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Introduction

What is a Privacy Definition?

Goal: apply algorithm M to sensitive data D to produce sanitized
output S

A privacy definition is a contract

Restricts behavior of a sanitization algorithm.
Provides guarantees about leakage of sensitive information.

How do we analyze contracts?
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Introduction

What is a Privacy Definition?

Goal: apply algorithm M to sensitive data D to produce sanitized
output S

A privacy definition is a contract

Restricts behavior of a sanitization algorithm.
Provides guarantees about leakage of sensitive information.

How do we analyze contracts?
1 Hire lawyers at €£$ ×105 per hour.
2 Wait many hours.
3 Hope they get it right.

Profitable model for privacy research?
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Introduction

What is a Privacy Definition?

Goal: apply algorithm M to sensitive data D to produce sanitized
output S
A privacy definition is a contract

Restricts behavior of a sanitization algorithm.
Provides guarantees about leakage of sensitive information.

How do we analyze contracts?
Spend much time crafting attacks for specific algorithms.

Disclosure Risk Evaluation [Rei05] (and many more!)
Minimality attack [WFWP07]
de Finetti attack [Kif09]
Active attacks [BDK07]
Homer’s attack [HSR+08]

Use software
Record linkage

Brittleness/Incompleteness
What if our attack does not work?
What if software does not find a disclosure?
Easy to evade specific attack code.
What else is protected?
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Introduction

Methodology of Consistent Closures

Analytic approach to evaluating privacy definitions.

Can identify what is not protected.
Can identify what is protected.

E.g., Randomized response = protecting parity.

Evaluates privacy definition rather than specific algorithm and specific
input data.

Some algorithms provide more protections than others.
Interested in base guarantees provided by all algorithms satisfying a
privacy definition.

Helpful to think of privacy definition as a set of algorithms.

Often expressed as constraints on algorithm.
Eliminates vagueries.

Overview
1 Rephrase privacy definition in a normal form.
2 Extract linear constraints on algorithm’s behavior.
3 Provide Bayesian interpretation of protections.
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Introduction

Intended Scenario

Attacker knows there exists a sensitive dataset D.

Schema of D is known.

Attacker will know sanitization algorithm M
Avoids security by obscurity
Allows researchers to judge significance of their results (utility).

Attacker sees an output S =M(D)

Attacker’s inference considers all possible input datasets D1, . . . ,Dn

Inference based on P(M(D1) = S), . . . ,P(M(Dn) = S).
Attacker is computationally unbounded (information-theoretic).
Attacker may be Bayesian.

Goal: make statements about how attacker’s beliefs will change.
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Consistent Closures Methodology Representation of Algorithms and Privacy Definitions

Representation of M


D1 D2 . . . Dn

S1 P(M(D1) = S1) P(M(D2) = S1) . . . P(M(Dn) = S1)
S2 P(M(D1) = S2) P(M(D2) = S2) . . . P(M(Dn) = S2)
S3 P(M(D1) = S3) P(M(D2) = S3) . . . P(M(Dn) = S3)
...

...
...

...
...


Any algorithm M is a matrix

Yes, even deterministic algorithms.

Rows indexed by outputs Si

Columns indexed by datasets Dj

Columns correspond to datasets, not individual records!!
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Consistent Closures Methodology Representation of Algorithms and Privacy Definitions

Representation of Priv

Privacy definitions expressed as various constraints on algorithms:

k-Anonymity.
Differential Privacy.
Randomized Response.

∴ A privacy definition Priv is just a set of algorithms.

2
K

K

K1

3

Not all sets capture intuitive properties of “privacy”

Need to normalize sets.
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Consistent Closures Methodology A Normal Form

Normalization and Post-processing

Assumption 1: postprocessing sanitized data does not decrease
privacy [KL].

(as long as we do not bring in external information)
Sanitized data is to be released (postprocessed).

If M satisfies privacy and A is a postprocessing algorithm:

A(M(D)) satisfies privacy..
In matrix notation, the new algorithm is AM.

Add all possible A◦M to our set.

2
K

K

K1

3

A

B

A K1
2K

K3
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Consistent Closures Methodology A Normal Form

Normalization and Post-processing

Assumption 2: Convexity [KL].

If M1 satisfies privacy.
And M2 satisfies privacy.
Flip coin P(HEADS) = p.
Choicep(M1,M2): run M1 if heads, M2 if tails.
Choicep(M1,M2) satisfies privacy.
Why? Increases uncertainty.

Add all possible Choicep(M1,M2) to our set.

2
K

K

K13

A

B

A K12K

K3

Choice(K   ,           )3 A K1
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Consistent Closures Methodology A Normal Form

Consistent Closure

2
K

K

K13

A

B

A K12K

K3

Choice(K   ,           )3 A K1

Now our set Priv is consistent with basic intuitions on privacy.

This is called consistent closure.

Turns implicit assumptions into explicit assumptions

Same privacy properties as before.

Privacy properties easier to see.

Can extract linear constraints on the probabilities P(M(Dj) = Si ).
Coefficients of linear constraints ≈ prior probabilities.
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Consistent Closures Methodology Example: k-Anonymity

Example: k-Anonymity

Start with all algorithms satisfying k-anonymity.

2
K

K

K1

3
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Consistent Closures Methodology Example: k-Anonymity

Example: k-Anonymity

Add all algorithms that produce k-anonymous table then build
decision tree

Add all algorithms that produce k-anonymous table then return linear
regression coefficients.

Add all algorithms that produce k-anonymous table then · · ·

2
K

K

K1

3

A

B

A K1
2K

K3
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Consistent Closures Methodology Example: k-Anonymity

Example: k-Anonymity

Add all random choices of algorithms based on coin flips.

2
K

K

K13

A

B

A K12K

K3

Choice(K   ,           )3 A K1

What do we get?

2
K

K

K1

3

No guarantees

(similar results for many syntactic methods)
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Consistent Closures Methodology Example: k-Anonymity

Why? Side Channels

If input table is

Then output

In general:

Type of coarsening is
unrestricted
Can encode entire input
as side channel
Can efficiently decode it
from output.

Zip Code Age Nationality Disease
13053 25 Indian Cold
13068 39 Russian Stroke
13053 27 American Flu
14850 43 American Cancer
14850 57 Russian Cancer
14853 40 Indian Cancer

Zip Code Age Nationality Disease
130** < 40 * Cold
130** < 40 * Stroke
130** < 40 * Flu

1485* ≥ 40 * Cancer
1485* ≥ 40 * Cancer
1485* ≥ 40 * Cancer
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Consistent Closures Methodology Algorithmic Constraints via Convex Analysis

Algorithmic Constraints


D1 D2 . . . Dn

S1 P(M(D1) = S1) P(M(D2) = S1) . . . P(M(Dn) = S1)
S2 P(M(D1) = S2) P(M(D2) = S2) . . . P(M(Dn) = S2)
S2 P(M(D1) = S3) P(M(D2) = S3) . . . P(M(Dn) = S3)
...

...
...

...
...


Recall matrix view of algorithms.

Postprocessing by A = matrix multiplication AM.
Choice = convex combination of matrices.

Resulting basic operations on rows.
Multiply row by constant
Add two rows

Set of possible rows in consistent closure belongs to a convex set.
Convex sets are intersections of half-spaces.
Convex sets are solutions to systems of linear inequalities.
Linear inequalities can be interpreted as statements about posterior
distributions.
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Consistent Closures Methodology Algorithmic Constraints via Convex Analysis

Convex Analysis

Convex polytope of allowable rows.

(0, 0)

(p, 1− p)

(1− p, p) = ( P[M(D1) = S ], P[M(D2) = S ] )

(0, δ)

(0.33, 0.33)
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Consistent Closures Methodology Algorithmic Constraints via Convex Analysis

Convex Analysis

Defining linear constraints.

x
+

y ≤
1

−(1− p)x + py ≥
0

x
≥

0

y
−

p
−

δ
1−

p
x
≤

0.
1
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Examples Differential Privacy
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Examples Differential Privacy

Warmup – Differential Privacy

Differential Privacy is its own convex closure.

Linear constraints: P(M(D1) = S) ≤ eεP(M(D2) = S) for all pairs
of neighboring databases.

Interpretation:

P(input = D1 | output = S)

P(input = D2 | output = S)
=

P(D1)P(M(D1) = S)

P(D2)P(M(D2) = S)

≤ eε P(input = D1)

P(input = D2)

Bounds on increase/decrease of odds ratios of neighboring tables.
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Examples Randomized Response

Randomized Response

In simplest setting:
Database is a bit string
Each individual corresponds to a bit
Value of bit is binary attribute of individual

Definition (Randomized Response)

Flip each bit independently keep it with probability p > 1/2 or flip with
probability 1− p.

Inputs:

Outputs:


11 10 01 00

11 p2 p(1− p) p(1− p) (1− p)2

10 p(1− p) p2 (1− p)2 p(1− p)
01 p(1− p) (1− p)2 p2 p(1− p)
00 (1− p)2 p(1− p) p(1− p) (1− p)2
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Examples Randomized Response

Consistent Closure of Randomized Response

2n linear inequality constraints (n=number of tuples in database)

Completely characterize the consistent closure
M is in the consistent closure ⇔ every row of M satisfies all
constraints.

Example n = 2

Notation: x s
11 = P(M(11) = S)

Constraints on rows are:

p2x s
11 + (1− p)2x s

00 ≥ p(1− p)x s
10 + p(1− p)x s

01

(1− p)2x s
11 + p2x s

00 ≥ p(1− p)x s
10 + p(1− p)x s

01

p2x s
10 + (1− p)2x s

01 ≥ p(1− p)x s
11 + p(1− p)x s

00

(1− p)2x s
10 + p2x s

01 ≥ p(1− p)x s
11 + p(1− p)x s

00
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Examples Randomized Response

Consistent Closure of Randomized Response

2n linear inequality constraints (n=number of tuples in database)

Completely characterize the consistent closure
M is in the consistent closure ⇔ every row of M satisfies all
constraints.

Example n = 2

Notation: x s
11 = P(M(11) = S)

Constraints on rows are:

p2x s
11 + (1− p)2x s

00 ≥ p(1− p)x s
10 + p(1− p)x s

01

(1− p)2x s
11 + p2x s

00 ≥ p(1− p)x s
10 + p(1− p)x s

01

p2x s
10 + (1− p)2x s

01 ≥ p(1− p)x s
11 + p(1− p)x s

00

(1− p)2x s
10 + p2x s

01 ≥ p(1− p)x s
11 + p(1− p)x s

00

All inputs with same parity are grouped together!
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Examples Randomized Response

Randomized Response

Constraints have interpretation in terms of protecting parity.

If attacker believes each bit bi has P(bi = 1) ≥ p or P(bi = 0) ≥ p

Then attacker has some (tiny amount of) certainty about parity of
each subset of dataset

After seeing output, none of the relative beliefs about parity will
change.

For any subset of the data, If P(parity=even) > P(parity=odd) then
P(parity=even | output) ≥ P(parity=odd | output)
and vice versa.

Utility: it looks like we are protecting too much.

But what can we do?
Relax privacy definition
Tool: Fourier-Motzkin elimination

Analogue of Guass-Jordan elimination for linear inequalities.
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Examples Randomized Response

Fourier-Motzkin Elimination

p2x s
11 + (1− p)2x s

00 ≥ p(1− p)x s
10 + p(1− p)x s

01

(1− p)2x s
11 + p2x s

00 ≥ p(1− p)x s
10 + p(1− p)x s

01

p2x s
10 + (1− p)2x s

01 ≥ p(1− p)x s
11 + p(1− p)x s

00

(1− p)2x s
10 + p2x s

01 ≥ p(1− p)x s
11 + p(1− p)x s

00
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Examples Randomized Response

Fourier-Motzkin Elimination

p2x s
11 + (1− p)2x s

00 ≥ p(1− p)x s
10 + p(1− p)x s

01

p2x s
10 + (1− p)2x s

01 ≥ p(1− p)x s
11 + p(1− p)x s

00

p

1− p
x s

11 +
1− p

p
x s

00 − x s
01 ≥ x s

10

x s
10 ≥ 1− p

p
x s

11 +
1− p

p
x s

00 −
(1− p)2

p2
x s

01

P(M(01) = s) = x s
01 ≤

p

1− p
x s

11 =
p

1− p
P(M(11) = s)
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Examples Randomized Response

Fourier-Motzkin Elimination

p2x s
11 + (1− p)2x s

00 ≥ p(1− p)x s
10 + p(1− p)x s

01

p2x s
10 + (1− p)2x s

01 ≥ p(1− p)x s
11 + p(1− p)x s

00

p

1− p
x s

11 +
1− p

p
x s

00 − x s
01 ≥ x s

10

x s
10 ≥ 1− p

p
x s

11 +
1− p

p
x s

00 −
(1− p)2

p2
x s

01

P(M(01) = s) = x s
01 ≤

p

1− p
x s

11 =
p

1− p
P(M(11) = s)

One of the ε-differential privacy constraints (ε = p
1−p )

Can get all of them using FM-elimination
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Examples FRAPP

Analysis of FRAPP

Similar to PRAM

Like randomized response but data is not binary.

(simplified) idea:

Each tuple is perturbed using a matrix P.
pij = probability value i gets perturbed to value j .
(simplification) P is a symmetric matrix
(simplification) each pij ≥ c (a privacy parameter)

Protects a general notion of privacy

For each person, choose one tuple value to be the 1 other tuple values
are 0
If attacker believes each person has a tuple value with prior probability
≥ p∗ then relative belief in parity will not change.
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Examples FRAPP

Questions?
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Examples FRAPP

Lars Backstrom, Cynthia Dwork, and Jon Kleinberg.
Wherefore art thou r3579x?: anonymized social networks, hidden
patterns, and structural steganography.
In WWW, 2007.

Nils Homer, Szabolcs Szelinger, Margot Redman, David Duggan,
Waibhav Tembe, Jill Muehling, John V. Pearson, Dietrich A. Stephan,
Stanley F. Nelson, and David W. Craig.
Resolving individuals contributing trace amounts of dna to highly
complex mixtures using high-density snp genotyping microarrays.
PLoS Genet, 4(8), 08 2008.

Daniel Kifer.
Attacks on privacy and de finetti’s theorem.
In SIGMOD, 2009.

Daniel Kifer and Bing-Rong Lin.
An axiomatic view of statistical privacy and utility.
To appear in Journal of Privacy and Confidentiality.
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Examples FRAPP

J.P. Reiter.
Estimating risks of identification disclosure for microdata.
Journal of the American Statistical Association, 100:1103 – 1113,
2005.

Raymond Wong, Ada Fu, Ke Wang, and Jian Pei.
Minimality attack in privacy preserving data publishing.
In VLDB, 2007.
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