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Data analysis under differential privacy

• The differential guarantee for participants in a data set:

• Information released about a private data set is virtually 
indistinguishable whether or not a participant’s data is included. 

• Resistant to informed adversaries.

• Precise (public) error bounds on private output.

A central open question: what are utility-optimal 
mechanisms satisfying differential privacy?
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• A query workload is a set of linear counting queries, known ahead of time.

• may include predicate counting queries, range queries, data cubes, sets of 
marginals, CDFs, etc...

• How do query workloads arise ?

• ... from decomposing a more complex data analysis task into a set of 
queries.

• ... from multiple users accessing sensitive data, each issuing one or more 
queries.

• ... from uncertainty about the eventual query answers needed--design 
workload to include all queries possibly of interest.

• Our output can be treated as a synthetic data set; one which is designed to 
provide particularly accurate answers for the given workload queries.
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Privacy definitions & mechanisms

• Differential privacy

A randomized algorithm A provides (ε,δ)-differential privacy if:
for all neighboring databases D and D’, and
for any set of outputs S:

Pr[A(D) ∈ S] ≤ e�Pr[A(D�) ∈ S] + δ

• if δ=0, standard ε-differential privacy

• Laplace(0,b) noise where b=||q||1/ε

• if δ>0, approximate (ε,δ)-differential privacy: 

• Gaussian(0,σ) noise where σ= ||q||2 f(δ)/ε 
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Matrix mechanism

Main approach
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➌  (Derivation) Compute each query in W using answers to A

Opportunity: choose A to minimize 
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Outline

1.  Case study: answering 1-dim range queries 

2.  The matrix mechanism -- formal description.

3.  The matrix mechanism -- new tools & techniques.

4.  Conclusion
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Frequency representation of the database

name gender grade

Alice Female 91

Bob Male 84

Carl Male 82

Dave Male 97

Edwina Female 88

Faith Female 78

Ghita Female 85
... ... ...

Relational database Frequency vector x

grade count

90-100 10

80-90 23

70-80 16

60-70 3

{grade}
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x2

x3

x4

Adding/removing a 
tuple changes 1 
component of the 
frequency vector by 
exactly 1

Frequency vector has 
length n, which is the 
“domain size”, an 
important parameter in 
the discussion.
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Error rates: workload of all range queries
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Approach 4: wavelet queries

[Xiao, ICDE 10]
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Approach 4: wavelet queries

[Xiao, ICDE 10]
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Strategies for workload of all range queries

Low sensitivity, and all range queries 
can be estimated using no more than 
logn output entries.

Very low sensitivity, but 
large ranges estimated 
badly.

H YI

Noisy counts Hierarchical Wavelet

O(n/ε2)Max/Avg 
error

O(log3n/ε2) O(log3n/ε2)
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• Big picture:

• x values we cannot observe directly.

• we can request noisy estimates of any linear 
function of the x values, at some cost. 

• what should we request to perform our task (i.e. 
answer workload queries) ?

Optimal
Experimental
Design



Outline

1.  Case study: answering 1-dim range queries 

2.  The matrix mechanism -- formal description.

3.  The matrix mechanism -- new tools & techniques.

4.  Conclusion



Outline

1.  Case study: answering 1-dim range queries 

2.  The matrix mechanism -- formal description.

3.  The matrix mechanism -- new tools & techniques.

4.  Conclusion



Linear counting queries

• Answer to linear query

w(D) = w1x1 + w2x2 + ... + wnxn        

A linear counting query w computes a linear 
combination of the frequency vector counts: 

each wi ∈ R

1) Expressiveness of linear 
queries

2) Need to list ALL queries 
-- don’t omit those that can 
be derived

3) Can scale rows to control 
error rates of each query



Linear counting queries

• Answer to linear query

w(D) = w1x1 + w2x2 + ... + wnxn        

A linear counting query w computes a linear 
combination of the frequency vector counts: 

each wi ∈ R

w = [w1, w2, w3 ... wn]
... as a length n row vector:

wx
The query result is:

1) Expressiveness of linear 
queries

2) Need to list ALL queries 
-- don’t omit those that can 
be derived

3) Can scale rows to control 
error rates of each query



Linear counting queries

• Answer to linear query

w(D) = w1x1 + w2x2 + ... + wnxn        

A linear counting query w computes a linear 
combination of the frequency vector counts: 

each wi ∈ R

w = [w1, w2, w3 ... wn]
... as a length n row vector:

wx
The query result is:

a set of linear counting queries is a 
matrix:

Wx

The query result is:

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0

1 1 1 1 1 -1 -1 -1 -1 -1

W

1) Expressiveness of linear 
queries

2) Need to list ALL queries 
-- don’t omit those that can 
be derived

3) Can scale rows to control 
error rates of each query
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• For two neighboring databases D and D’, their frequency vectors x 
and x’ will differ in one position, by exactly 1. 
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The L1 sensitivity of a query matrix is: 
the maximum L1 norm of the columns.

||W||1 = 4

x’(The L2 sensitivity of a query matrix is: 
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Laplace mechanism (matrix notation)

Laplace(W,x) = Wx + (||W||1/ε)b

 b

w11 w12 ... w1n

w21 w22 ... w2n

: :

wm1 wm2 ... wmn

x1

x2

:

xn

=

z1

z2

:

zm

b1

b2

:

bm

+

workload of queries data
private
output

m 
queries

n columns

xW
noise

(||W||1/ε) 

m independent
 samples from Laplace(1)Error(w) = 2 (||W||1/ε)2
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The matrix mechanism

➊  (Design) Choose a full rank query strategy A 

➋  (Apply Laplace) Use the Laplace mechanism to answer A

➌  (Derivation) Compute estimate x of x using answers z.

z = Ax + (||A||1/ε)b

where A+=(ATA)-1ATx=A+zThm: x is unbiased and 
has the least variance 
among all linear unbiased 
estimators.

est-x can be viewed 
as a synthetic 
database.

Workload query 
answers consistent

• compute estimate x of x that minimizes squared error: 

⎟⎜Ax - z⎟⎜2
2
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The matrix mechanism

Given a workload W, and any full-rank strategy matrix A, 
the following randomized algorithm is ε-differentially private:

MatrixA(W,x) = Wx + (||A||1/ε) WA+ b b=Lap(1)

Laplace(W,x) = Wx + (||W||1/ε)b

Compare with the Laplace mechanism:

instantiated with
strategy A

true answer scaling by 
||A||1

transformation
 by WA+
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Error of the matrix mechanism

Given any full rank strategy A, and any linear 

workload query w, the error of the mechanism 

MatrixA on query w is:

ErrorA(w) = (2/ε2) (||A||1)2  w(ATA)-1wT

sensitivity term “error profile” term

NOTE: This error 
is completely 
independent of 
the input data!!



Profile equivalence

ErrorA(w) = (2/ε2) (||A||1)2 w(ATA)-1wTMatrixA

ErrorB(w) = (2/ε2) (||B||1)2 w(BTB)-1wTMatrixB

Definition: strategy matrices A and B are 
profile equivalent if (ATA) = (BTB) 

If (ATA) = (BTB) and ||A||1 ≤ ||B||1  then MatrixA 
has lower error than MatrixB  for every query. 
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Strategies equivalent to wavelet

1 1 1 1
1 1 -1 -1
1 -1 0 0
0 0 1 -1

Wavelet Y
||Y||1 = 3

Y’
||Y’’||1 = 2.414

Neither the hierarchical nor the wavelet 
strategy is efficient, i.e. there exist uniformly 
better strategies with matching error profiles.

Y’’
||Y’||1 = 3

1 1 0 0

0 0 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

≡ >
1 1 0 0

0 0 1 1

√2 0 0 0

0 √2 0 0

0 0 √2 0

0 0 0 √2



Finding the optimal strategy

TotalErrorA(w) = (2/ε2)(||A||1)2 trace( W(ATA)-1WT )
  = (2/ε2)(||A||1)2 trace( WTW(ATA)-1 )

         ErrorA(w) = (2/ε2)(||A||1)2 w(ATA)-1wT

Objective:  given workload W, find the query 
strategy A that minimizes the total error.

Error for a single query:

Total error for a workload of queries:
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New techniques

• Optimal error: A lower bound on the error of the optimal strategy 
allows us to assess the quality of existing strategies and explore 
“workload error complexity”. 

• Efficient strategy selection:  the strategy selection problem can 
be approximately solved, resulting in strategy matrices customized 
to arbitrary workloads.

• Inference for sparse datasets: by imposing non-negativity 
constraints during inference, accuracy can be significantly 
improved.  (But analysis of error is harder.)



Singular value bound

• Given workload W, the optimal total error for W is greater than or 
equal to the SVD bound.

• Tight: bound is achievable for a certain class of workloads. 

• Easy to compute.

The bound on the total error for a workload is derived
from its singular value decomposition.

Theorem 3.3. (Singular Value Bound) Given an m×
n workload W, let λ1,λ2, . . . ,λn be the singular values of W.

min
A

ErrorA(W) ≥ P (�, δ)
1
n
(

n�

i=1

λi)
2
,

where P (�, δ) = 2 log(2/δ)
�2

.

A strategy matrix A can be considered to have two parts:
its eigenvalues and its eigenvectors. When A is column-
uniform, the total error can be represented as a polynomial
of those two parts. The key idea behind the SVD bound
is to ignore the constraint that A is column uniform and
choose eigenvalues and eigenvectors separately to minimize
the polynomial, which leads to an under-estimate of the total
error. The details of this proof are presented in App. D.1.

We use svdb(W) as shorthand for the singular value bound
of workload W. Given a workload W, svdb(W) can be
computed easily using standard methods for matrix decom-
position, or it can be computed directly from WTW:

Corollary 3.1. Given an n × n positive semi-definite
matrix WTW, let λ1, . . . ,λn be the eigenvalues of WTW.

min
A

ErrorA(W) ≥ P (�, δ)
1
n
(

n�

i=1

√
λi)

2
, (3)

where P (�, δ) = 2 log(2/δ)
�2

.

Form×n workloadW, computing svdb(W) takesO(mn
2)

time on W itself and takes O(n3) time on WTW, which
significantly reduces the running time when the number of
queries, m, is much larger than n. In the case of large regular
workloads such as AllRange and AllPredicate, WTW
can be computed directly. Then computing svdb(W) im-
proves from O(n5) to O(n3) for AllRange and O(n22n) to
O(n3) for AllPredicate.

Example 3.1. For AllRange(1024) and AllRange(32, 32),
the SVD bound on the total error is 5.32×106 and 4.39×106,
respectively. Below we report, as a ratio of the SVDB bound,
the total error of these workloads for a number of known
strategy matrices: the workload itself, the identity, hierarchi-
cal and wavelet:

workload identity hierarchical wavelet
1024 50.58 33.75 2.14 1.84

32× 32 17.25 8.15 2.92 2.23
In the next section we present an algorithm that finds bet-
ter strategies: the ratio of total error on AllRange(1024)
and AllRange(32, 32) using the strategies computed by the
algorithm is 1.26 and 1.08, respectively.

3.3 Properties of the singular value bound
The SVD bound has a number of properties which make it

a reliable measure of workload complexity. Notice that in the
expression for ErrorA(W) in Prop. 2.4, the workload W
appears only in the trace term, as WTW. An immediate
implication is that a strategy that achieves minimal total
error for a given workload W1 achieves minimal error for any
workload W2 such that WT

1 W1 = WT
2 W2. We therefore

define the following notion of equivalence:

Definition 3.4 (Workload Equivalence). An n×m1

workload W1 and an n × m2 workload W2 are equivalent,
denoted W1 ≡ W2, iff WT

1 W1 = WT
2 W2.

Since the SVD bound is determined by the singular values,
it follows immediately that equivalent workloads have equal
error bounds. That is, if W1 ≡ W2, then svdb(W1) =
svdb(W2). In addition, as we would hope, the SVD bound
of a workload increases monotonically under the addition
of new queries. Thus if W1 is a workload and W2 is a
workload that results from adding one or more linear queries
to the rows of W1, then svdb(W1) ≤ svdb(W2). A more
general result is shown below, accounting for the fact that the
larger workload may be the augmentation of any workload
equivalent to the smaller workload. (The proof is omitted.)

Theorem 3.4. Let W1, W2 be workloads. If there exists
a workload W�

2 equivalent to W2 and the rows of W�
2 contain

all the rows of W1, then svdb(W1) ≤ svdb(W2).

Lastly, and most importantly, the singular value bound
is tight. For a certain set of variable agnostic workloads,
it is possible to directly construct a strategy achieving the
bound. Intuitively, variable agnostic workloads treat every
variable in the domain in an equivalent manner. The work-
loadAllPredicate(n) is variable agnostic, butAllRange(n)
is not because, for example, variables in the middle of the do-
main occur more often in the set of all range queries. In App.
C we show how to construct the optimal strategy for any vari-
able agnostic workload, including for AllPredicate(n).
We do not know if the singular value bound is achiev-

able for every workload (namely those that are not variable-
agnostic). However experimentally we find that we can com-
pute strategies that approach this bound.

4. STRATEGY SELECTION ALGORITHMS
In this section we present an algorithm, along with a set of

performance optimizations, for computing a close-to-optimal
strategy for a given workload.

4.1 The Level Selection Algorithm (LSA)
The Level Selection Algorithm (LSA) takes as input a

workload and returns a strategy matrix designed to offer
low error for the workload. LSA is a localized search algo-
rithm which builds a strategy matrix by choosing, at each
step, the level of queries whose addition maximally reduces
error for the workload. A level is a set of linear queries con-
sisting of coefficients 0 or 1, determined by a partitioning of
the variables, so that each variable appears in exactly one
query. Recall that, according to Thm. 3.1, minimal strategy
matrices are precisely those that are column uniform. By
constructing a strategy by levels, the LSA algorithm always
chooses among minimal strategies.
To construct a new level, the LSA algorithm starts with

the simplest level: the query [1, 1, . . . 1] which is the sum of
all cells. The algorithm then performs a top-down search,
recursively bisecting the query into smaller queries such that
the error of the workload is maximally reduced. Once a level
is completed, the LSA algorithm computes the total error of
the workload with and without that level. If the total error
is not improved by the level, the algorithm terminates and
outputs the current strategy. Otherwise the level is added to
the output strategy, and, subject to a user-defined threshold
k on the number of levels, the next level is then constructed.
The search space of LSA is quite general. Both the hi-

erarchical strategies from [9] and (a strategy equivalent to)
the wavelet strategy [13] can be constructed by levels. But

5



Algorithm for efficient strategy selection

• Inspired by optimal experimental design

• Given W, choose a set of basis queries for the strategy:

•                       (the eigenvectors of W)

• compute optimal scalars to minimize error

• Resulting strategy matrix is:

v1, v2, ... vn

c1v1

c2v2

...
cnvn

c1, c2, ... cn

A=



Approximately optimal error rates
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Customizing the strategy to the workload
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➊  (Design) Choose a full rank query strategy A 
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Effectiveness of non-negative least squares depends of 
properties of the data, epsilon, and A.

Active set method [Lawson, 1987] 



Error: all range queries, non-negative least squares

Epsilon = 0.1
n = 1024

0

12000

24000

36000

48000

60000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

M
ea

n 
S

q
ua

re
d

 E
rr

or

Query Width (as fraction of the domain)

Hierarchical
Hierarchical (NNLS)

Synthetic sparse dataset



Outline

1.  Case study: answering 1-dim range queries 

2.  The matrix mechanism -- formal description.

3.  The matrix mechanism -- new tools & techniques.

4.  Conclusion



Outline

1.  Case study: answering 1-dim range queries 

2.  The matrix mechanism -- formal description.

3.  The matrix mechanism -- new tools & techniques.

4.  Conclusion



Summary and conclusions

• The Matrix mechanism generalizes the Laplace & Gaussian 
mechanisms, improving accuracy by exploiting correlation in the 
workload and reducing sensitivity.

• Two recent techniques for range queries are instances of the matrix 
mechanism; neither is optimal, but they are close.

• One strategy does not fit all workloads: adapting the strategy to the 
workload is essential to achieving low error.

• It is possible to compute the optimal strategy in O(n8) time, and 
approximately optimal strategies in O(n4).



Open questions

• The matrix mechanism is data-independent.  What are the trade-offs 
for data-dependent approaches?

• What makes one workload “harder” to answer than another?  How 
can we reliably measure workload error complexity? 

• How do our results compare with lower bounds for differentially 
private output. (Our optimal strategies result in the least error for this 
particular mechanism, not necessarily the lowest error possible.)

• Can we avoid the computational dependence on the domain size n, 
without sacrificing accuracy?

• How do we analyze the error resulting from non-negative least 
squares?



Questions?

• [Li, ArXiv 2011] C. Li and G. Miklau. Efficient Batch Query Answering Under Differential 
Privacy.  CoRR abs/1103.1367, 2011.

• [Li, PODS 2010] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing Linear 
Counting Queries Under Differential Privacy. Principles of Database Systems (PODS) 2010.

• [Hay, PVLDB 10] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of 
differentially-private queries through consistency. Proceedings of the VLDB Endowment 
(PVLDB), 2010.

Additional details on our work may be found here:

Project page and implementation of the Matrix Mechanism:

http://bit.ly/ituyOt

http://dbgroup.cs.umass.edu/index.php?page=differentially-private-mechanisms
http://dbgroup.cs.umass.edu/index.php?page=differentially-private-mechanisms
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