

Aspects of Responsive Design for the Swedish Living Conditions Survey (LCS)

Peter Lundquist and Carl-Erik Särndal

Nürnberg 2011

Introduction

A short theoretical presentation

- Balance indicators and distance measure in the paper by Särndal in JOS 2011
- R-indicators by Schouten, Bethlehem et al. in the RISQ-project <u>www.R-indicator.eu</u>
- Responsive design Groves and Heeringa in JRSS A 2006
- Empirical results for the Swedish LCS 2009

Introduction: The Swedish background

- High demands on response rate (from clients)
- Expensive to chase respondents
- Studies on LFS, LCS and HF raises questions about the value of today's field work strategy
- Panel surveys have other needs (measures over time) than one-time surveys

LCS 2009

LCS is a telephone survey. It is used in this study without supplement, this gives a simple random sample design (SRS) from Swedish RTP with a sample size of n = 8,220

- Response rate ordinary field work (5 w): 60.4%
- Final response rate after follow-up (+3,3w) : 67.4%

The same data collection strategy is used in the follow-up.

Relative difference: RDF

Register variables (known for *s*) used as y-variables

Standard x-vector: {Phone, High education, Four Age-groups, Property ownership, Swedish origin}

$$\hat{Y}_{CAL} = \sum_{r} d_{k} m_{k} y_{k} \qquad m_{k} = \left(\sum_{s} d_{k} \mathbf{x}_{k}\right)' \left(\sum_{r} d_{k} \mathbf{x}_{k} \mathbf{x}_{k}'\right)^{-1} \mathbf{x}_{k}$$
$$\hat{Y}_{FUL} = \sum_{s} d_{k} y_{k} \qquad d_{k} = 1/\pi_{k} \quad \text{where} \ \pi_{k} = \Pr(k \in s)$$
$$RDF = 100(\hat{Y}_{CAL} - \hat{Y}_{FUL}) / \hat{Y}_{FUL}$$

The LCS 2009 data collection:

Progression of the response rate P (in per cent) and of RDF for three selected register variables. Computations are based on the standard x-vector.

		RDF				
Step in the data collection	100× <i>P</i>	Sickness benefits	Income	Employed		
Attempt 1	12.8	10.5	-0.05	-1.3		
Attempt 2	24.6	3.3	-1.1	-2.0		
Attempt 3	32.8	1.6	-0.4	0.2		
Attempt 8	53.0	1.0	2.4	2.4		
End ordinary field work	60.4	-0.9	3.3	2.9		
Final	67.4	-3.6	2.9	3.1		

Balance indicators

Matrix language is needed because of the multivariate nature of \mathbf{x}_k . Let $\mathbf{D} = \overline{\mathbf{x}}_r - \overline{\mathbf{x}}_s = (D_1, ..., D_j, ..., D_J)'$. Under perfect balance, $\mathbf{D} = \mathbf{0}$, the zero vector. But normally, $\mathbf{D} \neq \mathbf{0}$.

A univariate measure, lack of balance, is filled by the quadratic form

$$\mathbf{D}' \boldsymbol{\Sigma}_s^{-1} \mathbf{D} = (\overline{\mathbf{x}}_r - \overline{\mathbf{x}}_s)' \boldsymbol{\Sigma}_s^{-1} (\overline{\mathbf{x}}_r - \overline{\mathbf{x}}_s)$$

where $\overline{\mathbf{x}}_r = \sum_r d_k \mathbf{x}_k / \sum_r d_k$ and $\overline{\mathbf{x}}_s = \sum_s d_k \mathbf{x}_k / \sum_s d_k$ and the weighting matrix is $\mathbf{\Sigma}_s = \sum_s d_k \mathbf{x}_k \mathbf{x}'_k / \sum_s d_k$.

Increased mean differences D_i tend to increase $\mathbf{D}' \boldsymbol{\Sigma}_s^{-1} \mathbf{D}$.

Balance indicators

It can be shown (Särndal, 2011) that $0 \le \mathbf{D}' \mathbf{\Sigma}_s^{-1} \mathbf{D} \le Q - 1$ where Q = 1/P.

Hence, $(\mathbf{D}'\boldsymbol{\Sigma}_s^{-1}\mathbf{D})/(Q-1)$ measures lack of balance on a unit interval scale. We examine several **balance indicators** measured on the unit interval scale and such that the value "1" implies perfect balance. The first is

$$BI_1 = 1 - \sqrt{\frac{\mathbf{D}' \boldsymbol{\Sigma}_s^{-1} \mathbf{D}}{Q - 1}}$$

Because $P(1-P) \le 1/4$, an alternative indicator also contained in the unit interval is

$$BI_2 = 1 - 2P\sqrt{\mathbf{D}'\boldsymbol{\Sigma}_s^{-1}\mathbf{D}}$$

Balance indicators alt. description

$$BI_1 = 1 - S_{\hat{\theta}} / \sqrt{P(1-P)}$$
, $BI_2 = 1 - 2S_{\hat{\theta}}$

can be interpreted through the variance of estimated response probabilities $\hat{\theta}_k$ for $k \in s$,

$$S_{\hat{\theta}}^{2} = \sum_{s} d_{k} (\hat{\theta}_{k} - \overline{\hat{\theta}}_{s})^{2} / \sum_{s} d_{k}$$

if ordinary linear least squares is used, the estimates are for $k \in s$, where $\hat{\theta}_k = \mathbf{x}'_k \mathbf{b}$ with

$$\mathbf{b} = \left(\sum_{s} d_{k} \mathbf{x}_{k} \mathbf{x}_{k}'\right)^{-1} \left(\sum_{r} d_{k} \mathbf{x}_{k}\right).$$

R-indicators

The *R*-indicators use logistic regression fit to obtain **Statistics Sweden** $\hat{\theta}_{k,\log} = \exp(\mathbf{x}'_k \hat{\boldsymbol{\beta}}) / [1 + \exp(\mathbf{x}'_k \hat{\boldsymbol{\beta}})] \text{ for } k \in s.$ The (unadjusted) *R*-indicator is $R = 1 - 2 S_{\hat{\theta}.\log}$ Statistiska centralbyrån The adjusted R-indicator is given in for example the RISQ manual

Distance between resp. and non-resp.

The distance measure: $dist = [(\overline{\mathbf{x}}_r - \overline{\mathbf{x}}_{s-r})' \Sigma_s^{-1} (\overline{\mathbf{x}}_r - \overline{\mathbf{x}}_{s-r})]^{1/2}$

where $\overline{\mathbf{x}}_r = \sum_r d_k \mathbf{x}_k / \sum_r d_k$ and $\overline{\mathbf{x}}_{s-r} = \sum_{s-r} d_k \mathbf{x}_k / \sum_{s-r} d_k$ and the weighting matrix is $\mathbf{\Sigma}_s = \sum_s d_k \mathbf{x}_k \mathbf{x}'_k / \sum_s d_k$.

$$BI_1 = 1 - \sqrt{P(1-P)} \times dist$$
, $BI_2 = 1 - 2P(1-P) \times dist$.

Indicators computed on the LCS 2009 data collection

Progression of the response rate *P* (in per cent), the balance indicators *Bl*₁, *Bl*₂, *R* unadjusted and *R* adjusted, and the distance measure *dist*. Computations are based on the standard x-vector.

Step in data collection	100× <i>P</i>	BI ₁	BI_2	R unadj.	R adjusted	dist	
Attempt 1	12.8	0.855	0.904	0.902	0.905	0.433	
Attempt 2	24.6	0.802	0.829	0.829	0.831	0.460	
Attempt 3	32.8	0.779	0.793	0.794	0.796	0.470	
Attempt 8	53.0	0.751	0.752	0.758	0.760	0.499	
End ordinary field work	60.4	0.738	0.744	0.752	0.754	0.536	
Final	67.4	0.717	0.735	0.742	0.743	0.603	

Lack of balance – special case

The quadratic form $\mathbf{D}' \boldsymbol{\Sigma}_s^{-1} \mathbf{D}$ has a particularly useful expression when the vector \mathbf{x}_k is defined in terms of J mutually exclusive and exhaustive traits or characteristics.

The trait of unit *k* is then uniquely coded by the *J*-vector $\mathbf{X}_k = (\gamma_{1k}, ..., \gamma_{jk}, ..., \gamma_{Jk})' = (0, ..., 1, ..., 0)'$ (with a single entry "1").

Lack of balance – special case

For trait *j*, let $W_{js} = \sum_{s_j} d_k / \sum_s d_k$ be that trait's share of *s*, and $W_{jr} = \sum_{r_j} d_k / \sum_r d_k$ its share of *r*.

Then the lack of balance (or imbalance) is a sum of nonnegative terms expressed as

$$\mathbf{D}' \mathbf{\Sigma}_{s}^{-1} \mathbf{D} = \sum_{j=1}^{J} C_{j} = \sum_{j=1}^{J} \frac{(W_{jr} - W_{js})^{2}}{W_{js}}$$

Lack of balance – special case

The experimental x-vector is defined by the complete crossing of:

- Education level (high, not high),
- *Property ownership* (owner, non-owner),
- Country of origin (Sweden, other).

This defines eight mutually exclusive and exhaustive groups.

Values of the eight terms C_j of $\mathbf{D}' \mathbf{\Sigma}_s^{-1} \mathbf{D}$ (multiplied by 100). Experimental x-vector defined by crossing of Education (high, not high), Property ownership (owner, non-owner) and Country of origin (Sweden, other).

Group characteristic		$100 \times C_j$							
			Ordinary	y fieldwork	attempt	*	Follow	-up attempt	
Education	Property ownership	Origin	1	5	12	End	1	4	Final
Not high	Non-owner	Abroad	1.49	1.44	1.26	1.23	1.25	1.16	1.18
Not high	Non-owner	Sweden	0.00	0.06	0.11	0.11	0.08	0.07	0.07
Not high	Owner	Abroad	0.06	0.01	0.00	0.00	0.00	0.00	0.00
Not high	Owner	Sweden	0.72	0.24	0.21	0.19	0.17	0.17	0.18
High	Non-owner	Abroad	1.28	0.39	0.29	0.26	0.25	0.23	0.22
High	Non-owner	Sweden	0.11	0.26	0.25	0.24	0.21	0.20	0.23
High	Owner	Abroad	0.18	0.01	0.03	0.03	0.03	0.02	0.04
High	Owner	Sweden	0.29	0.58	0.64	0.66	0.62	0.53	0.44
	100	$\times \mathbf{D}' \boldsymbol{\Sigma}_s^{-1} \mathbf{D}$	4.13	2.99	2.78	2.72	2.61	2.37	2.36

Experiments in retrospect, each based on an *experimental data collection strategy* consisting of:

- a suitably chosen x-vector, (the experimental vector, with known value for every sampled unit,
- one or more specified *intervention points*, with a *stopping rule* for each intervention point.

Laboratory experiment: Strategy 1

Response rates in per cent at three points in the LCS 2009 data collection

		Response rate in per cent					
Group (Experi	After 12 calls	2 follow- up calls	Final	Individuals in sample			
No high education	No house	Born abroad	37.5	41.8	44.6	847	
No high education	No house	Born Sweden	54.6	59.8	64.6	3210	
No high education	House	Born abroad	58.5	62.3	66.8	171	
No high education	House	Born Sweden	63.0	67.6	73.2	2036	
High education	No house	Born abroad	39.4	44.9	48.7	236	
High education	No house	Born Sweden	66.8	71.6	77.6	816	
High education	House	Born abroad	68.1	73.6	81.9	72	
High education	House	Born Sweden	72.2	77.4	81.5	832	

Experimental strategy 1; the eight terms C_j of $\mathbf{D}' \Sigma_s^{-1} \mathbf{D}$ (multiplied by 100) at three points in the data collection.

	Group charact	teristic	Value of $100 \times C_j$ at point					
Education	Property ownership	Origin	Attempt 12 ordinary	Attempt 2 follow-up	Final			
Not high	Non-owner	Abroad	1.26	1.06	0.94			
Not high	Non-owner	Sweden	0.11	0.03	0.00			
Not high	Owner	Abroad	0.00	0.00	0.00			
Not high	Owner	Sweden	0.21	0.24	0.08			
High	Non-owner	Abroad	0.29	0.21	0.16			
High	Non-owner	Sweden	0.25	0.07	0.02			
High	Owner	Abroad	0.03	0.01	0.00			
High	Owner	Sweden	0.64	0.31	0.17			
		$100 \times \mathbf{D'} \Sigma_s^{-1} \mathbf{D}$	2.78	1.93	1.39			

Response rate (in per cent), balance indicator and distance measure. The computations are based on experimental x-vector.

Experimental Strategy	100× <i>P</i>	BI_1	dist
After 12 calls	57.7	0.805	0.394
2 follow-up calls	61.5	0.824	0.361
Final	63.9	0.843	0.326

Experimental strategy 2:

- Same x-vector,
- 60 % response gives 5 intervention points.

Experimental strategy 3:

- Same x-vector,
- 50% response gives 5 intervention points.

The experimental strategies compared with the actual LCS 2009: Response rate (in per cent), *RDF*, *BI*₁, *dist* and reduction (in per cent) of the number of call attempts. Computations are based on the ordinary x-vector.

			RDF				
End of data collection	100×P	Sickness allowance	Income	Employed	BI_1	dist	Reduction in %
Actual 2009 LCS	67.4	-3.6	2.9	3.1	0.717	0.603	0.0
Strategy 1	63.9	-1.6	2.7	3.0	0.765	0.489	8.2
Strategy 2	58.9	-1.2	2.6	3.2	0.787	0.433	20.2
Strategy 3	50.3	1.0	1.0	2.0	0.808	0.383	36.4

Statistics Sweden

Statistiska centralbyrån

Ende...