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Data analysis under differential privacy

e The differential guarantee for participants in a data set:

¢ Information released about a private data set is virtually
iIndistinguishable whether or not a participant’s data is included.

¢ Resistant to informed adversaries.

¢ Precise (public) error bounds on private output.

A central open question: what are utility-optimal
mechanisms satisfying differential privacy?
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workload W

W1
W2
| W3

data

> wi1(D) + noise
wz(D) + noise
ws3(D) + noise

This mechanism is often sub-optimal for multiple queries
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e A query workload is a set of linear counting queries, known ahead of time.

e may include predicate counting queries, range queries, data cubes, sets of
marginals, CDFs, etc...

e How do query workloads arise ?

e ... from decomposing a more complex data analysis task into a set of
queries.

e .. from multiple users accessing sensitive data, each issuing one or more
queries.

e ... from uncertainty about the eventual query answers needed--design
workload to include all queries possibly of interest.

e Our output can be treated as a synthetic data set; one which is designed to
provide particularly accurate answers for the given workload queries.
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Privacy definitions & mechanisms

¢ Differential privacy

A randomized algorithm A provides (g, 0)-differential privacy if:

for all neighboring databases D and D’, and
for any set of outputs S:

Pr[A(D) € S] < e‘Pr[A(D") € S]+ 0

e if =0, standard e-differential privacy
e Laplace(0,b) noise where b=||q]||1/¢€
e if >0, approximate (g,0)-differential privacy:

e Gaussian(0,0) noise where o= ||q||2 f(0)/€
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© (Design) Choose a set of queries A (the strategy)
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® (Apply Laplace) Use the Laplace mechanism to answer A
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® (Apply Laplace) Use the Laplace mechanism to answer A

® (Derivation) Compute each query in W using answers to A

Opportunity: choose A to minimize
the error for queries in W.
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Adding/re:

Frequency representation of the database topl han
frequency
~ exactly 1
fonth n i
{grade} length n w
name |gender| grade im?;::;z;
Alice Female ok grade | count the discussit
B0b | Mele | &4 90-100| 10 xi
Mal
—ar — o2 30-90 23 X2
Dave Male 97
Edwina| Female | 88 70-80 | 16 X3
Faith | Female 78 60-70 3 X4
Ghita | Female 85

Relational database Frequency vector X
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Goal: answer all range-count queries over x

AllRange = {w |w=xi+..+x; for1<i<j<n]

w1 range(x1,X4) X1 + X2 + X3 + Xq w1 52
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Approach 1: basic Laplace mechanism

Workload queries

W1 X1+ X2 + X3 + Xa
W2 X1+ X2 + X3
W3 X2 + X3 + Xg
Wy X1+ Xz

W W5 X2 + X3
We X3 + Xa
Wy X1
W3 X2
Wo X3
W10 X4

IWIl4 =6

Laplace noise

+ (6/¢)

b1o

private output

—

W'1

W' 2

W'3

W'4

W'5

W'6

W’7

W'8

W'9

w10

Two problews:

- high error
- inconsistency
/

Explain sens

Error is
measured as
variance



Approach 1: basic Laplace mechanism

Workload queries

W1 X1+ X2

W2 X1+ X2

W3 X2

W4 X1+ X2
W w .

We

Wy X1

W38 X2

Wo

W10

_|_

+

_|_

X3 + Xa
X3

X3 + Xa

X3

X3 + Xa

X3

X4

IWIl4 =6

52

49

42

33

39

19

10

23

16

Laplace noise

+ (6/¢)

b1 8.2
b> -5.4
b3 -3.1
b4 6.6
bs -7.9
bs 2.4
b7 -3.0
bs -4.9
bo 6.7
b1o 4.6

private output

—

w'1 || 60.2
w'y || 44.6
w’s || 38.9
wg || 39.6
w’s || 31.1
wie || 21.4
\ 7.0

w's || 18.1
wo || 22.7
will| 7.6

Two problews:

- high error
- inconsistency
/

Explain sens

Error is
measured as
variance



Approach 1: basic Laplace mechanism

Workload queries

W1 X1+ X2

W2 X1+ X2

W3 X2

W4 X1+ X2
W w .

We

Wy X1

W38 X2

Wo

W10

_|_

+

_|_

X3 + Xa
X3

X3 + Xa

X3

X3 + Xa

X3

X4

IWIl4 =6

52

49

42

33

39

19

10

23

16

Laplace noise

+ (6/¢)

b1 8.2
b> -5.4
b3 -3.1
b4 6.6
bs -7.9
bs 2.4
b7 -3.0
bs -4.9
bo 6.7
b1o 4.6

private output

—

w'1 || 60.2
w'y || 44.6
w’s || 38.9
wg || 39.6
w’s || 31.1
wie || 21.4
\ 7.0

w's || 18.1
wo || 22.7
will| 7.6

Two problews:

- high error
- inconsistency

i

IRRR

7

Explain sens

2=554

Error is
measured as
variance



Approach 1: basic Laplace mechanism

Workload queries

Laplace noise

private output

Two problews:

- high error
- inconsistency
/
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Use Laplace mechanism to get noisy estimates for each xi.
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Hierarchical queries: recursively partition the domain,
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Hierarchical queries: recursively partition the domain,

computing sums of each interval.
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Approach 3: hierarchical queries

Hierarchical queries: recursively partition the domain,

computing sums of each interval.
derived

Queries submitted Laplace noise private output workload answers

X1 + X2 + Xz + Xa by 71 w1
x1 + X2 bo 7o w2
X3 + Xg bs 73 w3

H X1 + (3/ €) | bs :> Z4 » W'y f)

X2 bs Z5 W’'s .
X3 bs Zg We
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Approach 3: hierarchical queries

Hierarchical queries: recursively partition the domain,
computing sums of each interval.

Queries submitted Laplace noise private output workﬂzgvaendswers

x1 + X2 + X3 + Xq by 71 w1
x1 + X2 bo 7o w2
X3 + Xg bs 73 w3

H X1 + (3/ €) | bs :> Z4 » W'y f)

X2 bs Z5 W’'s .
X3 bs Zg We
X4 b7 Z7 W'z
IHIl1=3 o
W9
= logn+1 Wt

Possible estimates for query range(xo,x3) = X2 + X3

Least-squares
estimate

(621 + 322 + 323 - 974 + 1275 + 1226 - 927) /21
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Approach 4: wavelet queries

Wavelet queries: use Haar wavelet to get noisy summary of data.
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Strategies for workload of all range queries

Noisy counts Hierarchical Wavelet

X1 X1 + X2 + X3 + Xg X1 + X2 + X3 + Xa
X2 X1 + X2 X1 + X2 - X3 - Xa
X3 X3 + X X1 - X2

X1 X3 - X4
Xq

X2
X3

X4

I H Y

Very low sensitivity, but Low sensitivity, and all range queries
large ranges estimated can be estimated using no more than
badly. logn output entries.

Max/Avg O (n/e?) O(log3n/e2)  O(log®n/e?)
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A linear counting query w computes a linear
combination of the frequency vector counts:

w(D) = wix1 + WoXo + ... + WnXn

... as a length n row vector:

w = [w1, wp, w3 ... W]

a set of linear counting queries is a

matrix:

W

e > I W Y

—_ = e

—_— O =

—_ O =

—_ O =

1
0
0
1

1
0
1
1

1
0
0
1

1
0
0
1

1
0
0
1

each wi € R
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error rates of eacl
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The query result is:
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The sensitivity of a query matrix

e For two neighboring databases D and D’, their frequency vectors X
and x’ will differ in one position, by exactly 1.
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The sensitivity of a query matrix

e For two neighboring databases D and D’, their frequency vectors X
and x’ will differ in one position, by exactly 1.

BeE 1111111111 [x ]
1/1/1 110000 0 X
Vs 0/1/0 000100 0 X3
V4 1/1/1 1 1-1-1-1-1-1 X4
S i i X
answers query matrix W °
X6
IWIl1 =4 x7 +1
agn . . X8
The L1 sensitivity of a query matrix is:
. X
the maximum L1 norm of the columns. 7
X10

(The L2 sensitivity of a query matrix is: - -
the maximum L2 norm of the columns.)
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private
output

V4|

Z2

Zm

m
queries

—— n columns ———

W11

W21

W12

W22

Wmi1 Wm2

Win

W2n

Wmn

workload of queries

W

data

X

Laplace(W,x) = Wx + (IIWll1/€)b

+  ([IWll4/¢)

m independent
samples from Laplace(1)



Laplace mechanism (matrix notation)

Laplace(W,x) = Wx + (IIWll1/€)b

—— n columns ———

7 B HEE = — _—
1 W1l W12 ... Win X1 b1

Z X2
? _ m | W21 w2 .. W2 b

— queries : +  ([IWIl4/€)

Xn

Zm -7
Wmil Wm2 ... Wmn bm
L L i _ o

private
output workload of queries data noise
W X b
) m independent
Error(w) =2 (IIWll1/ €)

samples from Laplace(1)
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The matrix mechanism

est-x can be viewed
as a synthetic
database.

Workload query
~answers consistent

©® (Design) Choose a full rank query strategy A

® (Apply Laplace) Use the Laplace mechanism to answer A

z=Ax + (IIAll1/ €)b

® (Derivation) Compute estimate X of X using answers Z.

* compute estimate x of x that minimizes squared error:

|Ax-z||3

has the least variance
among all linear unbiased
\estimators.

p
Thm: x is unbiased and \>

J

x=A*z

where A*=(ATA)1AT
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Strategy matrices for the range queries

|dentity

oo o =

0
1
0
0

0
0
1
0

_ O O O

Hierarchical

1

1

Wavelet
1 1 1 1
1 1 -1 -1
1 -1 0 0
0 0 1 -1

OO | O =IO =

S O | = O O | =

O | = 1O QO | | O |

_ o O | O = O

Y




The matrix mechanism

Given a workload W, and any full-rank strategy matrix A,
the following randomized algorithm is e-differentially private:

Matrixa(W,x) = Wx + (II1All1 /) WA* Db b=Lap(1)



The matrix mechanism

Given a workload W, and any full-rank strategy matrix A,
the following randomized algorithm is e-differentially private:

Matrixa(W,x) = Wx + (II1All1 /) WA* Db b=Lap(1)

Instantiated with
strategy A



The matrix mechanism

Given a workload W, and any full-rank strategy matrix A,
the following randomized algorithm is e-differentially private:

Matrixa(W,x) = Wx + (II1All1 /) WA* Db b=Lap(1)

Instantiated with true answer
strategy A



The matrix mechanism

Given a workload W, and any full-rank strategy matrix A,
the following randomized algorithm is e-differentially private:

Matrixa(W,x) = Wx + (II1All1 /) WA* Db b=Lap(1)

instantiated with true answer  scaling by
strategy A HAIll4



The matrix mechanism

Given a workload W, and any full-rank strategy matrix A,
the following randomized algorithm is e-differentially private:

Matrixa(W,x) = Wx + (II1All1 /) WA* Db b=Lap(1)

instantiated with true answer  scaling by transformation
strategy A Al by WA+



The matrix mechanism

Given a workload W, and any full-rank strategy matrix A,
the following randomized algorithm is e-differentially private:

Matrixa(W,x) = Wx + (II1All1 /) WA* Db b=Lap(1)

instantiated with true answer  scaling by transformation
strategy A Al by WA+

Compare with the Laplace mechanism:

Laplace(W,x) = Wx + (IIWIll1/€)b
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NOTE: This error
is completely
independent of
the input datall

—rror of the matrix mechanism

Given any full rank strategy A, and any linear
workload query w, the error of the mechanism

Matrixa on query w is:

Errora(w) = (2/¢€2) (I1All11)2 w(ATA)1wT

L |

( sensitivity term Lj[ “error profile” term ]




2rofile equivalence

Definition: strategy matrices A and B are
profile equivalent if (ATA) = (B!B)

Matrixsa Errora(w) = (2/€2) (I1All11)2 w(ATA)-1wT

Matrixs  Errorg(w) = (2/€2) (IIBll1)2 w(BTB)-lwT

If (ATA) = (B!B) and lIAll; < IIBIl1 then Matrixa
has lower error than Matrixs for every query.



Strategies equivalent to wavelet

1 1,0 0

0 0 | 1 1

v2, 0 0 O

0 v2|, 0 O

0 0 v2 0

0O 0 0 v2

11,0 0

0 0 1 1

1.0 0 O
0o 1 0 O
0O 0 1 O

0 0 0 1

1.0 0 O
O 1 0 0

0O 0 1 O

0 0 0 1

0

1 1 1 1

YII
Y"1y = 2.414

YI

Wavelet Y

=3

INMIF

=3

Y11



Strategies equivalent to wavelet

1 1 0 0
0 0 1 1 1 1 0 0
1 1 1 1
1 0 0 0 0 0 1 1
1/1]-1/1 — 6011109 > v2 0 0 0
1 -1 0 O — 0 0 1 0
0 v2 0 0
0 0 1 -1 0/9/0/1
1o oo 0 0 v2 0
0 1 0 0 0 0 0 v2
0 0 1 0
0 0 0 1
Wavelet Y Y’ Y”
HYIl1=3 HY’ll1=3 Y” [l = 2.414

Neither the hierarchical nor the wavelet
strategy is efficient, i.e. there exist uniformly
better strategies with matching error profiles.



Finding the optimal strategy

Objective: given workload W, find the query
strategy A that minimizes the total error.

Error for a single query:

Errora(w) = 2/€2)(I1All11)2 w(ATA)-IwT

Total error for a workload of queries:

TotalErrora(w) = (2/€?)(
= (2/3)(

A
A

1)2 trace( W(ATA)-1WT)
1)? trace( WIW(ATA)1)
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Overview of problem solutions

Objective Problem Type
1 Given W, choose A to minimize SDP with
TotalErrora(W) rank constraints
5 Given ATA, choose Q to SDP with
minimize llAll; rank constraints

Given W, choose A to minimize

3 |TotalErrora(W) under SDP
(¢,0)-differential privacy
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New technigues

e Optimal error: A lower bound on the error of the optimal strategy
allows us to assess the quality of existing strategies and explore
“workload error complexity”.

e Efficient strategy selection: the strategy selection problem can
be approximately solved, resulting in strategy matrices customized
to arbitrary workloads.

* Inference for sparse datasets: by imposing non-negativity
constraints during inference, accuracy can be significantly
improved. (But analysis of error is harder.)



Singular value bound

e Given workload W, the optimal total error for W is greater than or
equal to the SVD bound.

THEOREM 3.3. (SINGULAR VALUE BOUND) Given an m X
n workload W, let A1, A2, ..., An be the singular values of W.

. 1 ~— . .9
min ERRORA (W) > P(e, 5)5(; Ai)?,

where P(e,0) = QIOng/é).

e Tight: bound is achievable for a certain class of workloads.

e Easy to compute.



Algorithm for efficient strategy selection

* Inspired by optimal experimental design

* Given W, choose a set of basis queries for the strategy:

*  viva..va (theeigenvectors of W)

e compute optimal scalars to minimize error

C1, CZ, ... Cn

C1V1
e Resulting strategy matrix is: CoVa

CnVn



Approximately optimal error rates

All range queries (€,8)-differential privacy

1.2E+07

9.0E+06

6.0E+06

Total Error

3.0E+06

OE+00

1024 32*32 16*8*8 2MO0

Dimensions of Domain (n=1024)



Customizing the strategy to the workload

Subsets of the range queries (e,9)-differential privacy

60

-
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-
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- 45 O Wavelet
g O Eigen
e O SVD Bound
v 30
)
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>
s 15
-
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Query Coverage Percentage
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Non-negative least squares

©® (Design) Choose a full rank query strategy A

® (Apply Laplace) Use the Laplace mechanism to answer A

z=Ax + (IlAll1/ €)b
® (Inference) Compute estimate X of X using answers Z.

* Non-negative least squares: compute estimate x of x
. 2
that minimizes squared error: || Ax-z||2

where each xi > 0

Effectiveness of non-negative least squares depends of
properties of the data, epsilon, and A.

Active set method [Lawson, 1987]



—rror: all range queries, non-negative least squares

Synthetic sparse dataset Epsilon = 0.1
n = 1024
60000
_ 48000
| o Hiorarehical (NNLS)
CE- 24000
=
12000

o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Query Width (as fraction of the domain)
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Summary and conclusions

* The Matrix mechanism generalizes the Laplace & Gaussian
mechanisms, improving accuracy by exploiting correlation in the
workload and reducing sensitivity.

® Two recent technigues for range queries are instances of the matrix
mechanism; neither is optimal, but they are close.

e One strategy does not fit all workloads: adapting the strategy to the
workload is essential to achieving low error.

e |t is possible to compute the optimal strategy in O(n?) time, and
approximately optimal strategies in O(n%).



Open questions

e The matrix mechanism is data-independent. What are the trade-offs
for data-dependent approaches?

¢ \What makes one workload “harder” to answer than another? How
can we reliably measure workload error complexity?

e How do our results compare with lower bounds for differentially
private output. (Our optimal strategies result in the least error for this
particular mechanism, not necessarily the lowest error possible.)

e Can we avoid the computational dependence on the domain size n,
without sacrificing accuracy?

e How do we analyze the error resulting from non-negative least
squares?



Questions?

Project page and implementation of the Matrix Mechanism:

http://bit.ly/ituyOt

Additional details on our work may be found here:

e [Li, ArXiv 2011] C. Li and G. Miklau. Efficient Batch Query Answering Under Differential
Privacy. CoRR abs/1103.1367, 2011.

e [Li, PODS 2010] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing Linear
Counting Queries Under Differential Privacy. Principles of Database Systems (PODS) 2010.

e [Hay, PVLDB 10] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of
differentially-private queries through consistency. Proceedings of the VLDB Endowment
(PVLDB), 2010.


http://dbgroup.cs.umass.edu/index.php?page=differentially-private-mechanisms
http://dbgroup.cs.umass.edu/index.php?page=differentially-private-mechanisms
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