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Part 1 - Published Results
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Context

Setup:

Consider the creation of synthetic datasets.

Want to achieve differential privacy.

Use a perturbed version of multiple imputation to do so.

Research question:

How should analysts obtain inferences from
differentially-private synthetic datasets?

In particular, can we use the combining rules developed for
multiply imputed synthetic datasets when we analyze
differentially-private datasets created with multiple
imputations?

Anne-Sophie Charest (CMU) Creation and Analysis of DP Synthetic Datasets 4



Context

Setup:

Consider the creation of synthetic datasets.

Want to achieve differential privacy.

Use a perturbed version of multiple imputation to do so.

Research question:

How should analysts obtain inferences from
differentially-private synthetic datasets?

In particular, can we use the combining rules developed for
multiply imputed synthetic datasets when we analyze
differentially-private datasets created with multiple
imputations?

Anne-Sophie Charest (CMU) Creation and Analysis of DP Synthetic Datasets 4



Context

Setup:

Consider the creation of synthetic datasets.

Want to achieve differential privacy.

Use a perturbed version of multiple imputation to do so.

Research question:

How should analysts obtain inferences from
differentially-private synthetic datasets?

In particular, can we use the combining rules developed for
multiply imputed synthetic datasets when we analyze
differentially-private datasets created with multiple
imputations?

Anne-Sophie Charest (CMU) Creation and Analysis of DP Synthetic Datasets 4



The Multiple Imputation (MI) Approach

It was first suggested by Rubin (2003) to generate synthetic
datasets using the framework of Multiple Imputation.

Multiple Imputation:

- Proposed to deal with non-response in surveys (Rubin, 1993).

- Write Y = (Yobs ,Ymis), the observed and missing part of the
data matrix for the sampled respondents.

- The analyst draws Ymis from the posterior predictive
distribution of Ymis |Yobs .

- After drawing M independent sets of values for Ymis , we
obtain M completed datasets (Yobs ,Y

m
mis), m = 1, · · · ,M.

To get completely synthetic datasets, we use the same idea and
generate Ysyn from the posterior predictive distribution Y |Yobs .
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Combining Rules for MI

Key Idea: Having more than one synthetic dataset allows to
estimate the variability introduced because of the SDL mechanism
and account for it in our inferences.

In Practice: Suppose we have M completely synthetic datasets
and we want to estimate one parameter of interest Q. We obtain
from each of the datasets an estimate qm of Q and an estimate vm
of the variance of this estimator.

Then,

Q̂ = qM

V̂ar(Q̂) = TM = (1 + 1/M) ∗ bM − vM

or T ∗
M = max(0,TM) +

nsyn

n
vM I [TM < 0]

where qM = 1
M

∑
m qm ; vM = 1

M

∑
m vm ; bM = 1

M−1

∑
m(qm − qM)2

Reiter (2003) shows that such inference is accurate.
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Differential Privacy

Formal definition (Dwork, 2006):
A randomized function κ gives ε-differential privacy if and only if
for all datasets B1 and B2 differing on at most one element, and
for all S ⊆ range(κ),

exp(−ε) ≤ Pr [κ(B1) ∈ S ]

Pr [κ(B2) ∈ S ]
≤ exp(ε)

Smaller values of ε provide stronger privacy guarantees.

For synthetic data, the randomized function κ takes as input
the real dataset and generates a synthetic dataset.

If we want M synthetic datasets, generate each with ε/M
differential privacy.
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Case Study: Beta-Binomial Synthetizer

Consider the simple case of publishing Y where Y ∼ Bin(n, p).
The following algorithm was proposed to generated a
differentially-private dataset Ỹ (Abowd and Vilhuber, 2008):

Given a dataset Y , sample, for i = 1, . . . ,m,

p̃i ∼ Beta(α1 + Y , α2 + n − Y )

Ỹi ∼ Binomial(ñ, p̃i )

The parameters α1, α2 are deterministically chosen based on the
sample size, n, and the level of differential privacy desired, ε.

We can interpret this synthetic data generation process as
generating from a perturbed posterior predictive distribution,
where we implicitly use a prior distribution of Beta(α1,α2) instead
of a belief prior for p.
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First Results

Can we use the combining rules developed for multiply imputed
synthetic datasets when we analyze differentially-private datasets
created with multiple imputations?

NO

Bias of qm

E [qm|x ] =
α1 + x

α1 + α2 + n
6= x

n

To obtain differential privacy, we need α1 + α2 ≥ 0.
(e.g. If ñ = 100, ε = 2 (0.1), then αj ≥ 15.65 (950)).

Avergaing over possible datasets x from a prior distribution
does not in general fix this problem.

The bias does not reduce as n increases.
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Is the Bias Important in Practice?

Table: Relative Bias (in %) of qM as estimator of p
(100,000 simulations, n = 100, ñ = 100)

ε p Real data M=1 M=2 M=5 M=10
2 0.25 0.12 23.88 53.84 80.30 90.05
2 0.50 0.05 0.05 -0.03 0.03 -0.00

250 0.25 0.01 0.05 -0.04 0.00 0.05

Anne-Sophie Charest (CMU) Creation and Analysis of DP Synthetic Datasets 10



Same for the variance...

Table: Relative bias (in %) of TM and T ∗
M as estimators of the variance

of qM . (100,000 simulations, n = 100, ñ = 100)

Variance of qM Relative Bias Relative Bias
p ε M (x 10−2) of TM (%) of T ∗

M (%) of TM (%)

0.25 2 2 22.40 -44.71 54.35 55
0.25 2 5 6.42 -9.44 251.00 50
0.25 2 10 3.05 -26.61 503.95 55

0.50 2 2 23.57 -39.12 63.09 57
0.50 2 5 7.09 -6.79 225.99 47
0.50 2 10 3.12 -10.82 466.29 46

0.25 250 2 39.42 -54.29 -14.66 50
0.25 250 5 30.35 -38.10 -15.33 27
0.25 250 10 25.46 -26.51 -16.71 11

Note: TM is however negative 11% to 50% of the time.
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So, How Can we Analyze Such Datasets?

We could try to modify the combining rules.

Instead, we create an inferential model which takes into account
the synthetic datasets generation mechanism:

p ∼ Beta(γ1, γ2)

y ∼ Binomial(n, p)

p̃i ∼ Beta(α1 + y , α2 + n − y), for i = 1, . . . ,M

ỹi ∼ Binomial(m, p̃i ), for i = 1, . . . ,M

The parameters in this model can be estimated with a
Metropolis-Hastings algorithm, with some Gibbs sampling steps.

We assume that α1 and α2 are public.
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Some Results

Table: Comparison of the posterior distribution obtained with the syn-
thetic datasets and the posterior distribution obtained with the real
dataset. (x = 30, n = 100, ñ = 100, ε = 2, 1000 simulations)

Posterior Relative bias of Variance of the posterior
M mean posterior mean (%) distribution (×10−3)

1 0.311 0.76 6.30
2 0.309 0.49 7.50
5 0.312 0.85 11.70
10 0.322 1.86 15.88

True posterior distribution :
mean = 0.3039; variance = 0.0002053.
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Some results (2)

Table: Comparison of the posterior distribution obtained with the syn-
thetic datasets and the posterior distribution obtained with the real
dataset. (x = 30, n = 100, ñ = 100, M = 1, 1000 simulations)

Posterior Relative bias Variance of the Ratio to
ε mean of posterior posterior variance from

mean (%) distribution (×10−3) true dataset

0.1 0.485 18.09 77.07 37.54
0.5 0.365 6.14 33.75 16.44
1 0.315 1.14 15.63 7.61
2 0.311 0.72 8.18 3.98
3 0.310 0.61 6.55 3.19

250 0.312 0.83 5.81 2.83
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Discussion

Conclusions from Case Study

We must create new methods for inference from
differentially-private synthetic datasets.

Directly incorporating the data generation model in the
analysis seems a promising method.

There is even then a loss in utility incurred by requiring a
confidentiality guarantee.

Note that we obtain similar conclusions when considering the more
general case of vectors of counts.
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Part 2 - Relaxation of Differential Privacy
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General Idea

Differential privacy controls the worst-case scenario,
i.e. the intruder knows all of the dataset except for one
observation, and the released synthetic dataset is the one
which gives out the most information about this particular
individual in this circumstance.

→ It is necessary to add a lot of noise to the dataset to
satisfies differential privacy.

Proposed relaxations
δ − ε differential privacy
δ − ε probabilistic differential privacy

I am considering a version of probabilistic differential privacy.
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Probabilistic differential privacy

From Machanavajjhla et al. (2008):

Let κ be a randomized algorithm and let S be the set of all
outputs of κ. Let ε > 0 and 0 < δ < 1 be constants. We say that
κ satisfies (ε, δ)-probabilistic differential privacy if for all tables D,

P(A(D) ∈ Disc(D, ε)) ≤ δ)

where Disc(D, ε) is the disclosure set of D, that is{
S ∈ S | ∃X1,X2 ∈ D, |X1 \ X2| = 1 ∧

∣∣∣∣ln P(A(X1) = S)

P(A(X2) = S)

∣∣∣∣ > ε

}
.

where the probability P is over the distribution of the synthetic
datasets for a given observed dataset.
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Relaxation

δ − ε probabilistic differential privacy ensures that for any possible
dataset the probability that the output synthetic dataset is in the
disclosure set of level ε of that dataset is bounded above by δ.

But, several of the possible datasets have very low probability of
occurence.

Instead, we consider a version of probabilistic differential privacy
where we control P(D,A(D) | A ∈ Disc(D, ε))
where the probability is over the joint distribution of the observed
dataset D and the synthetic dataset A(D).

We can write

P(D,A(D)) = P(A(D)|D)︸ ︷︷ ︸
Synthesizer

P(D)︸ ︷︷ ︸
Need a prior for D
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Example

Create Ỹ for an observed dataset Y using the beta-binomial
synthesizer with n = 5, ñ = 5, α1 = α2 = 0.5.

Table: Values of the log of the differential privacy ratio

Ỹ = 0 Ỹ = 1 Ỹ = 2 Ỹ = 3 Ỹ = 4 Ỹ = 5

Y = 0 vs Y = 1 0.747 0.463 1.099 1.578 1.997 2.398
Y = 1 vs Y = 2 0.887 0.251 0.228 0.647 1.048 1.466
Y = 2 vs Y = 3 1.099 0.619 0.201 0.201 0.619 1.099
Y = 3 vs Y = 4 1.466 1.048 0.647 0.228 0.251 0.887
Y = 4 vs Y = 5 2.398 1.997 1.578 1.099 0.463 0.747

Say you want ε = 2.
If you think Y ∼ Bin(5, 0.1),

δ = P(Y = 0, Ỹ = 5) + P(Y = 1, Ỹ = 5)

+ P(Y = 4, Ỹ = 0) + P(Y = 5, Ỹ = 0)

= 0.004105469
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δ-ε equivalence

Because of the way that probabilistic differential privacy is defined,
any one randomization procedure can be described with several
(technically, infinitely many) sets of pairs (δ, ε).

We run in some sort of δ − ε equivalence, and it is hard to
interpret the value of both coefficients.

Examples...
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δ-ε equivalence (ctd)
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δ-ε equivalence (ctd 2)
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δ-ε equivalence (ctd)

Best parametrization?:
Choice 1:
ε = 0.6932
δ = 0.0059

Choice 2:
ε = 0.6061 13% smaller
δ = 0.0135 twice as big

Which synthesizer to choose?

Choice 1 : α = 2; Choice 2: α = 5.

Impact of marginal for true dataset
Value of δ depends on choice of p for x ∼ Binom(n, p).
Example: ε = 0.75

p = 0.1→ δ = 0.311
p = 0.9→ δ = 0.734

→ might be necessary to have good priors for the marginal
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Suggestions?
Comments?

Ideas?

Anne-Sophie Charest (CMU) Creation and Analysis of DP Synthetic Datasets 25


