
terms of Hamming distance of the candidates from the true database, if we consider the 
number of potential candidate solutions as  a measure of security, input perturbation would 
be preferred, for the same level of utility.  

 



Input vs Output Perturbation – 
Disclosure risk 

• It must be noted that we have assessed both 
input and output perturbation in a query-
response framework 



Conclusion 

• Is there reason for pessimism? Has the computational privacy literature exposed 
a deep flaw in SDL methods that statistical definitions of privacy have missed? 
We contend otherwise for the following reasons. 
 

1. Computational privacy only underscores the already well understood tradeoff between 
privacy and security. You cannot eat the cake (have good utility for every query) and have it 
(privacy) too. 

2. If ξ is relatively small and every query is answered, then by definition there can be little that 
masking techniques can do.  

3. Even under the pessimistic privacy scenario of small ξ, employing even an exponential 
adversary, only probabilistic disclosure is possible using the D&N attack for input 
perturbation. A single candidate cannot result in knowledge without certainty and therefore 
does not violate privacy under the following original definition from D&N: “privacy is 
violated if an adversary is capable of computing a confidential attribute di from its identity I”. 
The D&N attack can only provide a probability for the value of di from a single candidate. 
There is not 100% certainty about the value of any bit. 

4. Even under a more realistic computational power for the adversary, non-privacy can be 
achieved with a relatively small perturbation that is greater than o(√n). 


