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1 Introduction

A defining characteristic of observational data is that the investigator does not control the

data generation process. The resulting impossibility of random treatment assignment thus

reduces attempts to achieve valid causal inference to the process of selecting treatment

and control groups that are as balanced as possible with respect to available pre-treatment

variables. One venerable but increasingly popular method of achieving balance is through

matching, where each of the treated units is matched to one or more control units as

similar as possible with respect to the given set of pre-treatment variables.

Once a matched data set is selected, the causal effect is estimated by a simple differ-

ence in means of the outcome variable for the treated and control groups, assuming ignor-

ability holds, or by modeling any remaining pre-treatment differences. The advantage of

matching is that inferences from better balanced data sets will be less model dependent

(Ho et al., 2007).

Consider a sample of n units, a subset of a population of N units, where n ≤ N . For

unit i, denote Ti as the treatment variable, where Ti = 1 if unit i receives treatment (and

so is a member of the “treated” group) and Ti = 0 if not (and is therefore a member of

the “control” group). The outcome variable is Y , where Yi(0) is the “potential outcome”

for observation i if the unit does not receive treatment and Yi(1) is the potential outcome

if the (same) unit receives treatment. For each observed unit, only one potential outcome

is observed, Yi = TiYi(1) + (1 − Ti)Yi(0), which means that Yi(0) is unobserved if i

receives treatment and Yi(1) is unobserved if i does not receive treatment. Without loss

of generality, when we refer to unit i, we assume it is treated so that Yi(1) is observed

while Yi(0) is unobserved and thus estimated by matching it with one or more units from

a given reservoir of the control units.

Denote X = (X1, X2, . . . , Xk) as a k-dimensional data set, where each Xj is a column

vector of the observed values of pre-treatment variable j for the n observations. That is,

X = [Xij, i = 1, . . . , n, j = 1, . . . , k]. We denote by T = {i : Ti = 1} the set of

indexes for the treated units and by nT = #T the number of treated units; similarly

C = {i : Ti = 0}, nC = #C for the control units, with nT + nC = n. Given a treated unit
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i ∈ T with its vector of covariates Xi, the aim of matching is to discover a control unit

l ∈ C with covariates Xl such that, the dissimilarity between Xi and Xl is very small in

some metric, i.e. d(Xi,Xl) ' 0. A special case is the exact matching algorithm where,

for each treated unit i, a control unit l is selected such that d(Xi,Xl) = 0, with d of full

rank (i.e., if d(a, b) = 0 if and only if a = b).

The literature includes many methods of selecting matches, but only a single rigor-

ous class of methods has been characterized, the so-called Equal Percent Bias Reducing

(EPBR) methods. In introducing EPBR, Rubin (1976b) recognized the need for more

general classes: “Even though nonlinear functions of X deserve study. . . , it seems rea-

sonable to begin study of multivariate matching methods in the simpler linear case and

then extend that work to the more complex nonlinear case. In that sense then, EPBR

matching methods are the simplest multivariate starting point.” The introduction of the

EPBR class has led to highly productive and, in recent years, fast growing literatures on

the theory and application of matching methods. Yet, in the more than three decades since

Rubin’s original call for continuing from this “starting point” to develop more general

classes of matching models, none have appeared in the literature. We take up this call

here and introduce a new class, which we denote Monotonic Imbalance Bounding (MIB)

methods. This new class of methods generalize EPBR in a variety of useful ways.

In this paper, we review EPBR, introduce MIB, discuss several specific matching

methods within the new class, and illustrate their advantages for empirical analysis. Through-

out, we distinguish between classes of methods and specific methods (or algorithms)

within a class that can be used in applications. Classes of methods define properties

which all matching methods within the class must posses. Some methods may also be-

long to more than one class. For a review of many existing methods and their advantages

and disadvantages, see Ho et al. (2007).

2 Classes of Matching Methods

In this section, we summarize the existing EPBR class of matching methods, introduce our

new MIB class, discuss example methods within each class along with various compar-
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isons, and show how MIB is able to explicitly bound model dependence, a longstanding

goal of matching methods.

2.1 The Equal Percent Bias Reducing Class

Let µt ≡ E(X|T = t), t = 0, 1, be a vector of expected values and denote by mT

and mC the number of treated and control units matched by some matching method. Let

MT ⊆ T and MC ⊆ C be the sets of indexes of the matched units in the two groups.

Let X̄nT
= 1

nT

∑
i∈T

X i, and X̄nC
= 1

nC

∑
i∈C

X i be the vector of sample means of the

observed data and X̄mT
= 1

mT

∑
i∈MT

X i, and X̄mC
= 1

mC

∑
i∈MC

X i be the vector of

sample means for the matched data only.

EPBR requires all treated units to be matched, i.e. mT = nT (thus MT = T ), but

allows for the possibility that only mC ≤ nC control units are matched, where mC is

chosen ex ante.

Definition 1 (Equal Percent Bias Reducing (EPBR); Rubin (1976a)). An EPBR matching

solution satisfies

E(X̄mT
− X̄mC

) = γ(µ1 − µ0), (1)

where 0 < γ < 1 is a scalar.

A condition of EPBR is that the number of matched control units be fixed ex ante (Ru-

bin, 1976a, p.110) and the particular value of γ be calculated ex post, which we emphasize

by writing γ ≡ γ(mC). (The term “bias” in EPBR violates standard statistical usage and

refers instead to the equality across variables in the reduction in covariate imbalance.) If

the realized value of X is a random sample, then (1) can be expressed as

E(X̄mT
− X̄mC

) = γE(X̄nT
− X̄nC

). (2)

The right hand side of (2) is the average mean-imbalance in the population that gives

rise to the original data, and the left hand side is the average mean-imbalance in the pop-

ulation subsample of matched units. The EPBR property implies that improving balance

in the difference in means on one variable also improves it on all others (and their linear

combinations) by a proportional amount, which is why γ is assumed to be a scalar. EPBR
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is a relevant property only if one assumes that the function which links the covariates and

the outcome is equally sensitive to all components (for example a linear function), or if

the analyst scales the covariates so this is the case.

EPBR attempts to improve only mean imbalance (or main effects in X) and says noth-

ing about other moments, interactions, or nonlinear relationships (except inasmuch as one

includes in X specifically chosen terms like X2
j , Xj×Xk, etc.). Rubin and Thomas (1992)

give some specialized conditions which can generate the maximum level of imbalance re-

duction possible for any EPBR matching method. Although this result does not indicate

which method will achieve the maximum, it may provide useful guidance about how well

the search is going.

No method of matching satisfies EPBR without data restrictions. To address these

issues, Rosenbaum and Rubin (1985a) suggest considering special conditions where con-

trolling the means enables one to control all expected differences between the multivariate

treated and control population distributions, which is the ultimate goal of matching. The

most general version of these assumptions now require:

(a) X is drawn randomly from a specified population X ,

(b) The population distribution for X is an ellipsoidally symmetric density (Rubin and

Thomas, 1992) or a discriminant mixture of proportional ellipsoidally symmetric

densities (Rubin and Stuart, 2006), and

(c) The matching algorithm applied is invariant to affine transformations of X.

With these conditions, there is no risk of decreasing any type of expected imbalance in

some variables while increasing it in others. Checking balance in this situation involves

checking only the difference in means between the treated and control groups for only

one (and indeed, any one) covariate.

Although the requirement (c) can be satisfied (e.g., by propensity score matching, un-

weighted Mahalanobis matching, discriminate matching), assumptions (a) and (b) rarely

hold (and are almost never known to hold) in observational data. Rubin and Thomas

(1996) give some simulated examples where certain violations of these conditions still
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yield the desired properties for propensity score and Mahalanobis matching, but the prac-

tical problem of improving balance on one variable leading to a reduction in balance on

others is very common in real applications in many fields. Of course, these matching

methods are only potentially EPBR, since to apply them to real data requires the addi-

tional assumptions (a) and (b).

2.2 The Monotonic Imbalance Bounding Class

We build our new class of matching methods in six steps, by generalizing and modifying

the definition of EPBR. First, we drop any assumptions about the data, such as condi-

tions (a) and (b). Second, we focus on the actual in-sample imbalance, as compared to

EPBR’s goal of increasing expected balance. Of course, efficiency of the ultimate causal

quantity of interest is a function of in-sample, not expected, balance, and so this can be

important (and it explains otherwise counter-intuitive results about EPBR methods, such

as that matching on the estimated propensity score is more efficient than the true score,

see Hirano, Imbens and Ridder 2003). In addition, achieving in-sample balance is an

excellent way to achieve expected balance as well. Let X̄nT ,j , X̄nC ,j and X̄mT ,j , X̄mC ,j

denote the pre-match and post-match sample means, for variable Xj , j = 1, . . . , k, for

the subsamples of treated and control units. Then, third, we replace the equality in (2)

by an inequality, and focus on the variable-by-variable relationship |X̄mT ,j − X̄mC ,j| ≤

γj|X̄nT ,j − X̄nC ,j| which we rewrite as

|X̄mT ,j − X̄mC ,j| ≤ δj, j = 1, . . . , k, (3)

where δj = γj|X̄nT ,j − X̄nC ,j|. Fourth, we require δj to be chosen ex ante and let mT and

mC to be determined by the matching algorithm instead of the reverse as under EPBR.

Equation (3) states that the maximum imbalance between treated and matched control

units, as measured by the absolute difference in means for variable Xj , is bounded from

above by the constant δj . Analogous to EPBR, one would usually prefer the situation

when the bound on imbalance is reduced due to matching, γj = δj/|X̄nT ,j − X̄nC ,j| < 1,

although this is not (yet) guaranteed by a method in this class.

To motivate the next change, consider data where the subsample of treated units has
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treated units
control units

Figure 1: An example of a covariate for which minimizing mean-imbalance may be harmful.
The example also shows that increasing mean-imbalance for this variable under MIB can be used
to match more relevant features of the distributions (such as the shaded areas), without hurting
mean-imbalance on other variables. This would be impossible under EPBR.

a unimodal distribution with a sample mean zero, and the control group has a bimodal

distribution with almost zero empirical mean (see Figure 1). Then, reducing the difference

in means in these data with a matching algorithm will be difficult. Instead, one would

prefer locally good matches taken from where distributions overlap the most (see the two

shaded boxes). Using these regions containing good matches may increase the mean

imbalance by construction, but overall balance between the groups will greatly improve.

Thus, fifth, we generalize (3) from mean imbalance to a general measure of imbalance.

Denote by XnT
= [(Xi1, . . . , Xik), i ∈ T ] the subset of the rows of treated units, and sim-

ilarly for XnC
, XmT

and XmC
. We also replace the difference in means with a generic

distance D(·, ·). Further, instead of the empirical means, we make use of a generic func-

tion of the sample, say f(·). This function may take as argument one variable Xj at time,

or more, for example if we want to consider covariances. This leads us to the intermediate

definition:

Definition 2 (Imbalance Bounding (IB)). A matching method is Imbalance Bounding on

the function of the data f(·) with respect to a distance D(·, ·), or simply IB(f, D), if

D (f (XmT
) , f (XmC

)) ≤ δ (4)

where δ > 0 is a scalar.

In a sense, EPBR is a version of IB if we take D(x, y) = E(x − y), f(·) the sample

mean, i.e. f(XmT
) = X̄mT

and f(XmC
) = X̄mC

, δ = γD (f (XnT
) , f (XnC

)), the

inequality replaces the equality, and γ < 1. Although quite abstract, IB becomes natural
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when f(·) and D(·, ·) are specified. Assume f(·) = fj(·) is a function solely of the

marginal empirical distribution of Xj . Then consider the following special cases:

• Let D(x, y) = |x − y| and fj(X ) denote the sample mean for the variable Xj of

the observations in the subset X . Then, (4) becomes (3), i.e. |X̄mT ,j − X̄mC ,j| ≤

δj . Similarly, if fj(·) is the sample variance, the k-th centered moment, the q-th

quantile, etc.

• If fj(·) is the empirical distribution function of Xj , and D(·, ·), the sup-norm dis-

tance, then (4) is just the Kolmogorov distance, and if a nontrivial bound δj exists,

then an IB methods would control the distance between the full distributions of the

treated and control groups.

• Let D(x, y) = |x| and f(·) = fjk(·) is the covariance of Xj and Xk and δ = δjk;

then |Cov(Xj, Xk)| ≤ δjk.

• In Section 3 we introduce a global measure of multivariate imbalance denoted L1

in (6), which is also a version of D(f(·), f(·)).

To introduce our final step, we need some additional notation. As in Definition 2, let f

be any function of the empirical distribution of covariate Xj of the data (such as the mean,

variance, quantile, histogram, etc). Let π, π′ ∈ Rk
+ be two non-negative k-dimensional

vectors and let the notation π � π′ require that the two vectors π and π′ be equal on all

indexes except for a subset J ⊆ {1, . . . , k}, for which πj < π′
j , j ∈ J . For a given

function f(·) and a distance D(·, ·) we denote by γf,D(·) : Rk
+ → R+ a monotonically

increasing function of its argument, i.e. if π � π′ then γf,D(π) ≤ γf,D(π′). Then our last

step gives the definition of the new class:

Definition 3 (Monotonic Imbalance Bounding (MIB)). A matching method is Monotonic

Imbalance Bounding on the function of the data f(·) with respect to a distance D(·, ·), or

simply MIB(f, D), if for some monotonically increasing function γf,D(·) and any π ∈ Rk
+

we have that

D(f(XmT (π)), f(XmC(π))) ≤ γf,D(π). (5)
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MIB is then a class of matching methods which produces subsetsXmT
andXmC

, where

mT = mT (π) and mC = mC(π) on the basis of a given vector π = (π1, π2, . . . , πk) of

tuning parameters (such as a caliper), one for each covariate. As a result, the number of

matched units is a function of the tuning parameter and is not fixed ex ante. In contrast,

the function γf,D, once f and D are specified, depends only on the tuning parameter π,

but not on the sample size mT or mC ; indeed, it represents a bound, or the worst situation

for a given value of the tuning parameter.

A crucial implication of the MIB property for practical data analysis is the following.

Suppose that for a matching method in the MIB class (such as the one we introduce in

the Section 3), such that for each variable j = 1, . . . , k, we have f(x1, . . . , xj) = fj(xj)

(for example the empirical mean of Xj) and a function γfj ,D(π1, . . . , πk) = γj(πj), j =

1, . . . , k. Then, we can write the system of inequalities
D(f1(XmT (π)), f1(XmC(π))) ≤ γ1(π1)

...
D(fk(XmT (π)), fk(XmC(π))) ≤ γk(πk)

Now suppose a researcher changes only a single tuning parameter, for example for the

first variable: i.e. we take a new vector π′ = (π1 − ε, π2, . . . , πk), with ε > 0. The above

system of inequalities still holds, i.e. all inequalities from 2 to k remain unchanged and

only the first one changes to D(f1(XmT (π)), f1(XmC(π))) ≤ γ1(π1 − ε) ≤ γ1(π1).

This means that relaxation of one tuning parameter for one variable controls monoton-

ically the imbalance measures by (D, fj), without altering the maximal imbalance on the

remaining variables. This property is especially useful if we conceptualize the maximum

imbalance in a variable as the maximal measurement error one can tolerate. For example,

for many applications, we can probably tolerate an imbalance of 2 pounds in weighting

people (since individuals can vary this much over the course of a day), 5 years of dif-

ference in age (for middle ages), or a year or two of education not near the threshold of

graduation from high school, college, etc. Once these thresholds are set, an MIB method

guarantees that no matter how much other variables imbalance is adjusted, these maxima

will not change.
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2.3 Examples and Comparisons

Well-known matching methods within the (potentially) EPBR class include nearest neigh-

bor matching based on a propensity score or Mahalanobis distance. These methods are

not MIB, because the number of matched observations (mT , mC) must be an outcome of

the method rather than of a tuning parameter. These and other nearest neighbor match-

ing methods applied with a scalar caliper, even when (mT , mC) is an outcome of the

method, are not MIB because the dimension of the tuning parameter π in the definition

has to be k in order to have separability as in (5). Caliper matching as defined in Cochran

and Rubin (1973) is not MIB because of the orthogonalization and overlapping regions;

without orthogonalization, it is MIB when the distance between the treated and control

groups includes a tuning parameter for each variable. (Cochran and Rubin (1973, p.420)

also recognized that tight calipers control all linear and nonlinear imbalance under certain

circumstances.)

More generally, let Xi = (Xi1, Xi2, . . . , Xik) and Xh = (Xh1, Xh2, . . . , Xhk) be any

two vectors of covariates for two sample units i and h. Let dj(Xi, Xh) = dj(Xij, Xhj)

define the distance for covariate j (j = 1, . . . , k). Then, the caliper distance between Xi

and Xh is d(Xi, Xh) = max
j=1,...k

1{dj(Xi,Xh)≥εj}, where 1A is an indicator function for set A

and ε1, . . . , εk are tuning parameters. So when d(Xi, Xh) = 0, Xi and Xh are close, and

if d(Xi, Xh) = 1 units are far apart (i.e., unmatchable, which could also be expressed by

redefining the latter as ∞). The simplest choice to complete the definition is the caliper

distance, dj(Xi, Xh) = dj(Xij, Xhj) = |Xij − Xhj| (see Rosenbaum (2002), Chap. X)

but any other one-dimensional distance will also be MIB provided the tuning parameter

εj is on the scale of covariate Xj and is defined for all j. In this case, nearest neighbor

matching with caliper or full optimal matching is MIB.

Another member of the MIB class is coarsened exact matching, which applies exact

matching after each variable is separately coarsened (CEM is detailed in Section 3). Nu-

merous other diverse MIB methods can be constructed by applying non-MIB methods

within CEM’s coarsened strata or within variable-by-variable calipers. For one example,

we can coarsen with very wide bins, apply CEM, and then use the propensity score, or
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Mahalanobis distance within each bin, to further prune observations. The resulting meth-

ods are all MIB.

Both EPBR and MIB classes are designed to avoid, in different ways, the problem of

making balance worse on some variables while trying to improve it for others, a serious

practical problem in real applications. With additional assumptions about the data gener-

ation process, EPBR means that the degree of imbalance changes for all variables at the

same time by proportionally the same amount; MIB, without extra assumptions on the

data, means that changing one variable’s tuning parameter does not affect the maximum

imbalance for the others.

Neither class can guarantee both a bound on the level of imbalance and, at the same

time, a prescribed number of matched observations. In EPBR methods, the user chooses

the matched sample size ex ante and computes balance ex post, whereas in MIB methods

the user chooses the maximal imbalance ex ante and produces a matched sample size ex

post. The latter would generally be preferred in observational analyses, where data is

typically plentiful but is not under control of the investigator, and so reducing bias rather

than inefficiency is the main focus.

In real data sets that do not necessarily meet EPBR’s assumptions, no results are guar-

anteed from potentially EPBR methods and so balance may be reduced for some or all

variables. Thus, methods that are potentially EPBR require verifying ex post that balance

has improved. For example, in propensity score matching, the functional form of the re-

gression of T on X must be correct, but the only way to verify this is to check balance

ex post. Since the objective function used for estimating the propensity score differs from

the analytical goal of finding balance, applied researchers commonly find that substan-

tial tweaking is required to avoid degrading mean balance on at least some variables, and

other types of balance are rarely checked or reported.

Under MIB, imbalance in the means, other moments, co-moments, interactions, non-

linearities, and the full multivariate distribution of the treated and control groups may be

improved, without hurting maximum imbalance on other variables and regardless of the

data type. The actual level of balance achieved by MIB methods can of course be better
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than the maximum level set ex ante.

In practice, MIB methods may sometimes generate too few matched observations,

which indicates that either the maximum imbalance levels chosen are too restrictive (e.g.,

too stringent a caliper), or that the data set cannot be used to make inferences without

high levels of model dependence. In observational data, analyzing counterfactuals too far

from the data to make reliable inferences is a constant concern and so MIB’s property

of sometimes producing no matched observations can also be considered an important

advantage.

By attempting to reduce expected imbalance, potentially EPBR methods attempt to

approximate with observational data the classic complete randomization experimental de-

sign, with each unit randomly assigned a value of the treatment variable. In contrast,

MIB methods can be thought of as approximating the randomized block experimental

design, where values of the treatment variable are assigned within strata defined by the

covariates. (Of course, methods from either class can be modified to create randomized

block designs.) Although both designs are unbiased, randomized block designs have ex-

act multivariate balance in each data set on all observed covariates, whereas complete ran-

domization designs are balanced only on average across random treatment assignments in

different experiments, with no guarantees for the one experiment being run. Randomized

block designs, as a result, are considerably more efficient, powerful, and robust, regard-

less whether one is estimating in-sample or population quantities (see Box, Hunger and

Hunter 1978, p.103 and Imai, King and Stuart 2008); in an application by Imai, King and

Nall (2009), complete randomization gives standard errors as much as six times larger

than the corresponding randomized block design.

Finally, a consensus recommendation of the matching literature is that units from the

control group too far outside the range of the data of the treated group should be discarded

as they lead to unacceptable levels of model dependence. This means that the application

of potentially EPBR methods must be proceeded by a separate method for eliminating

these risky observations. One way to eliminate extreme counterfactuals is to discard con-

trol units that fall outside the convex-hull (King and Zeng, 2007) or the hyper-rectangle
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(Iacus and Porro, 2009) delimited by the empirical distribution of the treated units. Unfor-

tunately, these and other two-step matching approaches are not even potentially EPBR. In

contrast, MIB methods which eliminate a distant risky extrapolations, often even without

a separate step.

2.4 MIB Properties: Bounding Model Dependence and Estimation
Error

A key motivating factor in matching is to reduce model dependence (Ho et al., 2007).

However, the relationship has never been proven directly for EPBR methods, or any other

aside from exact matching. Thus, we contribute here a proof that the maximum degree of

model dependence can be controlled by the tuning parameters for MIB methods. We also

go a step farther and show how the same parameters also bound causal effect estimation

error.

Model Dependence At the unit level, exact matching estimates the counterfactual Yi(0) ≡

g0(Xi) for treated unit i with the value of Y of the control unit j such that Xj = Xi. If

exact matching is not feasible, then we use a model m` to span the remaining imbalance

to Yi(0) with control units close to the treated units, i.e. using matched data such as

Ŷ (0) ≡ m`(X̃j), where X̃j is the vector of covariates for the control units close to treated

i. Model dependence is how much m`(X̃j) varies as a function of the model m` for a

given vector of covariates X̃j . We restrict the attention to the set of competing Lipschitz

models:

Definition 4 (Competing models). Let m` (` = 1, 2, . . .) be statistical models for Y . For

example, m`(x) may be a model for E(Y |X = x). Then we consider the following class

Mh =

{
m` : |m`(x)−m`(y)| ≤ K`d(x, y) and |mi(x)−mk(x)| ≤ h, i 6= k, x ∈ Ξ

}
with exogenous choices of a small prescribed nonnegative value for h and 0 < K` < ∞

and Ξ = Ξ1× · · · ×Ξk, where Ξj is the empirical support of variable Xj . Here d(x, y) is

some distance on the space of covariates Ξ.
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In Mh, the Lipschitz constants K` are proper constants of the models m` and, given

the specification of m`, need not be estimated. The class Mh represents competing mod-

els which fit the observed data about as well, or in other words do not yield very different

predictions for the same observed values X̃; if this were not the case, we could rule out a

model based on the data alone.

In this framework, for any two models m1, m2 ∈Mh, we define model dependence as

|m1(X̃i)−m2(X̃i)| (King and Zeng, 2007). This leads to the key result for MIB methods

with respect to D(x, y) = d(x, y) and f(x) = x:

|m1(X̃j)−m2(X̃j)| =|m1(X̃j)±m1(Xi)±m2(Xi)−m2(X̃j)|

≤|m1(Xi)−m1(X̃j)|+ |m2(Xi)−m2(X̃j)|+ |m1(Xi)−m2(Xi)|

≤(K1 + K2)d(Xi, X̃j) + h ≤ (K1 + K2)γ(π) + h

Thus, the degree of model dependence is directly bounded by the choice of π (via γ(π))

of the MIB method.

Estimation Error To show how MIB bounds estimation error, we need to recognize that

under certain specific conditions matching changes the estimand (Section 5.1 discusses

when this may be desirable and how to avoid it when not). For example, consider an MIB

method which produces 1-to-1 matching of treatment to control. We denote by Xi the

values of the covariates for treated unit i and by X̃j the values for control unit j matched

with this treated unit. If mT is the total number of treated units matched, then estimand

can be defined as

τmT
=

1

mT

∑
i∈MT

(Yi(1)− Yi(0)).

Then, an estimator of τmT
is given by

τ̂mT
=

1

mT

∑
i∈MT

(Yi(1)− Ŷi(0)) =
1

mT

∑
i∈MT

(Yi(1)− g(X̃j, 0))

where Ŷi(0) = g(X̃j, 0) and X̃j is the vector of covariate values for control unit j matched

with treated unit i.

Proposition 1. Let d(x, y) be a distance from Ξ×Ξ to R+ and let g(x, 0) be differentiable

with bounded partial derivates, i.e.
∣∣∣ ∂
∂xi

g(x, 0))
∣∣∣ ≤ Ki, for some 0 < Ki < ∞, i =

14



1, . . . , k. Then, for an MIB method with respect to D(x, y) = d(x, y) and f(x) = x we

have that |τmT
− τ̂mT

| ≤ γ(π)K + o(γ(π)) with K =
∑k

h=1 Kh.

Proof. Taylor expansion of g(X̃j, 0) around Xi, gives

g(X̃j, 0)− g(Xi, 0) = d(X̃j,Xi) ·
k∑

h=1

∂

∂xh

g(x, 0)

∣∣∣∣
x=Xi

+ o(d(X̃j,Xi))

We can decompose τ̂mT
as follows

τ̂mT
=

1

mT

∑
i∈MT

(Yi(1)− Ŷi(0)± Yi(0))

=
1

mT

∑
i∈MT

(Yi(1)− g(X̃j, 0)± g(Xi, 0))

= τmT
− 1

mT

∑
i∈MT

(
d(X̃j,Xi) ·

k∑
h=1

∂

∂xh

g(x, 0)

∣∣∣∣
x=Xi

+ o(d(X̃j,Xi))

)
.

Therefore, we have the statement of the proposition.

The above result shows that, a MIB method bounds the error |τmT
− τ̂mT

| as an explicit

function of the vector of tuning parameters π.

3 Coarsened Exact Matching as an MIB Method

In order to clarify how the MIB class of matching methods works in practical applications,

we now introduce one member of the MIB class of matching methods that comes from

the diverse set of approaches based on subclassification (aka “stratification” or “intersec-

tion” methods). We call this particular method CEM for “Coarsened Exact Matching” (or

“Cochran Exact Matching” since the first formal analysis of any subclassification-based

method appeared in Cochran 1968).

Definition CEM requires three steps: (1) Coarsen each of the original variables in X as

much as the analyst is willing into, say, C(X) (e.g., years of education might be coarsened

into grade school, high school, college, graduate school, etc.). (2) Apply exact matching

to C(X), which involves sorting the observations into strata, say s ∈ S, each with unique

values of C(X). (3) Strata containing only control units are discarded; strata with treated
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and control units are retained; and strata with only treated units are used with extrapolated

values of the control units or discarded if the analyst is willing to narrow the quantity of

interest to the remaining set of treated units for which a counterfactual has been properly

identified and estimated.

Denote by T s the treated units in stratum s, with count ms
T = #T s, and similarly for

the control units, i.e. Cs and ms
C = #Cs. The number of matched units are, respectively

for treated and controls, mT =
⋃
s∈S

ms
T and mC =

⋃
s∈S

ms
C . Then for subsequent analysis,

assign each matched unit i in stratum s, the following CEM-weights wi = 1, if i ∈ T s

and wi = mC/mT ·ms
T /ms

C , if i ∈ Cs, with unmatched units receiving weight wi = 0.

Coarsening Choices Because coarsening is so closely related to the substance of the

problem being analyzed and works variable-by-variable, data analysts understand how to

decide how much each variable can be coarsened without losing crucial information. In-

deed, even before the analyst obtains the data, the quantities being measured are typically

coarsened to some degree. Variables like gender or the presence of war coarsen away

enormous heterogeneity within the given categories. Data analysts also recognize that

many measures include some degree of noise and, in their ongoing efforts to find a signal,

often voluntarily coarsen the data themselves. For example, 7-point partisan identification

scales are recoded as Democrat, independent, and Republican; Likert issue questions as

agree, neutral, and disagree; and multi-party vote returns as winners and losers. Many

use a small number of categories to represent religion, occupation, U.S. Security and Ex-

change Commission industry codes, and international classification of disease codes, and

many others. Indeed, epidemiologists routinely dichotomize all their covariates on the

theory that grouping bias is much less of a problem than getting the functional form right.

Although coarsening in CEM is safer than at the analysis stage, the two procedures are

similar in spirit since the discarded information in both is thought to be relatively unim-

portant — small enough with CEM to trust to statistical modeling.

For continuous variables, coarsening can cut the range of the variable Xj into equal

intervals of length εj . If the substance of the problem suggests different interval lengths,

we use εj to denote the maximum length. For categorical variables, coarsening may cor-
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respond to grouping different levels of the variable.

Although we find that data analysts have little trouble making coarsening choices on

the basis of their substantive information, we have also developed a series of automated

coarsening methods, such as those which automatically choose bin widths for histograms

and other more sophisticated approaches. These are available in easy-to-use software that

accompanies this paper for R and Stata at http://gking.harvard.edu/cem.

CEM as an MIB method We prove here that CEM is a member of the MIB class with

respect to the mean, the centered absolute kth moment, and the empirical and weighted

quantiles. Other similar properties can be proved along these lines as well. Beginning

with Definition 3, let D(x, y) = |x− y|, πj = εj , γj = γj(εj) be a function of εj , and the

function f(·) vary for the different propositions. Changing εj for one variable then does

not affect the imbalance on the other variables.

Denote the weighted mean for the treated and control units respectively as X̄w
mT ,j =

1
mT

∑
i∈T

Xijwi and X̄w
mC ,j = 1

mC

∑
i∈C

Xijwi.

Proposition 2. For j = 1, . . . , k,
∣∣X̄w

mT ,j − X̄w
mC ,j

∣∣ ≤ εj .

Proof of Proposition 2. Let us introduce the means by strata: X̄ms
T,j

= 1
ms

T

∑
i∈T s

Xij , X̄ms
C,j

=

1
ms

C

∑
i∈Cs

Xij . Then X̄w
mT ,j = 1

mT

∑
i∈T

Xijwi = 1
mT

∑
s∈S

∑
i∈Ts

Xij = 1
mT

∑
s∈S

ms
T X̄ms

T,j
and

X̄w
mC ,j = 1

mC

∑
i∈C

Xijwi = 1
mC

∑
s∈S

∑
i∈Cs

Xij
mC

mT

ms
T

ms
C,j

= 1
mT

∑
s∈S

ms
T X̄ms

C,j
. Hence, given that

the mean is internal, in each stratum observations are at most far as εj; thus,
∣∣X̄w

mT ,j−X̄w
mC ,j

∣∣≤∑
s∈S

ms
T

mT

∣∣∣X̄ms
T,j
−X̄ms

C,j

∣∣∣ ≤ ∑
s∈S

ms
T

mT
εj = εj.

Let Rj be the range of variable Xj and let θj = max
εj≥εj∗

(dRj/εje), where dxe is the first

integer greater or equal to x. In the definition of θj , ε∗j is any reasonable strictly positive

value, e.g. the lowest value of εj which generates at most nT non empty intervals in CEM.

Proposition 3. Let k ≥ 1 and consider the centered absolute k-th moment for variable

Xj for the treated and control units as µ̄k
T,j = 1

mT

∑
s∈S

∑
i∈T s

∣∣Xij − X̄w
mT ,j

∣∣k wi and µ̄k
C,j =

1
mC

∑
s∈S

∑
i∈Cs

∣∣Xij − X̄w
mC ,j

∣∣k wi . Then, |µ̄k
T,j − µ̄k

C,j| ≤ εk
j (θj + 1)k, j = 1, . . . , k, and

εj ≥ ε∗j .
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Proof of Proposition 3. We first rewrite µ̄k
C,j

µ̄k
C,j =

1

mC

∑
s∈S

∑
i∈Cs

|Xij−X̄w
mC ,j|kwi ≤

1

mC

∑
s∈S

∑
i∈Cs

(|Xij−X̄w
mT ,j|+|X̄w

mT ,j−X̄w
mC,j

|)kwi.

and then apply the binomial expansion to the inner term of the summation

(|Xij − X̄w
mT ,j|+ |X̄w

mT ,j − X̄w
mC ,j|)k =

k∑
h=0

(
k

h

)
|Xij − X̄w

mT ,j|h|X̄w
mT ,j − X̄w

mC ,j|)k−h

by Proposition 2 we can write

(|Xij − X̄w
mT ,j|+ |X̄w

mT ,j − X̄w
mC ,j|)k ≤

k∑
h=0

(
k

h

)
|Xij − X̄w

mT ,j|hεk−h
j

≤ εk
j

k∑
h=0

(
k

h

)
|Rj|hε−h

j = εk
j

k∑
h=0

(
k

h

) ∣∣∣∣Rj

εj

∣∣∣∣h ≤ εk
j

k∑
h=0

(
k

h

)
θj

h1k−h = εk
j (θj + 1)k

Therefore, µ̄k
C,j ≤ εk

j (θj + 1)k 1
mC

∑
s∈S

∑
i∈Cs

wi = εk
j (θj + 1)k because

1

mC

∑
s∈S

∑
i∈Cs

wi =

1

mC

∑
s∈S

∑
i∈Cs

mC

mT

ms
T

ms
C

=
1

mT

∑
s∈S

ms
C

ms
T

ms
C

= 1. Since 1
mT

∑
s∈S

∑
i∈T s

wi = 1. The same bound

exists for µ̄k
T,j , so their absolute difference is

∣∣µ̄k
T,j − µ̄k

C,j

∣∣ ≤ εk
j (θj + 1)k.

Proposition 4. Assume one-to-one matching. Denote by Xq
mT ,j the qth empirical quan-

tile of the distribution of the treated units for covariate Xj , and similarly Xq
mC ,j . Then,

|Xq
mT ,j −Xq

mC ,j| ≤ εj for j = 1, . . . , k.

Proof of Proposition 4. Consider the qth empirical quantiles of the distribution of the treated

and control units, Xq
mT ,j and Xq

mC ,j . That is, Xq
mT ,j is the qth ordered observation of the

subsample of mT matched treated units, and similarly for Xq
mC ,j . In one-to-one match-

ing, the first treated observation is matched against the first control observation in the first

stratum and, in general, the corresponding quantiles belong to the same strata. Therefore,

|Xq
mT ,j −Xq

mC ,j| < εj .

Define the weighted empirical distribution functions for treated group as Fw
mT ,j(x) =∑

Xij≤x,i∈T

wi

mT
and for the control group as Fw

mC ,j(x) =
∑

Xij≤x,i∈C

wi

mC
. Define the q-th quan-

tile of the weighted distribution Xq,w
mT ,j as the first observation in the sample such that

Fw
mT ,j(x) ≥ q and similarly for Xq,w

mC ,j .
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Proposition 5. Assume that the support of variable Xj is cut on subintervals of exact

length εj . Then |Xq,w
mT ,j −Xq,w

mC ,j| ≤ εj for j = 1, . . . , k.

Proof of Proposition 5. Consider the generic stratum [as, bs], s ∈ S, where as is the left-

most cut-point of the discretization and bs = as + εj . For simplicity, take s = 1, so that

Fw
mT ,j(a1) = Fw

mC ,j(a1) = 0. Then Fw
mT ,j(b1) = ms=1

T /mT because there are at most ms=1
T

treated units less than or equal to b1. Similarly, for the weighted distribution of the control

units we have

Fw
mC

(b1) =
ms=1

C

mC

· mC

mT

ms=1
T

ms=1
C

=
ms=1

T

mT

Thus, for each stratum, Fw
mT ,j(bs) = ms

T /mT = Fw
mC ,j(bs), and hence the difference

between weighted empirical distribution functions at the end points of each stratum [as, bs]

is always zero. Therefore, the weighted quantiles of the same order for treated and control

units always belong to the same stratum and hence the difference between them is at most

εj .

On Filling CEM Strata A problem may occur with MIB methods if too many treated

units are discarded. This can be fixed of course by adjusting the choice of maximum im-

balance, but it is reasonable to ask how often this problem occurs for a “reasonable” choice

in real data. One worry is the curse of dimensionality, which in this context means that

the number of hyper-rectangles, and thus the number of possible strata #C(X1) × · · · ×

#C(Xk), is typically very large. For example, suppose X is composed of 10,000 obser-

vations on 20 variables drawn from independent normal densities. Since 20-dimensional

space is enormous, odds are that no treated unit will be anywhere near any control unit.

In this situation, even very coarse bins under CEM will likely produce no matches. For

example, with only two bins for each variable, the 10,000 observations would need to be

sorted into 220 possible strata, in which case the probability would be extremely small of

many stratum winding up with both a treated and control unit.

Although EPBR methods fix the number of matches ex ante (on the hope that imbal-

ance would be reduced on average across experiments), no EPBR matching method would

provide much help in making inferences from these data either. The fact that in these data
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CEM would likely produce very few matches may be regarded as a disadvantage, since

some estimate may still be desired no matter how model dependent, it is better regarded

as an advantage in real applications, since no method of matching will help produce high

levels of local balance in this situation.

Fortunately, for two reasons, the sparseness that occurs in multidimensional space

turns out not to be much of an issue in practice. First, real data sets have far more highly

correlated data structures than the independent draws in the example above, and so CEM

in practice tends to produce a reasonable number of matches. This has been our over-

whelming experience in the numerous data sets we have analyzed. We studied this further

by attempting to sample from the set of social science causal analyses in progress in many

fields by broadcasting an offer (through blogs and listservs) help in making causal analy-

ses in return for a look at their data (and a promise not to scoop anyone). We will report

on this analysis in more detail in a later paper but note here that, for almost every data set

we studied, CEM produced an inferentially useful number of matched observations and

also generated substantially better balance for a given number of matches than methods

in the EPBR class.

Finally, if the reservoir of control units is sufficiently large, it is possible to derive,

following the proof of Proposition 1 in Abadie and Imbens (2009), an exponential bound

on the probability that the number of CEM strata with unmatched treated units remains

positive. In particular, the number of cells that contain only (unmatched) treated units

goes to zero exponentially fast with the number of treated units nT in the sample, if the

number of control units nC grows at rate nC = O(n
1/r
T ), with r ≥ k and k the number of

continuous pre-treatment covariates.

On CEM’s computational efficiency Although the number of empty CEM strata in

real data tends to be small, the total number of cells to be explored in order to determine

in which strata we have a match is exponentially large, e.g., mk where k is the number

of covariates and m is the average number of intervals on which the support of each co-

variate has been cut. So, for example, with k = 20 and m = 6, the number of strata

is huge: 620 = 3.656158 · 1015. Fortunately, CEM produces at most n strata if all ob-
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servations fall into different CEM strata. The implementation can then ignore this space

and focus on at most n strata. Thus, coarsening replaces the original covariate values

Xj with integers 1 to θj , leading observation to have a feature vector of integers such

as (Xi1, Xi2, Xi3, . . . , Xi98, Xi99, Xi100) = (1, 3, 5, . . . , 3, 2, 7). The algorithm we imple-

ment then collapses the feature vector associated with each observation with in a string

like “1 ∗ 3 ∗ 5 ∗ · · · ∗ 3 ∗ 2 ∗ 7”. The result is that CEM matching has the same complexity

of a simple frequency tabulation, which is of order n. This algorithm can even be easily

implemented on very large databases using SQL-like queries.

CEM and Propensity Scores One way to convey how MIB generalizes the EPBR class

of methods, and thus includes its benefits, is to note that a high quality nonparametric

estimate of the propensity score is available from CEM results by merely calculating the

proportion of units within each stratum that are treated. Indeed, this estimator would

typically balance better than that from the usual logit model (which optimizes an objec-

tive function based on fit rather than balance) or various unwieldly ad hoc alternatives

that iterate between balance checking and tweaking and rerunning the logit model. Of

course, with CEM, estimating the propensity score is not needed, since CEM determines

the matches first, but this point helps convey how using CEM can include the essential

advantages of the propensity score.

4 Reducing Imbalance

We now define and introduce a measure of imbalance between the treated and control

groups. We then demonstrate how CEM out-performs (potentially) EPBR methods even

in data generated to meet EPBR assumptions.

4.1 Definition and Measurement

Most matching methods were designed to reduce imbalance in the mean of each pre-

treatment variable between the treated and control groups, for which the balance metric

is simply the difference in means for each covariate. (One exception is the full optimal

matching algorithm, Rosenbaum (2002), which is designed to minimize functions such as
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the average of the local distances among each matched treated and control units, although

these methods are not MIB because of their use of a scalar imbalance metric.) Of course,

mean imbalance is only part of the goal as it does not necessarily represent the desired

multidimensional imbalance between the treated and control groups.

We thus now introduce a new and more encompassing imbalance measure aimed at

representing the distance between the multivariate empirical distributions of the treated

and control units of the pre-treatment covariates. The proposed measure uses the L1 norm

to measure this distance. To build this measure, we obtain the two multidimensional

histograms by direct cross-tabulation of the covariates in the treated and control groups,

given a choice of bins for each variable. Let H(X1) denote the set of distinct values

generated by the bins chosen for variable X1, i.e., the set of intervals into which the

support of variable X1 has been cut. Then, the multidimensional histogram is constructed

from the set of cells generated by the Cartesian product H(X1)×· · ·×H(Xk) = H(X) =

H .

Let f and g be the relative empirical frequency distributions for the treated and control

units, respectively. Observation weights may exists as output of a matching method. For

the raw data, the weights are equal to one for all observations in the sample. Let f`1···`k
be

the relative frequency for observations belonging to the cell with coordinates `1 · · · `k of

the multivariate cross-tabulation, and similarly for g`1···`k
.

Definition 5. The multivariate imbalance measure is

L1(f, g; H) =
1

2

∑
`1···`k∈H(X)

|f`1···`k
− g`1···`k

|. (6)

We denote the measure by L1(f, g; H) = L1(H) to stress its dependence on the

choice of multidimensional bins H , the definition of which we take up below. (Some-

times, when we compare two methods MET1 and MET2 we will write L1(MET1; H)

and L1(MET2; H).) An important property of this measure is that the typically numer-

ous empty cells do not affect L1(H), and so the summation in (6) has at most only n

nonzero terms. The relative frequencies also control for what may be different sample

sizes for the treated and control groups.
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The L1 measure offers an intuitive interpretation, for any given set of bins: If the two

empirical distributions are completely separated (up to H), then L1 = 1; if the distribu-

tions exactly coincide, then L1 = 0. In all other cases, L1 ∈ (0, 1). If say L1 = 0.6, then

40% of the area under the two histograms overlap.

Let fm and gm denote the distributions of the matched treated and control units corre-

sponding to the distributions f , g of the original unmatched data. Then a good matching

method will result in matched sets such that L1(f
m, gm) ≤ L1(f, g). Of course, to make

coherent matching comparisons, the bins H must remain fixed. See also Racine and Li

(2009).

Choosing a Bin Definition H for L1(H) Although the definition of L1(H) is intu-

itive, it depends on the apparently arbitrary choice of the bins H: Like the bandwidth in

nonparametric density estimation, bins too small provide exact separation in multidimen-

sional space (L1(H) = 1) and bins too large cannot discriminate (L1(H) = 0). Thus,

analogous to the purpose of ROC curves in avoiding the choice of the differential costs of

misclassification, we now develop a single definition for H to represent all possible bin

choices.

To begin, we study the L1-profile, which is our name for the distribution of L1(H)

in the set of all possible bin definitions H ∈ H. We study this distribution by drawing

250 random samples from the L1-profile for data from Lalonde (1986), a commonly used

benchmark data set in the matching literature (the ten variables included are not central to

our illustration, and so we refer the interested reader to the original paper or the replica-

tion file that accompanies our paper.) For each randomly drawn value of H , we calculate

L1(H) based on the raw data and on each of three matching methods: (1) nearest neigh-

bors based on the propensity score calculated via logit model (PSC); (2) a full optimal

matching (MAHF) solution based on the Mahalanobis distance (see Rosenbaum (2002));

and (3) a CEM solution with fixed coarsening (10 intervals for each continuous variable

and no coarsening for the categorical variables).

The left panel of Figure 2 plots L1(H) vertically by the randomly chosen bin H hor-

izontally, with bins sorted by the L1(H) value based on the raw data. For this reason the

23



raw data (the red line) is monotonically increasing. For any given H (indicated by a point

on the horizontal axis), the method with the lowest imbalance is preferred. The prob-

lem we address here is that different bin definitions can lead to different rankings among

the methods. Fortunately, however, in these data the rank order imbalance reduction of

the methods remains stable across almost the entire range of H values, aside from small

random perturbations. For almost any value of H on the horizontal axis, the largest im-

balance reduction is generated by CEM, then propensity score matching and Mahalanobis

distance matching. CEM thus essentially dominates the other methods, in that regardless

of the definition of the bins used in defining L1(H) its matched data sets have the low-

est imbalance. In these data, propensity score matching and Mahalanobis matching are

slightly better than the raw data. The approximate invariance portrayed in this figure is

worth checking for in specific applications, but we find it to be an extremely common em-

pirical regularity across almost all the data sets we have analyzed. For another view of the

same result, the right panel of Figure 2 represents the cumulative empirical distribution

functions (ecdf) of the values of L1(H) over the set H: The method with the rightmost

ecdf produces the highest levels of imbalance.

Thus, we have shown that the bin definition H in our imbalance measure (6) is often

unimportant. We thus propose fixing it to a specific value to produce a final imbalance

measure recommended for general use. The specific value we recommend is the set of bins

H̄ which corresponds to the median value ofL1 on the profile of the raw data, H̄ = H̄RAW.

We denote this value and new measure by L̄1 ≡ L1(H̄). In Figure 2, L̄1 is 0.43 for

Mahalanobis matching, 0.41 for propensity score matching, and 0.26 for CEM.

Is Balancing on the Means Enough? Although the point is simple mathematically,

a large empirical literature suggests that it may be worth clarifying why controlling for

one dimensional distributions is not enough to control the global imbalance of the joint

distribution (outside the special cases such as multivariate Gaussians). Indeed, let pi =

P (T = 1|Xi1, Xi2, . . . , Xik) = 1/[1+exp{−β0−
k∑

j=1

βjXij}] be the logistic model for the

propensity score. And let p̂i be the propensity score estimated by maximum likelihood.

Set wi = 1− p̂i, for i ∈ T and wi = p̂i for i ∈ C.
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Figure 2: The L1-profile of the raw (“RAW”) data (red line) compared to propensity score
(“PSC”), Mahalanobis (“MAHF”) and Coarsened Exact Matching (“CEM”) matched
data. MAHF and PSC overlaps in the left panel. The left panel plots the L1 profile
by different bin choices sorted by L1 for the raw data; the right panel plots the empirical
cumulative distribution functions of the same set of L1 values.

Matching in some way based on this propensity score in arbitrary data has no known

theoretical properties (and does not perform well in these data), and so for clarifica-

tion we switch to propensity score weighting, which is simpler in this situation. De-

note the weighted means for treated and control units as X̄w
T,j =

∑
i∈T Xijwi/

∑
i∈T wi

and X̄w
C,j =

∑
i∈C Xijwi/

∑
i∈C wi. Then, it is well known that (without matching)

X̄w
T,j = X̄w

C,j .

Although this weighting guarantees the elimination of all mean imbalance, the mul-

tidimensional distribution of the data may be still highly imbalanced. We consider again

the same data as before. The value of the median on the L1-profile for the data is equal to

L̄1 = 0.54. The univariate (I1) and global (L̄1) imbalance measures are given in Table 1

for the raw data, propensity score weighting, and CEM. After applying propensity score

weighting (see middle column) we get, as expected, an almost perfect (weighted) match

on the difference in means for all variables, but the overall global imbalance is equal to

L̄1 = 0.53, which is almost the same as the original data. However, after matching the

raw data with CEM (which we do by coarsening the continuous variables into 8 inter-

vals), the data are more balanced because CEM pruned observations that would have led

to large extrapolations. This can be seen in the last line of the table which gives the global

imbalance, which has now been substantially reduced to L̄1 = 0.34.
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raw pscore
variable data weighting CEM
age 0.18 −0.00 0.11
education 0.19 −0.00 −0.02
black 0.00 0.00 0.00
married 0.01 −0.00 0.00
nodegree −0.08 0.00 0.00
re74 −101.49 0.00 93.85
re75 39.42 0.00 36.12
hispanic −0.02 0.00 0.00
u74 −0.02 −0.00 0.00
u75 −0.05 −0.00 0.00

L̄1 0.54 0.53 0.34

Table 1: Differences in means for each variable and global imbalance measure (L̄1) on
raw data from Lalonde (1986), after propensity score weighting, and following CEM
matching. Variable names are as in Lalonde’s original data set. The propensity score is
estimated by a logit model; CEM coarsens the continuous variables into 8 categories.

This example thus shows that simple weighting can reduce or eliminate mean im-

balance without improving global multivariate imbalance. The same of course holds for

any matching algorithm designed to improve imbalance computed one variable at a time.

CEM, as an MIB method, and L̄1 as a measure of imbalance, provide a simple way around

these problems.

4.2 CEM vs. EPBR Methods under EPBR-Compliant Data

We now simulate data best suited for EPBR methods and compare CEM, an MIB match-

ing method, to the propensity score (PSC) and Mahalanobis distance matching from the

EPBR class of methods. We show that the MIB properties of CEM (in particular, the

in-sample multivariate imbalance reduction) enables CEM to outperform EPBR methods

even in data generated to optimize EPBR performance.

The propensity score model is estimated as usual including all the main effects. For

PSC we use a 1-nearest neighbor method without replacement while we denote by MAH

1-nearest neighbor matching, also without replacement, on the Mahalanobis distance and

MAHF full optimal matching (see Rosenbaum (2002)) on the Mahalanobis distance. Due

to the fact that CEM drops treated units, we also compute a second version of PSC where
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it is forced to further match on the subsample of treated and control units selected by the

CEM algorithm (PSC2).

We begin by replicating an experiment proposed Gu and Rosenbaum (1993). This

involves drawing two independent multivariate normal data sets: XT ∼ N5(µT , Σ) and

XC ∼ N5(µC , Σ), with common variances (6, 2, 1, 2, 1) and covariances, (2, 1, 0.4, −1,

−0.2, 1, −0.4, 0.2, 0.4, 1), and means vectors µT = (0, 0, 0, 0, 0) and µC = (1, 1, 1, 1, 1).

We randomly sample nT = 1, 000 treated units from XT and nC = 3000 control units

from XC . For CEM, we coarsen each covariate into 8 intervals of equal length. MAH,

MAHF and PSC match mT = 1, 000 treated units against mC = 1, 000 control units,

whereas CEM selects both treated and control units and in turn PSC2 select mT = mC

depending on mT , which is output from CEM in each simulation.

The properties of EPBR imply that MAH and PSC matching will optimally minimize

expected mean imbalance (Rosenbaum and Rubin, 1985b) in these data when all treated

units are matched. In contrast, CEM is designed to reduce local multivariate imbalance,

that is, the maximum distance between each treated unit and the corresponding matched

control units. In addition to the global imbalance, L̄1, we compute for each variable the

global difference in means between the treated and control groups (I1) and the average

absolute difference in units stratum by stratum for CEM, and unit by unit for the other

methods (I2).

See Table 2. Overall, we find that CEM is substantially better than the other methods

in terms of the difference in means, as well as local and global imbalance. Since one may

argue that this effect is due to the fact that only CEM drops treated units, we also consider

the performance of PSC2, but the conclusion here remains unchanged. PSC2 seems to

benefit more from being combined with CEM. Thus, CEM is indeed greatly reducing the

distance between the two k-dimensional distributions of treated and control units. Since

the two EPBR methods in these data are known to be optimal only in expectation, the

additional advantage of CEM is coming from MIB’s in-sample multivariate imbalance

reduction property.
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Difference in means I1

X1 X2 X3 X4 X5 mT mC

initial imb. 1.00 1.00 1.00 1.00 1.00 1000 3000
CEM 0.04 0.04 0.08 0.06 0.07 772 1851
MAH 1.00 1.00 1.00 1.00 1.00 1000 1000
MAHF 0.45 0.45 0.45 0.45 0.45 1000 1000
PSC 0.32 0.32 0.32 0.32 0.32 1000 1000
PSC2 0.14 0.15 0.16 0.14 0.16 772 772

Local imbalance I2

X1 X2 X3 X4 X5 L̄1

initial 0.50
CEM 0.44 0.28 0.18 0.22 0.21 0.21
MAH 1.05 1.00 1.00 1.00 1.00 0.52
MAHF 2.64 1.54 1.11 1.54 1.11 0.34
PSC 2.67 1.43 0.88 1.43 0.88 0.31
PSC2 2.41 1.30 0.80 1.31 0.81 0.26

Table 2: Imbalance in means I1 (top panel) and local imbalance I2 (bottom panel) remain-
ing after matching, for each variable listed, X1, . . . , X5. Also reported are the number of
treated mT and control mC units remaining after the match (top) and the multivariate
L1 measure of imbalance (bottom, rightmost column). Results are averaged over 1,000
replications, with nT = 1, 000, nC = 3, 000.

5 Reducing Causal Effect Estimation Error

In order to avoid inducing selection bias, statisticians suggest ignoring the outcome vari-

able while choosing a matching procedure and focusing primarily on reducing imbalance

in the covariates (as we did in Section 4). In this section, we go a step further and switch

focus to reducing estimation error in the causal quantity of interest.

5.1 Definitions and Estimation

A crucial issue in causal inference is identifying the precise quantity to be estimated. This

is an issue in observational data, which is typically based on convenience samples and

may include whatever relevant data happen to be available. The same issue applies to

most randomized medical experiments, for example, since they are also based on conve-

nience samples (such as patients who happen to show up at a research hospital). In these

situations, the target causal effect is typically defined for the observed units only, and no

attempt is made to infer formally to a broader population.
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We therefore define two quantities of interest: The sample average treatment effect on

the treated SATT = 1
nT

∑
i∈T

[Yi(1)− Yi(0)] and the population average treatment effect on

the treated PATT = Ei∈T ∗ [Yi(1)− Yi(0)], where T and T ∗ are the sets of treated units in

the sample and population, respectively.

SATT and PATT are especially convenient definitions for matching methods which

prune (only) control units from a data set and so do not change the estimand. In especially

difficult data sets, however, some treated units may have no reasonable match among the

available pool of control units. These treated units are easy to identify in MIB methods

such as CEM, since matches are only made when they meet the ex ante specified level

of permissible imbalance; under EPBR methods, all treated units are matched, no matter

how deficient the set of available controls and so a separate analytical method must be

applied to identify these units.

When reasonable control units do not exist for one or more treated units, high levels of

model dependence can result. In this situation, the analyst can choose to (a) create virtual

controls for the unmatched treated units via extrapolation and modeling assumptions, (b)

conclude that the data include insufficient information to estimate the target causal effect

and give up, or (c) change the quantity of interest to the SATT or PATT defined for the

subset of treated units that have good matches among the pool of controls (for later use we

denote as the “local” SATT or PATT). Since the data are deficient to the research question

posed, all three options are likely to be unsatisfying, (a) because of model dependence, (b)

because we learn nothing, and (c) because this is not the quantity we originally sought;

although each of these options can be reasonable in some circumstances.

We offer here a way to think about this problem more broadly by combining all these

options together. This process requires four steps. First, preprocess the data to remove the

worst potential matches (and thus the most strained counterfactuals) from the set of avail-

able control units. This can be done easily using the convex hull or the hyper-rectangle

approaches (see Section 2.3). Second, run CEM on these pre-processed data without the

extreme counterfactuals and obtain mT ≤ nT treated units matched with mC ≤ nC con-

trol units. Third, use these results to split the entire set of treated units in the two groups
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of mT matched and nT −mT unmatched individuals.

Fourth, compute the SATT (or similarly for PATT) separately in the two groups as

follows. For the mT treated units, suppose there exist mC acceptable counterfactuals (as

defined by the coarsening in CEM say), and so we can reliably estimate this “local SATT,”

τ̂mT
, using only this subset of treated units. Then, for the rest of the treated units, either

extrapolate the model estimated on the matched units to obtain virtual counterfactuals for

the unmatched treated units or consider all the unmatched units as a single CEM stratum

and estimate the SATT locally. In either case, denote this estimate by τ̂nT−mT
.

Finally, calculate the overall SATT estimate τ̂nT
as the weighted mean of the two

estimates:

τ̂nT
=

τ̂mT
·mT + τ̂nT−mT

· (nT −mT )

nT

. (7)

This procedure keeps the overall quantity of interest, SATT (or analogously PATT), fixed

and isolates the model dependent piece of the estimator so it can be studied separately and

its effects on the overall estimate isolated. In practice, analysts might wish to present τ̂nT
,

which is necessarily model dependent, as well as τ̂mT
, which is well estimated (and not

model dependent) but is based on only a subset of treated units.

5.2 CEM vs. Propensity Score Matching

We now compare CEM with the standard use of propensity score matching. We focus on

PATT rather than SATT to give the advantage to PSM as an EPBR method. (The results

strongly favor CEM, but would even more in estimating SATT.) For simplicity, we use for

our estimator the simple difference in means between matched treated and control groups,

with weights for the matched units

τ̂k =
∑

i∈MT

Yiwi −
∑
j∈MC

Yjwj

where MT and MC are, respectively, the sets of treated and control units matched and

Yi is the observed outcome on the units and wi are the weights of the different matching

methods (for clarity of our simulation setup, we do not use the method in Equation 7).

We run three separate experiments and evaluate results in terms of root mean square error

(RMSE) for both PATT and the local PATT.
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Figure 3: Graphs of x horizontally by gk(x, t) vertically, for lines k = 1, . . . , 6. In each,
the functions generating the treated t = 1 (solid lines) and control t = 0 (dotted lines)
groups appear.

One dimensional case We begin with a population of NT = 5, 000 treated units, with

covariate X drawn from N(1, 1) and NC = 5, 000 control units with X drawn from

N(5, 1), which fits the EPBR data requirements. Denote the outcome variable as Y , and

write the potential outcomes as Y (t) = gk(x, t) for t = 0, 1, where gk is defined in the

six ways indicated in Figure 3. The solid lines represent different choices for gk(x, 1) and

the dotted lines represent each gk(x, 0); the vertical distance for a given value of x in each

graph is a treatment effect. These functions represent constant, linear, and diverse nonlin-

ear treatment effects. We construct the true outcome by applying the gk(x, t) to a sample

drawn from the given population. We create the observed Y as the truth plus Gaussian

noise, N(0, 0.3). We randomly sample from the original population of the treated units

nT = 200 units and from the population of the control units nC = 400 units.

We generate 1000 random data sets; for each sample, we attempt to estimate PATT

τk and the local PATT τm
k , and evaluate the RMSE for different matching methods. The

first method (which we denote PS0) includes a propensity score estimated with a (main

effects) logit model and with matching without replacement via nearest neighbors applied

to the estimated score. We also estimate a set of CEM methods, with coarsening generated

by progressively cutting the support of X from 2–11 equally sized intervals. We denote

these matching solutions C2, C3, . . . , C11. For PS0 mT = mC = nT and for CEM mT
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Figure 4: Ratio of RMSE of PS0 and 10 CEM methods for PATT. One dimensional case.
Average values over 1000 Monte Carlo replications. In the graphs: gi = i. A value less
than 1 means the CEM method is preferable to PS0 in terms of RMSE. On the x axis
Ck corresponds to a CEM solution with support of x cut into k equal sized intervals (and
below in parentheses the number of treated matched units). Total number of treated units
in the original sample is 200.

and mC are functions of the CEM solution. The weights wi for PS0 are wi = 1/nT and

for CEM are the usual CEM weights.

Figure 4 reports the ratio of the RSME (based on PATT) between PS0 and the different

CEM methods (on the horizontal axis) and for each of the six data sets (separate lines,

numbered according to gi). When the plotted points are below the dotted horizontal line

drawn at a ratio of 1, the RMSE is better for the corresponding CEM method than for

PS0. Thus, in this simulation, CEM has lower RMSE for 59 of the 60 experiments, and is

approximately tied in the last (at the top left of the graph).

We also offer in Figure 5 the results when the target quantity of interest is changed

from τk into the local PATT, τm
k , using the treated units matched by each CEM method. In

this case, we report the absolute value of the RMSE because there is no propensity score

or other base line to compare the different methods. This graph shows that CEM does not

suffer as it coarsens more and drops more units; in fact, RMSE drops even as the number

of observations (in parentheses beneath each label on the horizontal axis) declines. This

makes sense, of course, because the variance is a function not only of n but also of the

heterogeneity, which is reduced by matching. Thus, in these experiments, CEM has lower
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Figure 5: Absolute RMSE for different CEM solutions, for the local PATT. One dimen-
sional case. Average values over 1000 Monte Carlo replications. In the graphs: gi = i.
On the x axis Ck corresponds to a CEM solution with support of x cut into k + 2 equal
sized intervals (and below in parentheses the number of treated matched units). Lower
values are better. Number of treated units in the original sample is 200.

RMSE than PS0, even though the data were drawn to follow EPBR’s requirements.

Multidimensional Gaussian case, with Propensity Score Model Selection We now

consider Gaussian data with five covariates. We compare CEM with the standard propen-

sity score estimated by the usual logit model (“PS0”) and a more appropriate propensity

score model optimized according to balance rather than fit Imbens and Rubin (2010, Ch.

13) (“PS1”). For CEM, we consider a group of 50 different random coarsenings. For each

variable Xi, i = 1, . . . , 5, we cut the support of Xi by a random number of equispaced cut-

points selected from the uniform discrete distribution U([3, 7]). (Unlike our previous one

dimensional simulation, the coarsenings here cannot be ordered, and so we order results

for CEM according to the number of matched treated units.)

We draw five covariates with NT = NC = 5, 000 from N(0, I) for the treated units

and N(2, I) for the control units, where I is the 5 × 5 identity matrix, 0 = (0, 0, 0, 0, 0)′

and 2 = (2, 2, 2, 2, 2)′. This again fits EPBR’s data requirements. We use the following

diverse multivariate gk(x, t) functions in the same way our previous simulation: g1(x, t) =

100 · t + t · x1 · e|x2−2| + log(10 + x3) + 100 · (1 − t) · x2 · e|x4+2| + x2
5 + x3 · x4 · x5,

g2(x, t) = 100·t+
∑5

i=1 xi, g3(x, t) = 100·t+
∑5

i=1 xi+
∑5

i=1 x2
i , g4(x, t) = 100+100·t·

33



1

1

1 1
1

1

1

1

1
1 1 1

1
1

1

1

1
1

1 1 1
1

1

1
1

1

1

1 1

1

1

1
1

1
1 1

1
1 1 1 1

1

1

1

1 1 1
1

1 1

2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2
2

3
3 3 3

3
3 3 3

3

3
3

3
3 3 3 3 3

3 3
3 3

3

3
3 3

3 3 3 3 3 3 3 3
3 3

3

3 3 3
3 3 3 3

3
3 3 3 3 3

3

4

4 4 4

4
4

4
4

4

4 4 4 4 4 4
4 4 4 4

4
4

4
4

4
4 4 4 4

4 4 4 4 4 4 4
4

4 4 4
4 4 4 4

4 4 4 4 4 4 4

5 5 5 5
5

5 5 5
5

5 5 5 5 5 5 5 5 5 5 5 5
5

5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PS1
(500)

CEM46
(138)

CEM28
(120)

CEM34
(112)

CEM36
(107)

CEM13
(100)

CEM39
(94)

CEM44
(90)

CEM32
(85)

CEM07
(81)

CEM12
(76)

CEM37
(72)

CEM26
(63)

CEM43
(61)

CEM41
(55)

CEM11
(51)

CEM19
(40)

+

++
+
+

PS1(1)

PS1(2)
PS1(3)
PS1(4)
PS1(5)

Figure 6: Ratio of RMSE of PS0 and CEM for PATT. Five dimensional case. Average
values over 1000 Monte Carlo replications for gi = i. The x axis CEMk corresponds to
the k-th CEM solution (ordered by the number of treated matched units, given in paren-
theses). PS1(i) denotes the ratio of RMSE for PS0 to PS1 for gi. A value less than 1
means that the given matching solution is preferable to PS0 in terms of RMSE. Number
of treated units in the sample prior to matching: 500.

∑5
i=1 xi+250·(t−1)·

∑5
i=1 x2

i , and g5(x, t) = 100+100·t·
∑5

i=1 xi+250·(t−1)·
∑5

i=1 xi.

For each simulation, we randomly draw nT = 500 treated units and nC = 1, 000 control

units.

Figure 6 reports the ratio of the RSME for PS0 to each of the different CEM methods,

for PATT as the target quantity of interest. In this plot, CEMk corresponds to the k-th

CEM solution based on the 50 different coarsenings and the numerical labels on the lines

correspond to function gi, i = 1, . . . , 6. The results indicate that CEM dominates the

propensity score methods, as all experiments have lower RMSE than all the propensity

score solutions.

Figure 7 reports the absolute value of the RMSE for the different methods when

the target quantity of interest is changed to the local PATT defined by the treated units

matched by CEM and PS1. In the top left corner of the plot, PS(i) is PS1 for function

gi, i = 1, . . . , 6. Again we can see that the RMSE does not increase as the number of

matched observations drops.

Lalonde data In this final analysis, we use the data from Lalonde (1986) as our popu-

lation (with NT = 297 and NC = 425). From these data, we randomly sample nT = 150
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Figure 7: Absolute RMSE for different matching solutions, for PATT. Five dimensional
case. Average values over 1000 Monte Carlo replications for lines labeled as gi = i. On
the x axis CEMk corresponds to the k-th CEM solution (see text) (with the number of
matched treated units in parentheses). PS1(i) denotes the RMSE for PS1 for gi. Lower
values are better. Total number of treated units in the sample: 500.

and nC = 300 observations from the treated and control groups. We generate the out-

come variable via gk(x, t) functions: g1(x, t) = 1000 + 2000 · t · age + re74 + log(1 +

re75) + black · re752, g2(x, t) = 1000 + 2000 · t + age + re74 + re752, g3(x, t) =

1000+2000 · t+age+re74+re75+black+education, and g4(x, t) = 1000+2000 ·

t + age + re74 + re75 + black + education + hispanic + nodegree + married.

Figure 8 reports the ratio of the RSME between PS0 and the other matching meth-

ods, for PATT as the target quantity of interest, while Figure 9 reports the absolute value

of RMSE for target quantity of interest the local PATT. The notation in the figures is

analogous that in the previous section. The results are also similar, in that CEM again

clearly outperform the other methods, with lower RMSE and error that does not increase

as matching becomes more stringent, leading to smaller matched data sets.

6 Concluding Remarks

We offer a new class of matching methods that generalizes the only existing class pro-

posed. This new monotonic imbalance bounding class enables the creation of methods

that are easy to apply and which we show possess a variety of desirable properties that

should be of considerable use to applied researchers. We offer Coarsened Exact Matching
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Figure 8: Ratio of RMSE of PS0 to CEM for PATT from the Lalonde data. Average
values over 1000 Monte Carlo replications for lines labeled as gi = i. On the x axis,
CEMk corresponds to the k-th CEM solution (see text) (with the number of matched
treated units in parentheses). PS1(i) is the ratio of RMSE for PS0 to PS1 for function
gi. A value less than 1 means that the matching solution is preferable to PS0 in terms of
RMSE. Total number of treated units in the sample: 150.

1

1

1
1 1

1
1 1

1

1 1
1

1 1
1

1
1

1
1

1

1 1

1
1

1 1
1 1

1
1 1

1 1

1 1

1

1
1

1 1
1 1 1 1 1 1 1 1 1 1

2
2

2
2 2

2

2

2

2

2 2
2

2

2

2
2 2

2
2

2

2 2

2 2

2 2

2
2 2

2
2 2 2 2 2

2
2 2 2

2
2

2
2

2 2
2 2

2 2
2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 34 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

0e
+

00
4e

+
06

8e
+

06

PS1
(150)

CEM36
(127)

CEM32
(126)

CEM05
(123)

CEM13
(123)

CEM43
(122)

CEM42
(121)

CEM14
(119)

CEM50
(119)

CEM47
(118)

CEM33
(117)

CEM46
(116)

CEM48
(114)

CEM03
(113)

CEM27
(109)

CEM34
(107)

CEM44
(103)

+

+

++

PS1(1)

PS1(2)

PS1(3)PS1(4)

PS1(5)

Figure 9: Absolute RMSE for different matching solutions, for the local PATT from the
Lalonde data. Values averaged over 1000 Monte Carlo replications, with lines labeled as
gi = i. On the x axis CEMk corresponds to the k-th CEM solution (see text) (with the
number of matched treated units in parentheses). PS1(i) denotes the RMSE for PS1 for
gi. Lower values are better. Total number of treated units in the sample: 150.
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as one such example, and demonstrate how it generates matching solutions that are better

balanced and estimates of the causal quantity of interest that have lower root mean square

error than methods under the older existing class, such as based on propensity scores,

Mahalanobis distance, nearest neighbors, and optimal matching.
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