Getting Back to Basics: The Why and How of Statistical Disclosure Limitation vs. Privacy Protection

> Stephen E. Fienberg Department of Statistics, Heinz College, Machine Learning Department, and Cylab Carnegie Mellon University Pittsburgh, PA 15213-3890 USA fienberg@stat.cmu.edu

Disclosure Limitation, Confidentiality & Harm

Prewitt, 2011

Do you agree/disagree with:

- The Census Bureau's promise of confidentiality cannot be trusted.
- My answers to the census could be used against me.
- The census is an invasion of my privacy.

Prewitt, 2011

Outline

- Some Statistical ideas on confidentiality and privacy protection.
- Differential Privacy (DP) in a focused statistical problem:
 - Protecting contingency table data.
- Extensions to DP.
- Record Linkage as alternative to DP:
 A partially baked idea!

Usability, Transparency, & Duality in Privacy Protection

- Usability: extent to which released data are free from systematic distortions that impair inference.
- **Transparency:** extent to which methodology provides direct or implicit information on bias and variability resulting from disclosure limitation mask.
- **Duality:** extent to which methods aim at both disclosure limitation and making the maximal amount of data available for analysis.

General Methods for Protection

- Removing obvious identifiers/near-identifiers
 - Names, geography, birthdate, etc.
- Data transformations:
 - Matrix masking $X \rightarrow AXB + C$
 - e.g., noise addition
 - Data suppression
 - Deleting cases / sampling
 - Cell suppression
- Synthetic data

Inferential Utility

- Want to achieve "Statistical reversibility" of data transformation:
 - Need (a) released data and (b) likelihood function including full information on transformation applied.
 - For noise addition this may involve using "measurement error model."
- Contrast with Naïve DP perspective and agency view of "just using" released data.

Enter *E***-Differential Privacy**

Randomized function \mathcal{K} gives \mathcal{E} -differential privacy if for all neighboring D_1 and D_2 , and all $C \in \text{range}(\mathcal{K})$:

 $e^{-\varepsilon} \leq \Pr[\mathcal{K}(\mathbf{D}_1) \in \mathbf{C}] / \Pr[\mathcal{K}(\mathbf{D}_2) \in \mathbf{C}] \leq e^{\varepsilon}$

10

Differential Privacy

- Standard "DP mechanism" is addition of Laplace noise, with parameter ε.
 - The more data or statistics you protect the larger the noise required.
- Refinements such as "exponential mechanism," and perturbing an estimating equation, exploit a Lipchitz condition, and require less noise.

Differential Privacy

- DP offers strong privacy "guarantees," through all possible violations, but...
 - Strong privacy "guarantees" may destroy utility of the data.
 - Does not recognize iterative and possibly nature of statistical data analysis.
- Research users want data sets to analyze, not DP-protected coefficients.

Differential Privacy

- DP is fundamentally a *frequentist* notion:
 - Privacy resides in the method that generates the altered data, as well as extremal aspects of data themselves.
 - Has the flavor on minimax approaches.

Protecting Contingency Tables Barak et al. (2007)

- Want to release a set of altered MSS marginals.
 - Use Fourier coefficient basis for noise addition.
 - This produces non-integer and inconsistent margins.
 - Consistency of margins doesn't guarantee existence of a table satisfying released margins.
 - Barak et al. find "nearby" set of consistent integer margins which preserve DP property.
- Assessment by Fienberg, Rinaldo and Yang (2010, 2011) show that the approach obliterates the data for large sparse tables.

Lessons Learned

- As ε increases, amount of noise added decreases
 - Deviance between DP generated tables and real MLEs gets smaller.
 - If we add a lot of noise, it has strong privacy guarantees but the statistical inference becomes infeasible.
 - When we add little noise, the statistical inference is better but no privacy guarantees.
- DP struggles with releasing useful information associated with large sparse contingency tables.

Implications

- Need to incorporate RU ideas into DP formulation for data releases to have real utility:
 - Learn how to draw inferences from privacyprotected releases.
 - Focus on model search processes, not simply reporting one set of summary statistics.
- Move from frequentist to Bayesian formulation.

Extensions to DP: I

- (ε, δ) -DP (Dwork, et al. 2006)
 - A randomized algorithm *K* gives (ε,δ)-DP if for all S⊆Range(*K*),

 $\Pr[\mathcal{K}(\mathbf{D}_1) \in \mathbf{S}] \leq e^{\varepsilon} \Pr[\mathcal{K}(\mathbf{D}_2) \in \mathbf{S}] + \delta,$

where the probabilities are over the coin flips of the algorithm \mathcal{K} .

Extensions to DP: II

• (ε , δ)-Probabilistic DP (Machanavajjhala et al., 2008)

 $\Pr[\mathcal{K}(\mathbf{D}) \in \operatorname{Disc}(\mathbf{D}, \varepsilon)] \leq \delta.$

- Claim: (ε, δ) -PDP lies strictly between (ε, δ) -DP and ε -DP. True?
- How do we compute Disc(D, ε)? With respect to a prior, w.r.t. the joint distribution of the data and the prior (Abowd and Vilhuber, 2008), w.r.t. the randomizing function?

Extensions to DP: III

(ε , δ)-Random DP (Hall, Rinaldo, Wasserman, 2011) $\Pr_{D} \{ e^{-\varepsilon} \leq \Pr[\mathcal{K}(D_{1}) \in C] / \Pr[\mathcal{K}(D_{2}) \in C] \leq e^{\varepsilon} \} \geq 1 - \delta$

- Key here is that data are treated as random and deviations from DP are with respect to distribution of data.
- D₂ adds a randomly drawn new data element to database D₁.
- Get composition property w.r.t. ε and much better utility w.r.t. risk function.

Related DP Issues

• Should the bound on

 $|\Pr[\mathcal{K}(\mathbf{D}_1) \in \mathbf{C}] / \Pr[\mathcal{K}(\mathbf{D}_2) \in \mathbf{C}]|$

be constant, ε , or depend on D?

- Should perturbations of the data always involve adding continuous noise?
 - What about restricted swapping for count data?

Statistical View of Record Linkage (Hall & Fienberg)

There exist two sets of observable records:

$$A = \{a_1 \dots a_n\} \qquad B = \{b_1 \dots b_m\}$$

Data are via
model depending $P_{\theta}(A, B; Q)$
on Q
$$Q \in \{0, 1\}^{n \times m} \qquad q_{i,j} = \begin{cases} 1 & a_i, b_j \text{ link} \\ 0 & \text{o/w} \end{cases}$$

There is an **unknown** matrix that contains **the true record linkage** information.

"Privacy" Overview

Goal: To release a sanitized database that includes potentially sensitive data elements, while maintaining individual privacy.

Police Records

Name	Address	Criminal?
Robert	123 Fake St	Ν
Dave	456 Fake St	Y

Sanitized Police Records

Name	Zip Code	Criminal?
REDACTED	15232	Ν
REDACTED	15232	Y

In general, we must **sanitize** the data somehow.

Envision an adversary attempting to infer the sensitive information via record linkage. 22

Setting/Assumptions

The columns of the data partition into the sensitive attributes, and the quasi-identifiers:

Name	Address	Criminal?
Robert	123 Fake St	Ν
Dave	456 Fake St	Y
		L

"Quasi-identifiers" "Sensitive aka "key variables" attribute" complete record sensitive attributes $a_i = (a'_i, s_i)$ quasi-identifiers

The goal is to release a set of sanitized records:

$$b_i = (b'_i, \tilde{s}_i)$$

• Suppose adversary knows exact values for quasiidentifiers for subset of records in private database:

Complete database

$$A = \{a_1 \dots a_n\}$$

 $P_{\theta}(A, B; Q)$
 $B = \{b_1 \dots b_n\}$
Sanitized database
Adversary's database
 $A' = \{a'_{i_1} \dots a'_{i_m}\}$
Choose a permutation Q
uniformly at random, and a
model P , then draw $B|A;Q$
Adversary faces record linkage
problem, where model is
specified by the data owner.

Fully Bayesian "Privacy"?

- Suppose that the choice of model *P* is made public knowledge:
- Then the "correct" way to do inference about S is to maintain uncertainty about the record linkage:

$$\pi(S \mid B) \propto \sum_{Q_i \in Q} P_{\theta}((A', S), B; Q_i) \pi(S)$$
(sum over all possible linkage structures)

• A possible criterion for privacy protection would be to require the "statistical distance" between the posterior and prior is small for all prior distributions: $D_H(\pi(\cdot), \pi(\cdot \mid B)) \leq \tau$

- Adversaries and legitimate statisticians are treated the same.
- Choice of D_H and τ gives tradeoff between utility and privacy.

Fully Bayesian "Privacy"?

- Some Context:
 - *k-anonymity, l-diversity, t-closeness* may be viewed as successively improving approximations to this idea, but they also unnecessarily restrict the model class.

P(A,B;Q) concentrated on {B: B is k-anonymized}

- "Protect" sensitive values?
 - We could output exact identifiers, allow adversary perfect record linkage, but apply double exponential or other kind of perturbtions to sensitive attributes.
 - Expanded options to explore.
- We need to understand the formal properties.

Relationship to DP

- Differential privacy from BP perspective:
 - Adversary has *n*-1 complete records and belief about *n*th record doesn't change much when seeing data.
 - **DP** criterion implies Hellinger distance (*f*-information).
 - In BP approach, use *n*-1 quasi-identifiers, and point mass prior on *n* true sensitive values.
 - Adversary's prior on *n*th sensitive value doesn't change much re inferring quasi-identifiers for *n*th record.
 - Choice of distance function, e.g., KL-information.
 - BP scheme doesn't protect the identifiers.

Summary

- Some Statistical ideas on confidentiality and privacy protection.
- Differential Privacy (DP) in a focused statistical problem:
 - Protecting contingency table data.
- Extensions to DP.
- Record Linkage as alternative to DP:

– A partially baked idea!

End

- My CMU privacy collaborators:
 - Rob Hall, Jiashin Jin, Alessandro Rinaldo, Xiaolin Yang, Larry Wasserman
- Joint CMU/PSU/Cornell collaboration