Creation and Analysis of Differentially-Private Synthetic Datasets

Anne-Sophie Charest acharest@stat.cmu.edu

IAB Workshop Nuremberg, Germany June 30, 2011

Published Results

From Charest, Anne-Sophie (2010) "How Can We Analyze Differentially-Private Synthetic Datasets?", *Journal of Privacy and Confidentiality*: Vol. 2: Iss. 2, Article 3.

 Work in Progress Relaxation of Differential Privacy

Part 1 - Published Results

Context

Setup:

- Consider the creation of synthetic datasets.
- Want to achieve differential privacy.
- Use a perturbed version of multiple imputation to do so.

Context

Setup:

- Consider the creation of synthetic datasets.
- Want to achieve differential privacy.
- Use a perturbed version of multiple imputation to do so.

Research question:

• How should analysts obtain inferences from differentially-private synthetic datasets?

Context

Setup:

- Consider the creation of synthetic datasets.
- Want to achieve differential privacy.
- Use a perturbed version of multiple imputation to do so.

Research question:

- How should analysts obtain inferences from differentially-private synthetic datasets?
- In particular, can we use the combining rules developed for multiply imputed synthetic datasets when we analyze differentially-private datasets created with multiple imputations?

The Multiple Imputation (MI) Approach

It was first suggested by Rubin (2003) to generate synthetic datasets using the framework of Multiple Imputation.

Multiple Imputation:

- Proposed to deal with non-response in surveys (Rubin, 1993).
- Write $Y = (Y_{obs}, Y_{mis})$, the observed and missing part of the data matrix for the sampled respondents.
- The analyst draws Y_{mis} from the posterior predictive distribution of $Y_{mis}|Y_{obs}$.
- After drawing M independent sets of values for Y_{mis} , we obtain M completed datasets (Y_{obs}, Y_{mis}^m) , $m = 1, \dots, M$.

The Multiple Imputation (MI) Approach

It was first suggested by Rubin (2003) to generate synthetic datasets using the framework of Multiple Imputation.

Multiple Imputation:

- Proposed to deal with non-response in surveys (Rubin, 1993).
- Write $Y = (Y_{obs}, Y_{mis})$, the observed and missing part of the data matrix for the sampled respondents.
- The analyst draws Y_{mis} from the posterior predictive distribution of $Y_{mis}|Y_{obs}$.
- After drawing M independent sets of values for Y_{mis} , we obtain M completed datasets (Y_{obs}, Y_{mis}^m) , $m = 1, \dots, M$.

To get completely synthetic datasets, we use the same idea and generate Y_{syn} from the posterior predictive distribution $Y|Y_{obs}$.

Combining Rules for MI

Key Idea: Having more than one synthetic dataset allows to estimate the variability introduced because of the SDL mechanism and account for it in our inferences.

Combining Rules for MI

Key Idea: Having more than one synthetic dataset allows to estimate the variability introduced because of the SDL mechanism and account for it in our inferences.

In Practice: Suppose we have M completely synthetic datasets and we want to estimate one parameter of interest Q. We obtain from each of the datasets an estimate q_m of Q and an estimate v_m of the variance of this estimator.

Combining Rules for MI

Key Idea: Having more than one synthetic dataset allows to estimate the variability introduced because of the SDL mechanism and account for it in our inferences.

In Practice: Suppose we have M completely synthetic datasets and we want to estimate one parameter of interest Q. We obtain from each of the datasets an estimate q_m of Q and an estimate v_m of the variance of this estimator.

Then,

$$\widehat{Q} = \overline{q}_M$$

$$\widehat{Var(\widehat{Q})} = T_M = (1 + 1/M) * b_M - \overline{v}_M$$
or
$$T_M^* = max(0, T_M) + \frac{n_{syn}}{n} \overline{v}_M I[T_M < 0]$$

where $\overline{q}_M = \frac{1}{M} \sum_m q_m$; $\overline{v}_M = \frac{1}{M} \sum_m v_m$; $b_M = \frac{1}{M-1} \sum_m (q_m - \overline{q}_M)^2$

Reiter (2003) shows that such inference is accurate.

Formal definition (Dwork, 2006):

A randomized function κ gives ϵ -differential privacy if and only if for all datasets B_1 and B_2 differing on at most one element, and for all $S \subseteq \operatorname{range}(\kappa)$,

$$\exp(-\epsilon) \leq rac{\Pr[\kappa(B_1) \in S]}{\Pr[\kappa(B_2) \in S]} \leq \exp(\epsilon)$$

Formal definition (Dwork, 2006):

A randomized function κ gives ϵ -differential privacy if and only if for all datasets B_1 and B_2 differing on at most one element, and for all $S \subseteq \text{range}(\kappa)$,

$$\exp(-\epsilon) \leq rac{\Pr[\kappa(B_1) \in S]}{\Pr[\kappa(B_2) \in S]} \leq \exp(\epsilon)$$

- Smaller values of ϵ provide stronger privacy guarantees.
- For synthetic data, the randomized function κ takes as input the real dataset and generates a synthetic dataset.
- If we want M synthetic datasets, generate each with ϵ/M differential privacy.

Case Study: Beta-Binomial Synthetizer

Consider the simple case of publishing Y where $Y \sim Bin(n, p)$. The following algorithm was proposed to generated a differentially-private dataset \tilde{Y} (Abowd and Vilhuber, 2008):

Case Study: Beta-Binomial Synthetizer

Consider the simple case of publishing Y where $Y \sim Bin(n, p)$. The following algorithm was proposed to generated a differentially-private dataset \tilde{Y} (Abowd and Vilhuber, 2008):

Given a dataset Y, sample, for $i = 1, \ldots, m$,

$$egin{array}{rcl} ilde{
ho}_i &\sim & {
m Beta}(lpha_1+Y, lpha_2+n-Y) \ ilde{Y}_i &\sim & {
m Binomial}(ilde{n}, ilde{
ho}_i) \end{array}$$

Case Study: Beta-Binomial Synthetizer

Consider the simple case of publishing Y where $Y \sim Bin(n, p)$. The following algorithm was proposed to generated a differentially-private dataset \tilde{Y} (Abowd and Vilhuber, 2008):

Given a dataset Y, sample, for $i = 1, \ldots, m$,

$$egin{array}{rcl} ilde{
ho}_i &\sim & {
m Beta}(lpha_1+Y, lpha_2+n-Y) \ ilde{Y}_i &\sim & {
m Binomial}(ilde{n}, ilde{
ho}_i) \end{array}$$

The parameters α_1, α_2 are deterministically chosen based on the sample size, *n*, and the level of differential privacy desired, ϵ .

We can interpret this synthetic data generation process as generating from a perturbed posterior predictive distribution, where we implicitly use a prior distribution of $\text{Beta}(\alpha_1, \alpha_2)$ instead of a belief prior for *p*.

First Results

Can we use the combining rules developed for multiply imputed synthetic datasets when we analyze differentially-private datasets created with multiple imputations?

First Results

Can we use the combining rules developed for multiply imputed synthetic datasets when we analyze differentially-private datasets created with multiple imputations?

NO

Can we use the combining rules developed for multiply imputed synthetic datasets when we analyze differentially-private datasets created with multiple imputations?

NO

Bias of q_m

$$E[q_m|x] = \frac{\alpha_1 + x}{\alpha_1 + \alpha_2 + n} \neq \frac{x}{n}$$

To obtain differential privacy, we need $\alpha_1 + \alpha_2 \ge 0$. (e.g. If $\tilde{n} = 100$, $\epsilon = 2$ (0.1), then $\alpha_j \ge 15.65$ (950)). Can we use the combining rules developed for multiply imputed synthetic datasets when we analyze differentially-private datasets created with multiple imputations?

NO

Bias of q_m

$$E[q_m|x] = \frac{\alpha_1 + x}{\alpha_1 + \alpha_2 + n} \neq \frac{x}{n}$$

To obtain differential privacy, we need $\alpha_1 + \alpha_2 \ge 0$. (e.g. If $\tilde{n} = 100$, $\epsilon = 2$ (0.1), then $\alpha_j \ge 15.65$ (950)).

- Avergaing over possible datasets x from a prior distribution does not in general fix this problem.
- The bias does not reduce as *n* increases.

Table: Relative Bias (in %) of \overline{q}_M as estimator of p(100,000 simulations, n = 100, $\tilde{n} = 100$)

ϵ	р	Real data	$M{=}1$	M=2	M=5	M=10
2	0.25	0.12	23.88	53.84	80.30	90.05
2	0.50	0.05	0.05	-0.03	0.03	-0.00
250	0.25	0.01	0.05	-0.04	0.00	0.05

Table: Relative bias (in %) of T_M and T_M^* as estimators of the variance of \overline{q}_M . (100,000 simulations, n = 100, $\tilde{n} = 100$)

			Variance of \overline{q}_M	Relative Bias	Relative Bias
р	ϵ	М	$(\times 10^{-2})$	of T_M (%)	of T_M^* (%)
0.25	2	2	22.40	-44.71	54.35
0.25	2	5	6.42	-9.44	251.00
0.25	2	10	3.05	-26.61	503.95
0.50	2	2	23.57	-39.12	63.09
0.50	2	5	7.09	-6.79	225.99
0.50	2	10	3.12	-10.82	466.29
0.25	250	2	39.42	-54.29	-14.66
0.25	250	5	30.35	-38.10	-15.33
0.25	250	10	25.46	-26.51	-16.71

Note: T_M is however negative 11% to 50% of the time.

We could try to modify the combining rules.

Instead, we create an inferential model which takes into account the synthetic datasets generation mechanism:

- $p~\sim~$ Beta (γ_1,γ_2)
- $y \sim \text{Binomial}(n, p)$
- $\tilde{p}_i \sim \text{Beta}(\alpha_1 + y, \alpha_2 + n y), \text{ for } i = 1, \dots, M$
- $\tilde{y}_i \sim \text{Binomial}(m, \tilde{p}_i), \text{ for } i = 1, \dots, M$

We could try to modify the combining rules.

Instead, we create an inferential model which takes into account the synthetic datasets generation mechanism:

$$p \sim \mathsf{Beta}(\gamma_1, \gamma_2)$$

$$y \sim \text{Binomial}(n, p)$$

$$ilde{
ho}_i ~\sim~ {\sf Beta}(lpha_1+y, lpha_2+n-y), ~{\sf for}~i=1,\ldots,M$$

$$\tilde{y}_i \sim \text{Binomial}(m, \tilde{p}_i), \text{ for } i = 1, \dots, M$$

The parameters in this model can be estimated with a Metropolis-Hastings algorithm, with some Gibbs sampling steps.

We assume that α_1 and α_2 are public.

Table: Comparison of the posterior distribution obtained with the synthetic datasets and the posterior distribution obtained with the real dataset. (x = 30, n = 100, $\tilde{n} = 100$, $\epsilon = 2$, 1000 simulations)

	Posterior	Relative bias of	Variance of the posterior	
M	mean	posterior mean (%)	distribution ($\times 10^{-3}$)	
1	0.311	0.76	6.30	
2	0.309	0.49	7.50	
5	0.312	0.85	11.70	
10	0.322	1.86	15.88	

True posterior distribution : mean = 0.3039; variance = 0.0002053. Table: Comparison of the posterior distribution obtained with the synthetic datasets and the posterior distribution obtained with the real dataset. (x = 30, n = 100, $\tilde{n} = 100$, M = 1, 1000 simulations)

	Posterior	Relative bias	Variance of the	Ratio to
ϵ	mean	of posterior	posterior	variance from
		mean (%)	distribution ($\times 10^{-3}$)	true dataset
0.1	0.485	18.09	77.07	37.54
0.5	0.365	6.14	33.75	16.44
1	0.315	1.14	15.63	7.61
2	0.311	0.72	8.18	3.98
3	0.310	0.61	6.55	3.19
250	0.312	0.83	5.81	2.83

• We must create new methods for inference from differentially-private synthetic datasets.

- We must create new methods for inference from differentially-private synthetic datasets.
- Directly incorporating the data generation model in the analysis seems a promising method.

- We must create new methods for inference from differentially-private synthetic datasets.
- Directly incorporating the data generation model in the analysis seems a promising method.
- There is even then a loss in utility incurred by requiring a confidentiality guarantee.

- We must create new methods for inference from differentially-private synthetic datasets.
- Directly incorporating the data generation model in the analysis seems a promising method.
- There is even then a loss in utility incurred by requiring a confidentiality guarantee.

Note that we obtain similar conclusions when considering the more general case of vectors of counts.

Part 2 - Relaxation of Differential Privacy

i.e. the intruder knows all of the dataset except for one observation, and the released synthetic dataset is the one which gives out the most information about this particular individual in this circumstance.

i.e. the intruder knows all of the dataset except for one observation, and the released synthetic dataset is the one which gives out the most information about this particular individual in this circumstance.

 \rightarrow It is necessary to add a lot of noise to the dataset to satisfies differential privacy.

- Proposed relaxations
 - $\delta \epsilon$ differential privacy

i.e. the intruder knows all of the dataset except for one observation, and the released synthetic dataset is the one which gives out the most information about this particular individual in this circumstance.

 \rightarrow It is necessary to add a lot of noise to the dataset to satisfies differential privacy.

Proposed relaxations

- $\delta \epsilon$ differential privacy
- $\delta-\epsilon$ probabilistic differential privacy

i.e. the intruder knows all of the dataset except for one observation, and the released synthetic dataset is the one which gives out the most information about this particular individual in this circumstance.

 \rightarrow It is necessary to add a lot of noise to the dataset to satisfies differential privacy.

Proposed relaxations

- $\delta \epsilon$ differential privacy
- $\delta-\epsilon$ probabilistic differential privacy

I am considering a version of probabilistic differential privacy.

From Machanavajjhla et al. (2008):

Let κ be a randomized algorithm and let S be the set of all outputs of κ . Let $\epsilon > 0$ and $0 < \delta < 1$ be constants. We say that κ satisfies (ϵ, δ) -probabilistic differential privacy if for all tables D,

 $P(\mathcal{A}(D) \in \mathsf{Disc}(D,\epsilon)) \leq \delta)$

From Machanavajjhla et al. (2008):

Let κ be a randomized algorithm and let S be the set of all outputs of κ . Let $\epsilon > 0$ and $0 < \delta < 1$ be constants. We say that κ satisfies (ϵ, δ) -probabilistic differential privacy if for all tables D,

 $P(\mathcal{A}(D) \in \mathsf{Disc}(D,\epsilon)) \leq \delta)$

where $Disc(D, \epsilon)$ is the disclosure set of D, that is

$$\left\{S \in \mathcal{S} \mid \exists X_1, X_2 \in \mathcal{D}, |X_1 \setminus X_2| = 1 \land \left| \ln \frac{P(\mathcal{A}(X_1) = S)}{P(\mathcal{A}(X_2) = S)} \right| > \epsilon \right\}.$$

From Machanavajjhla et al. (2008):

Let κ be a randomized algorithm and let S be the set of all outputs of κ . Let $\epsilon > 0$ and $0 < \delta < 1$ be constants. We say that κ satisfies (ϵ, δ) -probabilistic differential privacy if for all tables D,

 $P(\mathcal{A}(D) \in \mathsf{Disc}(D,\epsilon)) \leq \delta)$

where $Disc(D, \epsilon)$ is the disclosure set of D, that is

$$\left\{S \in \mathcal{S} \mid \exists X_1, X_2 \in \mathcal{D}, |X_1 \setminus X_2| = 1 \land \left| \ln \frac{P(\mathcal{A}(X_1) = S)}{P(\mathcal{A}(X_2) = S)} \right| > \epsilon \right\}.$$

where the probability P is over the distribution of the synthetic datasets for a given observed dataset.

Relaxation

 $\delta - \epsilon$ probabilistic differential privacy ensures that for any possible dataset the probability that the output synthetic dataset is in the disclosure set of level ϵ of that dataset is bounded above by δ .

Relaxation

 $\delta - \epsilon$ probabilistic differential privacy ensures that for any possible dataset the probability that the output synthetic dataset is in the disclosure set of level ϵ of that dataset is bounded above by δ .

But, several of the possible datasets have very low probability of occurence.

 $\delta - \epsilon$ probabilistic differential privacy ensures that for any possible dataset the probability that the output synthetic dataset is in the disclosure set of level ϵ of that dataset is bounded above by δ .

But, several of the possible datasets have very low probability of occurence.

Instead, we consider a version of probabilistic differential privacy where we control $P(D, \mathcal{A}(D) \mid \mathcal{A} \in \text{Disc}(D, \epsilon))$ where the probability is over the joint distribution of the observed dataset D and the synthetic dataset $\mathcal{A}(D)$.

 $\delta - \epsilon$ probabilistic differential privacy ensures that for any possible dataset the probability that the output synthetic dataset is in the disclosure set of level ϵ of that dataset is bounded above by δ .

But, several of the possible datasets have very low probability of occurence.

Instead, we consider a version of probabilistic differential privacy where we control $P(D, \mathcal{A}(D) \mid \mathcal{A} \in \text{Disc}(D, \epsilon))$ where the probability is over the joint distribution of the observed dataset D and the synthetic dataset $\mathcal{A}(D)$.

We can write

$$P(D, \mathcal{A}(D)) = \underbrace{P(\mathcal{A}(D)|D)}_{\text{Synthesizer Need a prior for D}} \underbrace{P(D)}_{\text{a prior for D}}$$

Example

Create \tilde{Y} for an observed dataset Y using the beta-binomial synthesizer with n = 5, $\tilde{n} = 5$, $\alpha_1 = \alpha_2 = 0.5$.

	$\tilde{Y} = 0$	$ $ $\tilde{Y} = 1$	$\tilde{Y} = 2$	$\tilde{Y} = 3$	$\tilde{Y} = 4$	$\tilde{Y} = 5$
Y = 0 vs Y = 1	0.747	0.463	1.099	1.578	1.997	2.398
Y = 1 vs Y = 2	0.887	0.251	0.228	0.647	1.048	1.466
Y = 2 vs Y = 3	1.099	0.619	0.201	0.201	0.619	1.099
Y = 3 vs Y = 4	1.466	1.048	0.647	0.228	0.251	0.887
Y = 4 vs Y = 5		1.997	1.578	1.099	0.463	0.747

Table: Values of the log of the differential privacy ratio

Example

Create \tilde{Y} for an observed dataset Y using the beta-binomial synthesizer with n = 5, $\tilde{n} = 5$, $\alpha_1 = \alpha_2 = 0.5$.

Table: Values of the log of the differential privacy ratio

	$\tilde{Y} = 0$	$ ilde{Y}=1$	$\tilde{Y} = 2$	$\tilde{Y} = 3$	$\tilde{Y} = 4$	$\tilde{Y} = 5$
Y = 0 vs $Y = 1$		0.463	1.099	1.578	1.997	2.398
Y = 1 vs Y = 2	0.887	0.251	0.228	0.647	1.048	1.466
Y = 2 vs Y = 3	1.099	0.619	0.201	0.201	0.619	1.099
Y = 3 vs Y = 4	1.466	1.048	0.647	0.228	0.251	0.887
Y = 4 vs Y = 5	2.398	1.997	1.578	1.099	0.463	0.747

Say you want $\epsilon = 2$. If you think $Y \sim Bin(5, 0.1)$,

$$\delta = P(Y = 0, \tilde{Y} = 5) + P(Y = 1, \tilde{Y} = 5) + P(Y = 4, \tilde{Y} = 0) + P(Y = 5, \tilde{Y} = 0) = 0.004105469$$

Because of the way that probabilistic differential privacy is defined, any one randomization procedure can be described with several (technically, infinitely many) sets of pairs (δ, ϵ) .

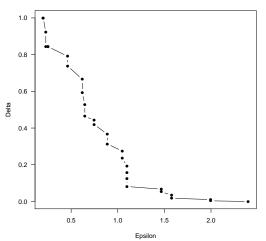
Because of the way that probabilistic differential privacy is defined, any one randomization procedure can be described with several (technically, infinitely many) sets of pairs (δ, ϵ) .

We run in some sort of $\delta - \epsilon$ equivalence, and it is hard to interpret the value of both coefficients.

Because of the way that probabilistic differential privacy is defined, any one randomization procedure can be described with several (technically, infinitely many) sets of pairs (δ, ϵ) .

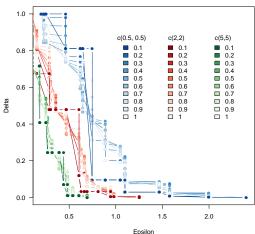
We run in some sort of $\delta - \epsilon$ equivalence, and it is hard to interpret the value of both coefficients.

Examples...



Properties of Beta-Binomial, n = 5, alpha = (0.5, 0.5)

δ - ϵ equivalence (ctd 2)



Delta and Epsilon for Beta–Binomial synthesizer n = 5, alpha = legend title, p for marginal = col

Best parametrization?:

Choice 1:	Choice 2:
$\epsilon = 0.6932$	$\epsilon = 0.6061~13\%$ smaller
$\delta = 0.0059$	$\delta = 0.0135$ twice as big

Which synthesizer to choose?

Best parametrization?:

Choice 1:Choice 2: $\epsilon = 0.6932$ $\epsilon = 0.6061 \ 13\%$ smaller $\delta = 0.0059$ $\delta = 0.0135$ twice as big

Which synthesizer to choose? Choice 1 : $\alpha = 2$; Choice 2: $\alpha = 5$.

Best parametrization?:

Choice 1:	Choice 2:
$\epsilon = 0.6932$	$\epsilon = 0.6061$ 13% smaller
$\delta = 0.0059$	$\delta = 0.0135$ twice as big

Which synthesizer to choose? Choice 1 : $\alpha = 2$; Choice 2: $\alpha = 5$.

Impact of marginal for true dataset

Value of δ depends on choice of p for $x \sim \text{Binom}(n, p)$. Example: $\epsilon = 0.75$

$$p = 0.1 \rightarrow \delta = 0.311$$
$$p = 0.9 \rightarrow \delta = 0.734$$

 \rightarrow might be necessary to have good priors for the marginal

Suggestions? Comments? Ideas?