

www.csiro.au

Remote Analysis & Differential Privacy

Remote Analysis vs SDC for Business Data

Christine M O'Keefe CSIRO Mathematics, Informatics and Statistics

1 July 2011

Overview

• Remote Analysis & Differential Privacy

- Logistic regression
- Other models
 - Work in progress discussions with
 - James Chipperfield, Sebastien Lucie (Aust Bureau Statistics)
 - Steve Fienberg, Alessandro Rinaldo (CMU)

Headline conclusion:

can be better to add noise to something other than output

• Remote Analysis vs Statistical Disclosure Control

- Business Data
 - Joint work with Natalie Shlomo (submitted)

Headline conclusion:

remote analysis (output perturbation) seems preferable...

Remote Analysis

CSIRO. Remote Analysis & Differential Privacy

Remote Analysis – the basic scenario

Scenarios where remote analysis may be useful

- Phase 1 investigations with low-risk ethical review prior to applying for full access with full ethical review
 - Prepare before visiting data laboratory
 - Preliminary results for grant applications
 - Evidence that application for full access is worthwhile
- Restricted functionality may be sufficient in some situations
- Some data may be unavailable by other means
 - Business data
- Analyst activity can be easily logged for monitoring and audit

Remote Analysis – the \$1M question

CSIRO. Remote Analysis & Differential Privacy

Remote Analysis – options for intervention

Differential Privacy

CSIRO. Remote Analysis & Differential Privacy

Differential Privacy – the \$1M question

Differential Privacy– options for intervention

Example

Logistic Regression

CSIRO. Remote Analysis & Differential Privacy

Example – logistic regression

- Chaudhuri & Monteleoni 2008 perturbing the estimate
 - Explanatory variable data space bounded by unit ball
 - Binary response variable

 $\hat{\beta} = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i \beta^T x_i)) + \frac{1}{2} \lambda \beta^T \beta$

 λ a regularising parameter

- Function with output $\hat{\beta}$ has sensitivity 2/n λ
- $\hat{\beta} + \alpha$ where $\alpha \sim \text{Lap}(2/n\lambda\epsilon)$ is ϵ -differentially private

• Smith 2008

- Sample-and-aggregate the bias-corrected maximum likelihood estimate
- Add sensitivity-calibrated noise

Example – logistic regression

- Chaudhuri & Monteleoni 2008 perturbing the objective function
 - Explanatory variable data space bounded by unit ball
 - Binary response variable

 $\hat{\beta} = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i \beta^T x_i)) + \frac{1}{2} \lambda \beta^T \beta + \frac{1}{n} \alpha^T \beta$

where $\alpha \sim Lap(2/\epsilon)$, is ϵ -differentially private

• Perturbing something other than the "output"

Remote Analysis vs Statistical Disclosure Control for Business Data

Christine M O'Keefe and Natalie Shlomo CSIRO Mathematics, Informatics and Statistics Southampton Statistical Sciences Research Institute

1 July 2011

Outline

Business data

- Particular challenges
- Current approaches

• Example: Sugar Farms Data

- Statistical disclosure control
- Remote analysis
- Comparison
 - Exploratory data analysis
 - Linear regression
- Headline conclusion:
 remote analysis seems preferable

Business data

Business data - challenges

- Characteristic pattern of inclusion probabilities
 - Large enterprises always sampled census
 - Medium-sized enterprises often sampled
 - Small enterprises seldom sampled
- Few variables
- Most variables continuous not discrete
- Most variable distributions highly skewed
- Common to have enterprises which are outliers on almost all variables

Example

Sugar Farms Data

CSIRO. Remote Analysis & Differential Privacy

Sugar Farms Data

- 1982 survey of sugar cane industry in Queensland
 - Sample of 338 Queensland sugar cane farms
 - Stratified by region and size of quota random within strata
- Variables categorical
 - region = cane growing region (1, 2, 3 or 4)
- Variables continuous
 - area = area under sugar cane
 - harvest = quantity of sugar cane harvest
 - receipts = receipts from sale of sugar cane
 - costs = costs of growing sugar cane
 - profit = receipts costs
- Characteristic of business data
 - 5 farms receipts over \$300K outliers on all continuous variables

Statistical Disclosure Control vs Remote Analysis

• Statistical Disclosure Control – input perturbation

• Remote Analysis – output perturbation

Sugar Farms data - SDC

- Delete five largest farms outliers
- Region
 - Not disclosive
- Area
 - Key identifying categorised into 6 groups
- Harvest, receipts, costs, profit
 - Random noise preserving mean and covariance structure

Sugar Farms data – Remote Analysis

- Ensure each combination of variable values has sufficient data cases represented
 - Data aggregation
- Rounding and smoothing of results
- Risks associated with outliers
 - Minimised by use of robust methods
 - Data winsoring
- Sought to ensure that SDC and RA approaches have comparable disclosure risk
 - Identity disclosure through small cells
 - Attribute disclosure through distance from true values

Example

Exploratory Data Analysis

CSIRO. Remote Analysis & Differential Privacy

Univariate - area - unconfidentialised

Sugar Cane Area				
Minimum	18			
1st Quartile	36			
Median	51			
Mean	60.25			
3rd Quartile	73			
Maximum	280			
Standard Deviation	35.61062			

(a) Summary Statistics

(b) Box Plot

Univariate – area – SDC

	area	
	Category	Frequency
1	Up to 29	35
2	30 – 39	70
3	40 - 49	60
4	50 – 59	43
5	60 – 79	62
6	80 and over	63
	TOTAL	333

(a) Frequency Table

frequency

(b) Bar Chart

Univariate – area – remote analysis

Univariate – area – side by side

										_					
				- 60				1							
	area			- 20											
	Category	Frequency	5	Q -					1						
1	Up to 29	35	dnew		in the second										
2	30 – 39	70	fre	30											
3	40 - 49	60	1	- 3									120		
4	50 – 59	43		9 -									- 10		
4 5	50 – 59 60 – 79	43 62		6 -									- 10		
4 5 6	50 – 59 60 – 79 80 and over	43 62 63		0 10	1	2	3	4	5	6	Sugar Cane	Area	- 100		
4 5 6	50 – 59 60 – 79 80 and over TOTAL	43 62 63 333		0 - 10	1	2	3	4 rea	5	6	Sugar Cane	Area 35	- 100	Γ	

(a) Confidentialised

50

(c) Confidentialised Density Estimate

100

N = 331 Bandwidth = 7.577

Statistics

0.015

Density 0.010

0.005

0.000

0

Summary

150

50

g (d) Confidentialised QQ-Plot

(b) Confidentialised Box Plot

Univariate - receipts - unconfidentialised

	Receipts
Minimum	11703
1st Quartile	57607
Median	80391
Mean	95965
3rd Quartile	117062
Maximum	484346
Standard Deviation	61609.105256

1e+05

0e+00

1e-05

80-08

80-99

4e-08

2e-05

00+00

Density

Univariate – receipts – SDC

	Receipts	
No. observations	333	1
Minimum	11140	
1st Quartile	57473	
Median	77144	
Mean	90643	1 220
3rd Quartile	109637	
Maximum	260098	
Standard Deviation	49214.06	
(a) Summary S	itatistics	(b) Box Plot
	A.	Sample Quantiles 50000 150000 2
0 50000	50000 250000	-3 -2 -1 0 1 2 3
N = 333 Bandy	vidth = 1.097e+04	Theoretical Quantiles
(c) Histogram ar	d Density	(d) Normal QQ-plot

Univariate – receipts – remote analysis

	Receipts
1st Quartile	57600
Median	80400
Mean	96000
3rd Quartile	117100
Standard Deviation	61600

(a) Confidentialised Summary Statistics

Univariate – receipts – side by side

	Receipts
1st Quartile	57600
Median	80400
Mean	96000
3rd Quartile	117100
Standard Deviation	61600

Bivariate - area, receipts, costs by region unconfidentialised

(a) Box plots for area by region

(b) Box plots for receipts by region

(c) Box plots for costs by region

Bivariate - area, receipts, costs by region – SDC

Bivariate - area, receipts, costs by region remote analysis

- (a) Box plots for area by region
- (b) Box plots for receipts by region (c) Box plots for costs by region

Bivariate - area, receipts, costs by region – side by side

(a) Box plots for area by region

(b) Box plots for receipts by region (c) Box plots for costs by region

Bivariate – pairs from area, receipts costs - unconfidentialised

(a) receipts by area

(b) costs by area

(c) receipts by costs

area	receipts	costs
4	0.8876671	0.8867933
1	p-value < 2.2e-16	p-value < 2.2e-16
		0.90096490
	4	p-value < 2.2e-16
		1
	area 1	area receipts 1 0.8876671 p-value < 2.2e-16

(d) Pearson Correlation Coefficients

Bivariate – pairs from area, receipts costs – SDC

(d) Pearson Correlation Coefficients

0.8594960

p-value < 2.2e-16

receipts

costs

Bivariate – pairs from area, receipts costs – remote analysis

(d) Pearson Correlation Coefficients

 $\chi^2 = 350$ *** C.V. = 0.45Significance codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Bivariate – pairs from area, receipts costs – side by side

(a) receipts by area

(c) receipts by costs

	area	receipts	costs
area	1	0.7487469	0.7145667
area		p-value < 2.2e-16	p-value < 2.2e-16
and an			0.8594960
receipts		1	p-value < 2.2e-16
costs			1

(d) Pearson Correlation Coefficients

(a) receipts vs area

(c) receipts vs costs

	area	receipts	costs
100		0.8877	0.8868
area	1	***	***
1.022/2			0.9010
eceipts		1	***
costs	_	1000	1

(d) Pearson Correlation Coefficients

 $\gamma^2 = 350$ C.V. = 0.45Significance codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Example

Linear Regression

CSIRO. Remote Analysis & Differential Privacy

Sugar Farms Data

- Response = log(receipts)
- Explanatory = region, area, log(harvest), log(costs)
- Confidentialised Input SDC
 - Outliers are deleted
 - Area is categorised into 6 bands
 - Noise is added to receipts, costs, profit to preserve correlations
- Confidentialised Output Remote Analysis
 - Confidentialisation filters applied to output
- Unconfidentialised
 - Traditional approach

Summary Results

	Confidentialised	Confidentialised	Un-
	Input	Output	confidentialised
Intercept	3.627253	3.06	2.7060226
p-value	< 2e-16		< 2e-16
significance	***		***
Factor(region)2	0.192557	0.205	0.1814301
p-value	2.97e-15		< 2e-16
significance	***		***
Factor(region)3	0.187611	0.244	0.2390758
p-value	< 2e-16		< 2e-16
significance	***		***
Factor(region)4	0.091021	0.117	0.1184681
p-value	1.91e-7		< 2e-16
significance	***		***
area p-value significance	0.031205 4.81e-6 ***	0.0004	0.0000792 0.773
harvest	0. 831541	0.883	0.8655644
p-value	< 2e-16		< 2e-16
significance	***		***
costs	0. 063136	0.0823	0.1309820
p-value	0.0147		4.05e-8
signficance	*		***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Goodness of Fit statistics

	Confidentialised	Confidentialised	Un-
	Input	Output	confidentialised
Residual standard error	0.1151	0.08	0.09024
degrees of freedom	326	314	331
Multiple R squared	0.9554	0.97	0.974
Adjusted R squared	0.9546	0.97	0.9735
F-statistic	1164	2100	2067
degrees of freedom	6 and 326	6 and 331	6 and 331
p-value	< 2.2e-16	-	< 2.2e-16
significance	***	***	***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Model diagnostics

CSIRO. Remote Analysis & Differential Privacy

(a) Residuals vs Fitted Values

(b) Normal Q-Q Plot of Residuals

Summary

Summary

• Remote Analysis & Differential Privacy

- Logistic regression
- Other models...

Headline conclusion:

can be better to add noise to something other than the output

• Remote Analysis vs Statistical Disclosure Control

Business Data

Headline conclusion: remote analysis seems preferable

References

- K. Chaudhuri and C. Monteleoni, Privacy-preserving logistic regression, Proceedings of the 22nd Annual Conference on Neural Information Processing Systems (NIPS), 2008, 289-296.
- A. Smith, Efficient, differentially private point estimators, 2008. ArXiv:0809.4794v1.
- R. Sparks, C. Carter, J.B. Donnelly, C.M. O'Keefe, J. Duncan, T. Keighley and D. McAullay, Remote Access Methods for Exploratory Data Analysis and Statistical Modelling: Privacy-Preserving AnalyticsTM, Comput Methods Programs Biomed 91 (2008), 208-222.
- C.M. O'Keefe and N.M. Good, Regression Output from a Remote Analysis Server, Data & Knowledge Engineering 68 (2009), 1175-1186.
- C.M. O'Keefe, Remote Analysis in Action Design and Implementation of a Demonstration Remote Analysis System, Proceedings of the New Techniques and Technologies in Statistics conference NTTS 2011, Eurostat, Brussels 22-24 Feb 2011. Available at <u>www.ntts2011.eu</u>
- C.M. O'Keefe, Confidentialising exploratory data analysis output in a remote analysis system, submitted.
- C.M. O'Keefe and N. Shlomo, Comparison of Remote Analysis with Statistical Disclosure Control for Protecting the Confidentiality of Business Data, submitted.

CSIRO Mathematics, Informatics and Statistics

Prof Christine O'Keefe PhD MBA Research Leader, Privacy and Confidentiality, CSIRO Adjunct Professor, University of Adelaide

Phone: +61 2 6216 7021 Email: Christine.O'Keefe@csiro.au Web: www.csiro.au/people/Christine.O'Keefe

Thank you

Contact Us

Phone: 1300 363 400 or +61 3 9545 2176 Email: enquiries@csiro.au Web: www.csiro.au

CSIRO. Remote Analysis & Differential Privacy