The Matrix Mechanism: Optimizing Linear Counting Queries Under Differential Privacy

Gerome Miklau

Univ. of Massachusetts, Amherst

Joint work with:

Chao Li Univ. of Massachusetts, Amherst Andrew McGregor Univ. of Massachusetts, Amherst Michael Hay Cornell University Vibhor Rastogi Yahoo! Research Dan Suciu University of Washington

June 30, 2011

Data analysis under differential privacy

- The differential guarantee for participants in a data set:
 - Information released about a private data set is virtually indistinguishable whether or not a participant's data is included.
- Resistant to informed adversaries.
- Precise (public) error bounds on private output.

A central open question: what are **utility-optimal** mechanisms satisfying differential privacy?

Differentially private mechanisms

An optimal mechanism is known for answering a single query [Ghosh, 2009]

Differentially private mechanisms

An optimal mechanism is known for answering a single query [Ghosh, 2009]

This mechanism is often sub-optimal for multiple queries

- A query workload is a set of **linear counting queries**, known ahead of time.
 - may include predicate counting queries, range queries, data cubes, sets of marginals, CDFs, etc...

- A query workload is a set of **linear counting queries**, known ahead of time.
 - may include predicate counting queries, range queries, data cubes, sets of marginals, CDFs, etc...
- How do query workloads arise ?
 - ... from decomposing a more complex data analysis task into a set of queries.
 - ... from multiple users accessing sensitive data, each issuing one or more queries.
 - ... from uncertainty about the eventual query answers needed--design workload to include all queries possibly of interest.

- A query workload is a set of **linear counting queries**, known ahead of time.
 - may include predicate counting queries, range queries, data cubes, sets of marginals, CDFs, etc...
- How do query workloads arise ?
 - ... from decomposing a more complex data analysis task into a set of queries.
 - ... from multiple users accessing sensitive data, each issuing one or more queries.
 - ... from uncertainty about the eventual query answers needed--design workload to include all queries possibly of interest.
- Our output can be treated as a **synthetic data set;** one which is designed to provide particularly accurate answers for the given workload queries.

• Differential privacy

• Differential privacy

A randomized algorithm A provides (ε,δ)-differential privacy if: for all neighboring databases D and D', and for any set of outputs S:

 $Pr[\mathcal{A}(D) \in S] \le e^{\epsilon} Pr[\mathcal{A}(D') \in S] + \delta$

• Differential privacy

A randomized algorithm A provides (ε, δ) -differential privacy if: for all neighboring databases D and D', and for any set of outputs S: $Pr[\mathcal{A}(D) \in S] \leq e^{\epsilon} Pr[\mathcal{A}(D') \in S] + \delta$

- if δ =0, standard ϵ -differential privacy
 - Laplace(0,b) noise where $b = ||q||_1/\epsilon$
- if $\delta > 0$, approximate (ϵ, δ)-differential privacy:
 - Gaussian(0, σ) noise where $\sigma = ||q||_2 f(\delta)/\epsilon$

- **1** (**Design**) Choose a set of queries **A** (the strategy)
- (Apply Laplace) Use the Laplace mechanism to answer A
- **3** (**Derivation**) Compute each query in **W** using answers to **A**

- **1** (**Design**) Choose a set of queries **A** (the strategy)
- (Apply Laplace) Use the Laplace mechanism to answer A
- **3** (**Derivation**) Compute each query in **W** using answers to **A**

- **1** (**Design**) Choose a set of queries **A** (the strategy)
- (Apply Laplace) Use the Laplace mechanism to answer A
- **3** (**Derivation**) Compute each query in **W** using answers to **A**

- **1** (**Design**) Choose a set of queries **A** (the strategy)
- 2 (Apply Laplace) Use the Laplace mechanism to answer A
- 3 (Derivation) Compute each query in W using answers to A

Opportunity: choose **A** to minimize the error for queries in **W**.

- (Design) Choose a set of queries A (the strategy)
- 2 (Apply Laplace) Use the Laplace mechanism to answer A
- **3** (**Derivation**) Compute each query in **W** using answers to **A**

Opportunity: choose **A** to minimize the error for queries in **W**.

Outline

1. Case study: answering 1-dim range queries

- 2. The matrix mechanism -- formal description.
- 3. The matrix mechanism -- new tools & techniques.
- 4. Conclusion

Frequency representation of the database

name	gender	grade
Alice	Female	91
Bob	Male	84
Carl	Male	82
Dave	Male	97
Edwina	Female	88
Faith	Female	78
Ghita	Female	85

{gender, grade}

gender	grade	count
Male	100	10
Male	99	13
Male	98	5
Male	97	7
Female	100	15
Female	99	21
Female	98	4
Female	97	14
Female	96	9

Adding/red tuple chan component frequency exactly 1

Frequency v length n, wh "domain size important p the discussio

x ₁	
x ₂	
X3	
X4	
X5	
X6	
 X7	
X8	
•••	
x _n	

Relational database

Frequency vector

X

Frequency representation of the database

Adding/red tuple chan component frequency exactly 1

Frequency v length n, wh "domain size important p the discussion

X

name	gender	grade
Alice	Female	91
Bob	Male	84
Carl	Male	82
Dave	Male	97
Edwina	Female	88
Faith	Female	78
Ghita	Female	85

Relational database

Frequency vector

Frequency representation of the database

name	gender	grade
Alice	Female	91
Bob	Male	84
Carl	Male	82
Dave	Male	97
Edwina	Female	88
Faith	Female	78
Ghita	Female	85

{grade}

grade	count
90-100	10
80-90	23
70-80	16
60-70	3

Adding/ret tuple chan componen frequency exactly 1

Frequency v length n, wh "domain size important p the discussio

$\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array}$

Relational database

Frequency vector

X

Answering all range queries

Goal: answer all **range-count queries** over **x**

AllRange = { $w \mid w = x_i + ... + x_j$ for $1 \le i \le j \le n$ }

W1	range(x ₁ ,x ₄)
W2	range(x ₁ ,x ₃)
W3	range(x ₂ ,x ₄)
W4	range(x ₁ ,x ₂)
W 5	range(x ₂ ,x ₃)
W6	range(x ₃ ,x ₄)
W7	range(x ₁ ,x ₁)
W8	range(x ₂ ,x ₂)
W9	range(x ₃ ,x ₃)
W10	range(x ₄ ,x ₄)

x ₁	+	x ₂	+	X 3	+	X 4
x ₁	+	x ₂	+	X 3		
		x ₂	+	X 3	+	X 4
x ₁	+	x ₂				
		x ₂	+	X 3		
				X 3	+	X 4
x ₁						
		x ₂				
				X 3		
						x ₄

workload W

Answering all range queries

Goal: answer all range-count queries over x

AllRange = { w | w = $x_i + ... + x_j$ for $1 \le i \le j \le n$ }

\mathbf{W}_1	range(x ₁ ,x ₄)
W2	$range(x_1, x_3)$
W ₃	$range(x_2, x_4)$
W4	$range(x_1, x_2)$
W 5	$range(x_2, x_3)$
W6	range(x ₃ ,x ₄)
W7	$range(x_1, x_1)$
W8	$range(x_2, x_2)$
W9	range(x ₃ ,x ₃)
W 10	range(x ₄ ,x ₄)

x ₁	+	x ₂	+	X 3	+	X 4
x ₁	+	x ₂	+	X 3		
		x ₂	+	X 3	+	X 4
x ₁	+	x ₂				
		x ₂	+	X 3		
				X 3	+	X 4
x ₁						
		x ₂				
				X 3		

workload W

Answering all range queries

Goal: answer all **range-count queries** over **x**

AllRange = { w | w = $x_i + ... + x_j$ for $1 \le i \le j \le n$ }

W_1	$range(x_1, x_4)$:
W ₂	range(x ₁ ,x ₃)	:
W ₃	$range(x_2, x_4)$	
W4	$range(x_1, x_2)$:
W 5	$range(x_2, x_3)$	
W6	range(x ₃ ,x ₄)	
W7	range(x ₁ ,x ₁)	2
W 8	$range(x_2, x_2)$	
W9	range(x ₃ ,x ₃)	
W 10	range(x ₄ ,x ₄)	

 $x_1 + x_2 + x_3 + x_4$ $x_1 + x_2 + x_3$ $x_2 + x_3 + x_4$ $x_1 + x_2$ $x_2 +$ **X**3 $x_3 + x_4$ **X**1 **X**₂ X_3 **X**4

52
49
42
33
39
19
10
23
16
3

X = 10 23 16	3
--------------	---

workload W

- high error

- inconsistency

 $||W||_1 = 6$

Error is measured as variance

- high error

- inconsistency

 $||W||_1 = 6$

W

Error is measured as variance

Approach 1: basic Laplace mechanism

 $||W||_1 = 6$

W

Error is measured as variance

- inconsistency

- high error

 $||W||_1 = 6$

	n=4	n	Error is
Sensitivity IIWII ₁	6	O(n ²)	measured as variance
Error per query	$2(W _1/\epsilon)^2 = 72/\epsilon^2$	$2(W _1/\epsilon)^2 = O(n^4)/\epsilon^2$	

X

Use Laplace mechanism to get noisy estimates for each x_i .

Use Laplace mechanism to get noisy estimates for each x_i.

Use Laplace mechanism to get noisy estimates for each x_i .

For w=range(x_i, x_j) Error(w)= 2(j-i+1)/ ε^2

Use Laplace mechanism to get noisy estimates for each x_i.

For w=range(x_i, x_j) Error(w)= 2(j-i+1)/ ε^2

Approach 3: hierarchical queries

Hierarchical queries: recursively partition the domain, computing sums of each interval.

Η
Η

Hierarchical queries: recursively partition the domain, computing sums of each interval.

Hierarchical queries: recursively partition the domain, computing sums of each interval.

Possible estimates for query range(x_2, x_3) = $x_2 + x_3$

Possible estimates for query range(x_2, x_3) = $x_2 + x_3$

 $z_5 + z_6$

Possible estimates for query range(x_2, x_3) = $x_2 + x_3$

 $z_5 + z_6$ $z_2 - z_4 + z_6$

Possible estimates for query range(x_2, x_3) = $x_2 + x_3$

 $z_5 + z_6$ $z_2 - z_4 + z_6$ $z_1 - z_4 - z_7$

Η

Hierarchical queries: recursively partition the domain, computing sums of each interval.

Possible estimates for query range(x_2, x_3) = $x_2 + x_3$

Least-squares

estimate

 $(6z_1 + 3z_2 + 3z_3 - 9z_4 + 12z_5 + 12z_6 - 9z_7)/21$

Error rates: workload of all range queries

ε-differential privacy

Approach 4: wavelet queries

Wavelet queries: use Haar wavelet to get noisy summary of data.

 $.5z_1 + 0z_2 - .5z_3 + .5z_4$

Approach 4: wavelet queries

Wavelet queries: use Haar wavelet to get noisy summary of data.

 $.5z_1 + 0z_2 - .5z_3 + .5z_4$

Error: workload of all range queries

Strategies for workload of all range queries

Noisy counts

Hierarchical

Η

Wavelet

Y

Very low sensitivity, but large ranges estimated badly.

Ι

Low sensitivity, and all range queries can be estimated using no more than logn output entries.

Max/Avg error

 $O(\log^3 n/\epsilon^2)$

 $O(\log^3 n/\epsilon^2)$

• Are these approaches optimal for all range queries?

- Are these approaches optimal for all range queries?
- What about other workloads?

- Are these approaches optimal for all range queries?
- What about other workloads?
- Big picture:
 - x values we cannot observe directly.
 - we can request noisy estimates of any linear function of the x values, at some cost.
 - what should we request to perform our task (i.e. answer workload queries) ?

- Are these approaches optimal for all range queries?
- What about other workloads?
- Big picture:
 - x values we cannot observe directly.
 - we can request noisy estimates of any linear function of the x values, at some cost.

 what should we request to perform our task (i.e. answer workload queries) ? Optimal Experimental Design

Outline

1. Case study: answering 1-dim range queries

- 2. The matrix mechanism -- formal description.
- 3. The matrix mechanism -- new tools & techniques.
- 4. Conclusion

1. Case study: answering 1-dim range queries

2. The matrix mechanism -- formal description.

- 3. The matrix mechanism -- new tools & techniques.
- 4. Conclusion

Linear counting queries

A **linear counting query** w computes a linear combination of the frequency vector counts:

 $w(D) = w_1x_1 + w_2x_2 + ... + w_nx_n$

each $w_i \in R$

1) Expressiveness queries

2) Need to list ALL -- don't omit those be derived

3) Can scale rows t error rates of each Linear counting queries

A **linear counting query** w computes a linear combination of the frequency vector counts:

$$w(D) = w_1x_1 + w_2x_2 + ... + w_nx_n$$
 each $w_i \in R$

... as a length n row vector:

The query result is:

 $\mathbf{w} = [w_1, w_2, w_3 \dots w_n]$

WX

1) Expressiveness queries

2) Need to list ALL -- don't omit those be derived

3) Can scale rows t error rates of each Linear counting queries

A **linear counting query** w computes a linear combination of the frequency vector counts:

$$w(D) = w_1x_1 + w_2x_2 + ... + w_nx_n$$
 each $w_i \in R$

... as a length n row vector:

The query result is:

WX

$$\mathbf{w} = [w_1, w_2, w_3 \dots w_n]$$

a set of linear counting queries is a matrix:

The query result is:

W

2) Need to list ALL -- don't omit those be derived

3) Can scale rows t error rates of each

Laplace mechanism (matrix notation)

Laplace(W,x) = Wx + ($||W||_1 / \varepsilon$)b

Laplace mechanism (matrix notation)

Laplace(W,x) = Wx + ($||W||_1 / \varepsilon$)b

samples from Laplace(1)

Laplace mechanism (matrix notation)

Laplace(W,x) = Wx + ($||W||_1 / \varepsilon$)b

m independent samples from Laplace(1)

Error(w) = 2 ($||W||_1 / \varepsilon$)²

est-<u>x</u> can be viewed as a synthetic database.

Workload query answers consistent

 $\textcircled{\ } \textbf{(Design)} \ \textbf{(Desig$

est-<u>x</u> can be viewed as a synthetic database.

Workload query answers consistent

est-<u>x</u> can be viewed as a synthetic database.

Workload query answers consistent

- $\textbf{0} \quad \textbf{(Design)} \ \textbf{Choose a full rank query strategy } A$
- $\ensuremath{ 2 \ }$ (Apply Laplace) Use the Laplace mechanism to answer A

est-<u>x</u> can be viewed as a synthetic database.

Workload query answers consistent

- $\textcircled{\ } \textbf{(Design)} \ \textbf{(Desig$
- $\ensuremath{ 2 \ }$ (Apply Laplace) Use the Laplace mechanism to answer A

 $z = Ax + (||A||_1 / \varepsilon)b$

est-<u>x</u> can be viewed as a synthetic database.

Workload query answers consistent

- $\textcircled{\ } \textbf{(Design)} \ \textbf{(Desig$
- $\ensuremath{ 2 \ }$ (Apply Laplace) Use the Laplace mechanism to answer A

 $\mathbf{z} = \mathbf{A}\mathbf{x} + (||\mathbf{A}||_1 / \varepsilon)\mathbf{b}$

3 (**Derivation**) Compute estimate \underline{x} of x using answers z.

Workload query answers consistent

- $\label{eq:constraint} \textbf{(Design)} \ \textbf{(Des$
- $\ensuremath{ 2 \ }$ (Apply Laplace) Use the Laplace mechanism to answer A

 $\mathbf{z} = \mathbf{A}\mathbf{x} + (||\mathbf{A}||_1 / \varepsilon)\mathbf{b}$

- **3** (**Derivation**) Compute estimate \underline{x} of x using answers z.
 - compute estimate \underline{x} of x that minimizes squared error: $\|A\underline{x} - z\|_{2}^{2}$

est-<u>x</u> can be viewed as a synthetic database.

Workload query answers consistent

- $\label{eq:constraint} \textbf{(Design)} \ \textbf{(Des$
- $\ensuremath{ 2 \ }$ (Apply Laplace) Use the Laplace mechanism to answer A

 $\mathbf{z} = \mathbf{A}\mathbf{x} + (||\mathbf{A}||_1 / \varepsilon)\mathbf{b}$

- **3** (**Derivation**) Compute estimate \underline{x} of x using answers z.
 - compute estimate <u>x</u> of x that minimizes squared error: $\|A\underline{x} - z\|_{2}^{2}$

$$\mathbf{x} = \mathbf{A}^{+}\mathbf{z} \qquad \text{where } \mathbf{A}^{+} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}$$
est-<u>x</u> can be viewed as a synthetic database.

Workload query answers consistent

- $\textcircled{\ } \textbf{(Design)} \ \textbf{(Desig$
- $\ensuremath{ 2 \ }$ (Apply Laplace) Use the Laplace mechanism to answer A

 $\mathbf{z} = \mathbf{A}\mathbf{x} + (||\mathbf{A}||_1 / \varepsilon)\mathbf{b}$

- **3** (**Derivation**) Compute estimate \underline{x} of x using answers z.
 - compute estimate <u>x</u> of x that minimizes squared error: $\|A\underline{x} - z\|_{2}^{2}$

Strategy matrices for the range queries

Strategy matrices for the range queries

Identity

1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

Ι

Hierarchical

Wavelet

1	1	1	1
1	1	-1	-1
1	-1	0	0
0	0	1	-1

Y

Η

 $Matrix_A(W,x) = Wx + (||A||_1 / \varepsilon) WA^+ b \qquad b=Lap(1)$

 $Matrix_{A}(W,x) = Wx + (||A||_{1} / \varepsilon) WA^{+}b \qquad b=Lap(1)$

instantiated with strategy A

$Matrix_{A}(W,x) = Wx + (||A||_{1} / \varepsilon) WA^{+}b \qquad b=Lap(1)$

$Matrix_{A}(W,x) = Wx + (||A||_{1} / \varepsilon) WA^{+}b \qquad b=Lap(1)$

$Matrix_{A}(W,x) = Wx + (||A||_{1} / \varepsilon) WA^{+}b \qquad b=Lap(1)$

$Matrix_A(W,x) = Wx + (||A||_1 / \varepsilon) WA^+ b \qquad b=Lap(1)$

Compare with the Laplace mechanism:

Laplace(W,x) = Wx + ($||W||_1 / \varepsilon$)b

NOTE: This error is completely independent of the input data!!

Given any full rank strategy A, and any linear workload query w, the error of the mechanism Matrix_A on query w is:

Error_A(w) = $(2/\epsilon^2) (||A||_1)^2 w(A^TA)^{-1}w^T$

NOTE: This error is completely independent of the input data!!

Given any full rank strategy A, and any linear workload query w, the error of the mechanism Matrix_A on query w is:

NOTE: This error is completely independent of the input data!!

Given any full rank strategy A, and any linear workload query w, the error of the mechanism Matrix_A on query w is:

Definition: strategy matrices A and B are profile equivalent if $(A^{T}A) = (B^{T}B)$

Matrix _A	Error _A (w) = $(2/\epsilon^2) (A _1)^2 \mathbf{w} (A^T A)^{-1} \mathbf{w}^T$	
Matrix _B	Error _B (w) = $(2/\epsilon^2)$ (B ₁) ² w(B ^T B) ⁻¹ w ^T	

If $(A^TA) = (B^TB)$ and $||A||_1 \le ||B||_1$ then Matrix_A has lower error than Matrix_B for **every** query.

Strategies equivalent to wavelet

Strategies equivalent to wavelet

Neither the hierarchical nor the wavelet strategy is **efficient**, i.e. there exist uniformly better strategies with matching error profiles. Objective: given workload W, find the query strategy A that minimizes the total error.

Error for a single query:

Error_A(**w**) = $(2/\epsilon^2)(||A||_1)^2 \mathbf{w}(A^T A)^{-1} \mathbf{w}^T$

Total error for a workload of queries:

TotalError_A(w) = $(2/\epsilon^2)(||A||_1)^2$ trace(W(A^TA)⁻¹W^T) = $(2/\epsilon^2)(||A||_1)^2$ trace(W^TW(A^TA)⁻¹)

Objective	Problem Type
-----------	--------------

	Objective	Problem Type
1	Given W, choose A to minimize TotalError _A (W)	SDP with rank constraints

	Objective	Problem Type
1	Given W, choose A to minimize TotalError _A (W)	SDP with rank constraints
2	Given A ^T A, choose Q to minimize IIAII1	SDP with rank constraints

	Objective	Problem Type
1	Given W, choose A to minimize TotalError _A (W)	SDP with rank constraints
2	Given A ^T A, choose Q to minimize IIAII1	SDP with rank constraints
3	Given W, choose A to minimize TotalError _A (W) under (ε,δ)-differential privacy	SDP

1. Case study: answering 1-dim range queries

2. The matrix mechanism -- formal description.

- 3. The matrix mechanism -- new tools & techniques.
- 4. Conclusion

- 1. Case study: answering 1-dim range queries
- 2. The matrix mechanism -- formal description.
- 3. The matrix mechanism -- new tools & techniques.
- 4. Conclusion

New techniques

- **Optimal error**: A lower bound on the error of the optimal strategy allows us to assess the quality of existing strategies and explore "workload error complexity".
- Efficient strategy selection: the strategy selection problem can be approximately solved, resulting in strategy matrices customized to arbitrary workloads.
- Inference for sparse datasets: by imposing non-negativity constraints during inference, accuracy can be significantly improved. (But analysis of error is harder.)

 Given workload W, the optimal total error for W is greater than or equal to the SVD bound.

> THEOREM 3.3. (SINGULAR VALUE BOUND) Given an $m \times n$ workload \mathbf{W} , let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the singular values of \mathbf{W} . $\min_{\mathbf{A}} \operatorname{ERROR}_{\mathbf{A}}(\mathbf{W}) \geq P(\epsilon, \delta) \frac{1}{n} (\sum_{i=1}^n \lambda_i)^2,$ where $P(\epsilon, \delta) = \frac{2 \log(2/\delta)}{\epsilon^2}$.

- Tight: bound is achievable for a certain class of workloads.
- Easy to compute.

Algorithm for efficient strategy selection

- Inspired by optimal experimental design
 - \bullet Given W, choose a set of **basis queries** for the strategy:
 - $\mathbf{v}_{1, \mathbf{v}_{2, \dots, \mathbf{v}_{n}}$ (the eigenvectors of \mathbf{W})
 - compute optimal scalars to minimize error

 $c_{1,} c_{2,} \dots c_{n}$

• Resulting strategy matrix is:

$$\mathbf{A} = \begin{bmatrix} \mathbf{C}_1 \mathbf{v}_1 \\ \mathbf{C}_2 \mathbf{v}_2 \\ \cdots \\ \mathbf{C}_n \mathbf{v}_n \end{bmatrix}$$

Approximately optimal error rates

All range queries (ε, δ) -differential privacy 1.2E+07 Н 9.0E+06 W **Total Error** 1.03 Eigen 6.0E+06 1.10 **SVDB** 1.14 3.0E+06 1.00 0E+00 16*8*8 1024 32*32 2^10

Dimensions of Domain (n=1024)

Customizing the strategy to the workload

Subsets of the range queries (ϵ, δ) -differential privacy

- $\textbf{(Design)} \ \textbf{(Design)} \$
- $\ensuremath{ 2 \ }$ (Apply Laplace) Use the Laplace mechanism to answer A

 $\mathbf{z} = \mathbf{A}\mathbf{x} + (||\mathbf{A}||_1 / \varepsilon)\mathbf{b}$

3 (Inference) Compute estimate \underline{x} of x using answers z.

- $\textbf{(Design)} \ \textbf{(Design)} \$
- $\ensuremath{ 2 \ }$ (Apply Laplace) Use the Laplace mechanism to answer A

 $\mathbf{z} = \mathbf{A}\mathbf{x} + (||\mathbf{A}||_1 / \varepsilon)\mathbf{b}$

- **3** (Inference) Compute estimate \underline{x} of x using answers z.
 - Non-negative least squares: compute estimate \underline{x} of x that minimizes squared error: $\|A\underline{x} z\|_2^2$

where each $\underline{x}_i > 0$

- $\textbf{(Design)} \ \textbf{(Design)} \$
- $\ensuremath{ 2 \ }$ (Apply Laplace) Use the Laplace mechanism to answer A

 $\mathbf{z} = \mathbf{A}\mathbf{x} + (||\mathbf{A}||_1 / \varepsilon)\mathbf{b}$

- **3** (Inference) Compute estimate \underline{x} of x using answers z.
 - Non-negative least squares: compute estimate \underline{x} of x that minimizes squared error: $\|A\underline{x} z\|_2^2$

where each $\underline{x}_i > 0$

Effectiveness of non-negative least squares depends of properties of the data, epsilon, and A.

Active set method [Lawson, 1987]

Error: all range queries, non-negative least squares

- 1. Case study: answering 1-dim range queries
- 2. The matrix mechanism -- formal description.
- 3. The matrix mechanism -- new tools & techniques.
- 4. Conclusion

- 1. Case study: answering 1-dim range queries
- 2. The matrix mechanism -- formal description.
- 3. The matrix mechanism -- new tools & techniques.

4. Conclusion

Summary and conclusions

- The Matrix mechanism generalizes the Laplace & Gaussian mechanisms, improving accuracy by exploiting correlation in the workload and reducing sensitivity.
- Two recent techniques for range queries are instances of the matrix mechanism; neither is optimal, but they are close.
- One strategy does not fit all workloads: adapting the strategy to the workload is essential to achieving low error.
- It is possible to compute the optimal strategy in O(n⁸) time, and approximately optimal strategies in O(n⁴).
Open questions

- The matrix mechanism is data-independent. What are the trade-offs for data-dependent approaches?
- What makes one workload "harder" to answer than another? How can we reliably measure workload error complexity?
- How do our results compare with lower bounds for differentially private output. (Our optimal strategies result in the least error for this particular mechanism, not necessarily the lowest error possible.)
- Can we avoid the computational dependence on the domain size n, without sacrificing accuracy?
- How do we analyze the error resulting from non-negative least squares?

Questions?

Project page and implementation of the Matrix Mechanism:

http://bit.ly/ituyOt

Additional details on our work may be found here:

- [Li, ArXiv 2011] C. Li and G. Miklau. Efficient Batch Query Answering Under Differential Privacy. CoRR abs/1103.1367, 2011.
- [Li, PODS 2010] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing Linear Counting Queries Under Differential Privacy. Principles of Database Systems (PODS) 2010.
- [Hay, PVLDB 10] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of differentially-private queries through consistency. Proceedings of the VLDB Endowment (PVLDB), 2010.

References

[Ghosh, 2009] A. Ghosh, T. Roughgarden, and M. Sundararajan. Universally utilitymaximizing privacy mechanisms. In Symposium on Theory of computing (STOC), pages 351–360, 2009.

[Xiao, 2010] X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet transforms. In International Conference on Data Engineering, 2010.

[Barak, 2007] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar. Privacy, accuracy, and consistency too: a holistic solution to contingency table release. In Principles of Database Systems (PODS) 2007.

[Xiao, 2011] Xiaokui Xiao, Gabriel Bender, Michael Hay, and Johannes Gehrke. iReduct: Differential privacy with reduced relative errors. SIGMOD, 2011.

[Lawson, 1987] C. L. Lawson and R. J. Hanson, Solving least squares Problems, Prentice Hall, 1987.