International Workshop on Career Success - Approaches from Economics and Psychology Nuremberg

Income and job satisfaction. The role of comparison processes

Christoph Wunder

University of Erlangen-Nuremberg Labor and Socioeconomic Research Center (LASER)

December 3, 2009

Theoretical Considerations

Data and Estimation Strategy

3 Empirical Evidence

Summary

1 Theoretical Considerations

Data and Estimation Strategy

Empirical Evidence

Summary

A Utility Function of Absolute and Relative Income

• Utility function: $U_i = U(S(y_i, y_j), V(y_i, F_i))$, where $S = f(y_i - y_j)$

A Utility Function of Absolute and Relative Income

- Utility function: $U_i = U(S(y_i, y_j), V(y_i, F_i))$, where $S = f(y_i y_j)$
- Sorting of incomes: 2 comparison groups within reference group

$$\underbrace{y_1^P < \ldots < y_{i-1}^P}_{\text{downward comparison}} < y_i < \underbrace{y_{i+1}^R < \ldots < y_n^R}_{\text{upward comparison}}$$
(poorer reference individuals)

A Utility Function of Absolute and Relative Income

- Utility function: $U_i = U(S(y_i, y_j), V(y_i, F_i))$, where $S = f(y_i y_j)$
- Sorting of incomes: 2 comparison groups within reference group

$$\underbrace{y_1^P < \ldots < y_{i-1}^P}_{\text{downward comparison}} < y_i < \underbrace{y_{i+1}^R < \ldots < y_n^R}_{\text{upward comparison}}$$
 (richer reference individuals)

Measuring income inequality (Fehr and Schmidt; 1999):

$$S = \underbrace{\frac{a}{n-1} \sum_{j=i+1}^{n} (y_j^R - y_i)}_{\text{disadvantageous}} + \underbrace{\frac{b}{n-1} \sum_{j=1}^{i-1} (y_i - y_j^P)}_{\text{advantageous}}$$
inequality
(DI)
(AI)

Possible Effects of Income Inequality on Utility

$$S = \underbrace{\frac{a}{n-1} \sum_{j=i+1}^{n} (y_j^R - y_i)}_{\text{disadvantageous}} + \underbrace{\frac{b}{n-1} \sum_{j=1}^{i-1} (y_i - y_j^P)}_{\text{advantageous}}$$
inequality
(DI)
(AI)

comparison group	parameter value	interpretation
upward comparison	a > 0	information effect
	a < 0	envy, deprivation
downward comparison	b > 0	prestige
	<i>b</i> < 0	regret

Theoretical Considerations

Data and Estimation Strategy

3 Empirical Evidence

Summary

Data: The Socio-Economic Panel Study (SOEP)

- Representative longitudinal study of private households in the entire federal republic of Germany
- Provides information on employment, earnings, health and satisfaction indicators etc.
- Sample:
 - dependent employees
 - full-time employment (≥ 35 hours per week)
 - only West Germans (no foreigners)
 - monthly gross labor income for income comparison
 - control variables: education, age, sex, marital status, household size, number of children, house owner, self rated health status, branch of industry (NACE), firm size, worry about job security, interview characteristics, wave dummies
- Job-satisfaction guestion: "How satisfied are you with your job?"
- The data was extracted using PanelWhiz (Haisken-DeNew and Hahn; 2006).

Two reference groups:

Region: employees who live in the same geographical district

Occupation (ISCO-88)

	Refere	Reference group		
	Region	Occupation		
number of groups	321	266		
average group size	12.5	17.2		
minimum group size	2	2		
maximum group size	133	165		
I(0)	0.131	0.131		
I(0) Within	0.121	0.093		
I(0) Between	0.010	0.039		
n	10311	10260		
nT	43014	42118		

Note: I(0) is the mean logarithmic deviation (Shorrocks; 1984).

Source: SOEP 1992, 1994-2004.

Regression equation:

$$JS_{rit} = \beta_0 + \beta_1 DI_{rit} + \beta_2 AI_{rit} + \mathbf{x}'_{rit} \mathbf{\beta} + \eta_{rit}$$

Controlling for reference-group-specific and individual-specific unobserved heterogeneity using a cross-classified model:

$$\eta_{rit} = \mu_r + \alpha_i + \epsilon_{rit}, \ \mu_r \sim N(0, \sigma_\mu^2), \ \epsilon_{rit} \sim N(0, \sigma_\epsilon^2)$$

Orrelation between random effects and (some of the) covariates is assumed to have the following structure (Mundlak; 1978):

$$\alpha_i = \overline{\mathbf{z}}_i' \mathbf{\gamma} + \nu_i, \ \ \nu_i \sim N(0, \sigma_{\nu}^2)$$

Covariance structure:

$$E(\eta_{rit}\eta_{qjs}) = \left\{ egin{array}{ll} \sigma_{\mu}^2 + \sigma_{
u}^2 + \sigma_{\epsilon}^2, & i=j,t=s,r=q; \ \sigma_{\mu}^2 + \sigma_{
u}^2, & i=j,t
eq s,r=q; \ \sigma_{
u}^2, & i=j,t
eq s,r
eq q; \ \sigma_{\mu}^2, & r=q,i
eq j,
et t,s; \ 0, & r
eq q,i
eq j,
et t,s. \end{array}
ight.$$

- Noninformative prior distributions
- Gibbs-Sampling (Starting values: Iterative Generalized Least Squares ignoring the cross-classified model structure)
- Raftery and Lewis (1992) statistic indicates that length of Markov chain of 5000 iterations is sufficient to calculate the 2.5% and 97.5% quantiles of the a posteriori distributions of the parameters of interest. (Burn-in length: 500)
- Model comparison: Deviance Information Criterion (Spiegelhalter et al.; 2002)
- Methods implemented in software package MLwiN V2.02 (Browne; 2003).

Decomposition of the marginal effect of an increase in income

Including the average of an x-variable allows to distinguish a **transitory** and a **permanent** effect (Ferrer-i-Carbonell and Van Praag; 2003):

$$u_{it} = \beta x_{it} + \gamma \overline{x}_{i.} = \beta (x_{it} - \overline{x}_{i.}) + (\beta + \gamma) \overline{x}_{i.}$$

Theoretical Considerations

Data and Estimation Strategy

3 Empirical Evidence

Summary

Estimation Results First Specification (without reference-group-specific effect)

	Model 1: M	Model 1: ML		Model 2: MCMC	
Variable	Coefficient	S. E.	Coefficient	S. E.	
Log of gross labor income	0.285***	0.040	0.285	0.040	
M: Log of gross labor income	-0.115**	0.047	-0.114	0.047	
Log of working hours	-0.296***	0.078	-0.299	0.078	
Further controls	yes		yes		
Constant	9.197***	0.341	9.207	0.340	
$\hat{\sigma}_{\nu}^{2}$	1.224	0.028	1.227	0.029	
$\hat{\sigma}_{\nu}^{2}$ $\hat{\sigma}_{\epsilon}^{2}$	2.093	0.016	2.095	0.016	
Log-Likelihood	-83688		-83688	3	
DIC	_		162454.	54	

Note: Significance levels: *** \leq 1%, ** \leq 5%, * \leq 10%. n=10363, nT=43582. M: denotes a Mundlak-term. DIC is the Deviance Information Criterion (Spiegelhalter et al.; 2002). ML-estimation with command xtmixed in Stata MP 10, MCMC-estimation in MLwiN V2.02. Source: SOEP 1992, 1994-2004.

Estimation Results Second Specification (reference-group: region)

Variable	Coefficier	nt S.E.	2.5%- Quantil	97.5%- Quantil
Disadvantageous inequality: $\hat{\beta}_1$	-0.108	0.034	-0.175	-0.042
Advantageous inequality: \hat{eta}_2	0.046	0.024	0.000	0.092
Log of gross labor income: $\hat{\beta}_3$	0.129	0.057	0.019	0.240
M: Disadvantageous inequality: $\hat{\gamma}_1$	-0.018	0.055	-0.131	0.089
M: Advantageous inequality: $\hat{\gamma}_2$	0.045	0.034	-0.023	0.113
M: Log of gross labor income: $\hat{\gamma}_3$	-0.148	0.070	-0.288	-0.010
Log of working hours	-0.346	0.079	-0.501	-0.194
Further controls	ye	s		
$\begin{array}{c} \hat{\sigma}_{\mu}^2 \\ \hat{\sigma}_{\nu}^2 \\ \hat{\sigma}_{\epsilon}^2 \end{array}$	0.042	0.007		
$\hat{\sigma}_{\nu}^{2}$	1.181	0.028		
$\hat{\sigma}_{\epsilon}^2$	2.085	0.016		
DIC	160161.6			

Note: n = 10311, nT = 43014. M: denotes a Mundlak-term. Source: SOEP 1992, 1994-2004.

Disadvantageous inequality → deprivation/envy effect

Estimation Results Second Specification (reference-group: region)

Variable	Coefficien	S. E.	2.5%- Quantil	97.5%- Quantil
Disadvantageous inequality: \hat{eta}_1	-0.108	0.034	-0.175	-0.042
Advantageous inequality: $\hat{\beta}_2$	0.046	0.024	0.000	0.092
Log of gross labor income: $\hat{\beta}_3$	0.129	0.057	0.019	0.240
M: Disadvantageous inequality: $\hat{\gamma}_1$	-0.018	0.055	-0.131	0.089
M: Advantageous inequality: $\hat{\gamma}_2$	0.045	0.034	-0.023	0.113
M: Log of gross labor income: $\hat{\gamma}_3$	-0.148	0.070	-0.288	-0.010
Log of working hours	-0.346	0.079	-0.501	-0.194
Further controls	yes			
$\hat{\sigma}_{\mu}^{2}$	0.042	0.007		
$\hat{\sigma}_{\mu}^{2}$ $\hat{\sigma}_{\nu}^{2}$ $\hat{\sigma}_{\epsilon}^{2}$	1.181	0.028		
$\hat{\sigma}_{\epsilon}^{2}$	2.085	0.016		
DIC	16016	1.6		

Note: n = 10311, nT = 43014. M: denotes a Mundlak-term. Source: SOEP 1992, 1994-2004.

- Disadvantageous inequality → deprivation/envy effect
- Advantageous inequality → prestige effect

Estimation Results Second Specification (reference-group: region)

Variable	Coefficie	nt S.E.	2.5%- Quantil	97.5%- Quantil
Disadvantageous inequality: \hat{eta}_1	-0.108	0.034	-0.175	-0.042
Advantageous inequality: \hat{eta}_2	0.046	0.024	0.000	0.092
Log of gross labor income: $\hat{\beta}_3$	0.129	0.057	0.019	0.240
M: Disadvantageous inequality: $\hat{\gamma}_1$	-0.018	0.055	-0.131	0.089
M: Advantageous inequality: $\hat{\gamma}_2$	0.045	0.034	-0.023	0.113
M: Log of gross labor income: $\hat{\gamma}_3$	-0.148	0.070	-0.288	-0.010
Log of working hours	-0.346	0.079	-0.501	-0.194
Further controls	ye	:S		
$\hat{\sigma}_{\mu}^{2}$	0.042	0.007		
$\hat{\sigma}_{\nu}^{2}$	1.181	0.028		
$\hat{\sigma}_{\mu}^{2}$ $\hat{\sigma}_{\nu}^{2}$ $\hat{\sigma}_{e}^{2}$	2.085	0.016		
DIC	1601	61.6		

Note: n = 10311, nT = 43014. M: denotes a Mundlak-term. Source: SOEP 1992, 1994-2004.

- Disadvantageous inequality → deprivation/envy effect
- Advantageous inequality → prestige effect
- Permanent effect of absolute income is zero.

Estimation Results Third Specification (reference-group: occupation)

Variable	Coefficie	nt S.E.	2.5%- Quantil	97.5%- Quantil
Disadvantageous inequality: \hat{eta}_1	0.055	0.032	-0.008	0.117
Advantageous inequality: \hat{eta}_2	0.035	0.024	-0.010	0.083
Log of gross labor income: $\hat{\beta}_3$	0.272	0.053	0.168	0.376
M: Disadvantageous inequality: $\hat{\gamma}_1$	0.013	0.049	-0.082	0.106
M: Advantageous inequality: $\hat{\gamma}_2$	0.100	0.038	0.026	0.176
M: Log of gross labor income: $\hat{\gamma}_3$	-0.178	0.062	-0.302	-0.059
Log of working hours	-0.341	0.081	-0.501	-0.186
Further controls	ye	s		
$\begin{array}{c} \hat{\sigma}_{\mu}^{2} \\ \hat{\sigma}_{\nu}^{2} \\ \hat{\sigma}_{\epsilon}^{2} \end{array}$	0.017	0.005		
$\hat{\sigma}_{\nu}^{2}$	1.229	0.028		
$\hat{\sigma}_{\epsilon}^{2}$	2.084	0.016		
DIC	1569	43.5		

Note: n = 10260, nT = 42118. M: denotes a Mundlak-term. Source: SOEP 1992, 1994-2004.

 Disadvantageous inequality → information effect (D'Ambrosio and Frick; 2007; Clark et al.; 2009)

Estimation Results

Third Specification (reference-group: occupation)

Variable	Coefficier	nt S.E.	2.5%- Quantil	97.5%- Quantil
Disadvantageous inequality: \hat{eta}_1	0.055	0.032	-0.008	0.117
Advantageous inequality: \hat{eta}_2	0.035	0.024	-0.010	0.083
Log of gross labor income: \hat{eta}_3	0.272	0.053	0.168	0.376
M: Disadvantageous inequality: $\hat{\gamma}_1$	0.013	0.049	-0.082	0.106
M: Advantageous inequality: $\hat{\gamma}_2$	0.100	0.038	0.026	0.176
M: Log of gross labor income: $\hat{\gamma}_3$	-0.178	0.062	-0.302	-0.059
Log of working hours	-0.341	0.081	-0.501	-0.186
Further controls	ye	s		
$\hat{\sigma}_{\mu}^{2}$	0.017	0.005		
$\hat{\sigma}_{\mu}^{2}$ $\hat{\sigma}_{\nu}^{2}$ $\hat{\sigma}_{\varepsilon}^{2}$	1.229	0.028		
$\hat{\sigma}_{\epsilon}^{2}$	2.084	0.016		
DIC	1569	43.5		

Note: n = 10260, nT = 42118. M: denotes a Mundlak-term. Source: SOEP 1992, 1994-2004.

- Disadvantageous inequality → information effect (D'Ambrosio and Frick; 2007; Clark et al.; 2009)
- Advantageous inequality → prestige effect

Estimation Results

Third Specification (reference-group: occupation)

Variable	Coefficier	nt S.E.	2.5%- Quantil	97.5%- Quantil
Disadvantageous inequality: \hat{eta}_1	0.055	0.032	-0.008	0.117
Advantageous inequality: \hat{eta}_2	0.035	0.024	-0.010	0.083
Log of gross labor income: \hat{eta}_3	0.272	0.053	0.168	0.376
M: Disadvantageous inequality: $\hat{\gamma}_1$	0.013	0.049	-0.082	0.106
M: Advantageous inequality: $\hat{\gamma}_2$	0.100	0.038	0.026	0.176
M: Log of gross labor income: $\hat{\gamma}_3$	-0.178	0.062	-0.302	-0.059
Log of working hours	-0.341	0.081	-0.501	-0.186
Further controls	ye	s		
$\hat{\sigma}_{\mu}^{2}$	0.017	0.005		
$\hat{\sigma}_{\mu}^{2}$ $\hat{\sigma}_{\nu}^{2}$ $\hat{\sigma}_{e}^{2}$	1.229	0.028		
$\hat{\sigma}_{\epsilon}^{2}$	2.084	0.016		
DIC	1569	43.5		

Note: n = 10260, nT = 42118. M: denotes a Mundlak-term. Source: SOEP 1992, 1994-2004.

- Disadvantageous inequality → information effect (D'Ambrosio and Frick; 2007; Clark et al.; 2009)
- Advantageous inequality → prestige effect

Theoretical Considerations

2 Data and Estimation Strategy

3 Empirical Evidence

Summary

Summary

- The cross-classified model that includes relative income clearly fits the data better than "traditional" models.
- Absolute income: permanent effect < transitory effect (⇒ adaptation)
 </p>
- Relative income
 - Advantageous inequality points to prestige effect
 - Permanent prestige effect > transitory prestige effect
 - Disadvantageous inequality:
 - deprivation effect (regional reference groups)
 - information effect (occupational reference group)
 - see also D'Ambrosio and Frick (2007); Clark et al. (2009)
 - effect is higher for those at the bottom of the reference-group-specific income distribution
 - effect diminishes with increasing tenure: effect is zero after 17-year tenure
- Further research: Do comparison processes affect workers' decisions?
- First evidence published in Wunder, C. and Schwarze, J. (2009). Income inequality and job satisfaction of full-time employees in Germany, Journal of Income Distribution 18(2): 70-91

6 Preferences for Inequality

6 Covariance structure

Further Estimation Results

Interpretation Example

Preferences for Inequality

	a > 0	a < 0
	information effect	envy, deprivation
b > 0	general preference for	preference for advantageous
prestige	inequality	inequality,
		aversion to disadvantageous
		inequality
b < 0	preference for	general aversion to inequality
regret	disadvantageous inequality,	
	aversion to advantageous	
	inequality	

5 Preferences for Inequality

6 Covariance structure

Further Estimation Results

Interpretation Example

Hierarchical vs cross-classified model structure

Hierarchical data structure

	P1	P2	P3
R1	t1, t2, t3		
R2		t1, t2, t3	t1, t2, t3

\sum_{i}	ı - 	 - -
0	$oldsymbol{\Sigma}_i$	
0	$\int_{1}^{1} \sigma_{\mu}^{2} \mathbf{i}_{T} \mathbf{i}_{T}'$	$\sum_{i} \mathbf{\Sigma}_{i}$

Cross-classified data structure

	P1	P2	P3
R1	t1, t2, t3		t1
R2		t1, t2	t2
R3		t3	t3

Preferences for Inequality

6 Covariance structure

7 Further Estimation Results

Interpretation Example

Information Effect

Information effect is more effective for persons at the bottom of the reference group-specific income distribution.

Variable	Coefficient	S. E.	2.5%- Quantil	97.5%- Quantil
Disadvantageous inequality: $\hat{\beta}_1$	-0.545	0.316	-1.151	0.074
Advantageous inequality: $\hat{\beta}_2$	0.065	0.025	0.017	0.113
Income quintiles (Reference: top q	uintile)			
Bottom quintile: $\hat{\delta}_1$	-0.179	0.068	-0.310	-0.047
2. quintile: $\hat{\delta}_2$	-0.158	0.063	-0.280	-0.034
3. quintile: $\hat{\delta}_3$	-0.084	0.059	-0.197	0.031
4. quintile: $\hat{\delta}_4$	-0.009	0.050	-0.108	0.090
bottom quintile \times DI: $\hat{\theta}_1$	0.637	0.317	0.021	1.237
2. quintile \times DI: $\hat{\theta}_2$	0.614	0.320	-0.010	1.224
3. quintile \times DI: $\hat{\theta}_3$	0.526	0.329	-0.110	1.159
4. quintile \times DI: $\hat{\theta}_4$	0.248	0.338	-0.411	0.892
Log of labor income	0.147	0.048	0.051	0.240
Log of working hours	-0.365	0.084	-0.533	-0.198
Further controls	yes			
$\hat{\sigma}_{\mu}^{2}$	0.059	0.016		
∂ ² ∂ ² ∂ ⁸ DÍC	1.369	0.035		
$\hat{\sigma}_{\epsilon}^2$	1.883	0.018		
DÏC	133877.	6		

Note: n = 15013, nT = 36084. Only reference groups with $n \ge 10$

Source: SOEP 1992, 1994-2004.

Information Effect Information effect and tenure.

Variable	Coefficient	S. E.	2.5%- Quantil	97.5%- Quantil
Disadvantageous inequality: $\hat{\beta}_1$	0.085	0.032	0.024	0.149
Advantageous inequality: $\hat{\beta}_2$	0.069	0.028	0.013	0.123
Years of tenure $\hat{\delta}$	-0.017	0.002	-0.021	-0.012
Tenure \times DI: $\hat{\theta}_1$	-0.005	0.002	-0.010	0.000
Tenure \times AI: $\hat{\theta}_2$	0.000	0.001	-0.003	0.003
Log of labor income	0.219	0.044	0.134	0.307
Log of working hours	-0.384	0.082	-0.541	-0.221
Further controls	yes			
$\hat{\sigma}_{\mu}^{2}$	0.015	0.005		
$\hat{\sigma}_{}^{2}$	1.234	0.029		
$\hat{\sigma}_{\epsilon}^{\Sigma}$	2.076	0.017		
	156734.	6		

Note: n = 10254, nT = 42101. Quelle: SOEP 1992, 1994-2004.

Check of robustness

Simultaneous comparisons in regional and occupational reference groups

		Model 1:	MCMC		Model 2: Fixe	d-Effects
Variable	Coefficient	S. E.	2.5%- Quantil	97.5%- Quantil	Coefficient	S. E.
Inequality measures:						
Occupation: DI	0.076	0.027	0.024	0.130	0.036	0.042
Occupation: AI	0.044	0.029	-0.012	0.102	0.030	0.040
Region: DI	-0.130	0.029	-0.186	-0.073	-0.088	0.037
Region: AI	0.048	0.028	-0.006	0.102	0.030	0.037
Log of labor income	0.123	0.057	0.013	0.234	0.180	0.077
M: Log of income	-0.098	0.047	-0.193	-0.007	_	
Log of hours	-0.354	0.081	-0.515	-0.195	-0.313	0.102
Further controls	yes				yes	
$\hat{\sigma}^2_{\mu^{(1)}}$ (region)	0.042	0.007			fixed eff	ects
$\hat{\sigma}_{\mu^{(1)}}^{2}$ (region) $\hat{\sigma}_{\mu^{(2)}}^{2}$ (occ.)	0.015	0.005			fixed effe	ects
$\hat{\sigma}^2_ u$ (individual)	1.184	0.028			fixed eff	ects
$\hat{\sigma}^2_{\epsilon}$	2.072	0.017				

Note: n = 10213, nT = 41609. Source: SOEP 1992, 1994-2004.

5 Preferences for Inequality

6 Covariance structure

Further Estimation Results

Interpretation Example

Interpretation: Example Calculation Decomposition of income effect

Reference group: region

	Transitory effect		Permanent effect	
	Marginal effect	% of total effect	Marginal effect	% of total effect
Total effect	0.129	100%	0.109	100%
Absolute effect	0.052	40%	0.000	0%
Relative effect	0.077	60%	0.109	100%
Deprivations effect	0.054	42%	0.063	58%
Prestige effect	0.023	18%	0.046	42%

Reference group: occupation

	Transitory effect		Permanent effect	
	Marginal effect	% of total effect	Marginal effect	% of total effect
Total effect	0.099	100%	0.078	100%
Absolute effect	0.109	110%	0.038	48%
Relative effect	-0.010	-10%	0.040	52%
Information effect	-0.028	-28%	-0.028	-35%
Prestige effect	0.018	18%	0.068	87%

Interpretation: Example Calculation Decomposition of income effect

Reference group: region

	Transitory effect		Permanent effect	
	Marginal effect	% of total effect	Marginal effect	% of total effect
Total effect	0.129	100%	0.109	100%
Absolute effect	0.052	40%	0.000	0%
Relative effect	0.077	60%	0.109	100%
Deprivations effect Prestige effect	0.054 0.023	42% 18%	0.063 0.046	58% 42%

Reference group: occupation

	Transitory effect		Permanent effect	
	Marginal effect	% of total effect	Marginal effect	% of total effect
Total effect	0.099	100%	0.078	100%
Absolute effect	0.109	110%	0.038	48%
Relative effect	-0.010	-10%	0.040	52%
Information effect	-0.028	-28%	-0.028	-35%
Prestige effect	0.018	18%	0.068	87%

Interpretation: Example Calculation Decomposition of income effect

Reference group: region

	Transitory effect		Permanent effect	
	Marginal effect	% of total effect	Marginal effect	% of total effect
Total effect	0.129	100%	0.109	100%
Absolute effect	0.052	40%	0.000	0%
Relative effect	0.077	60%	0.109	100%
Deprivations effect Prestige effect	0.054 0.023	42% 18%	0.063 0.046	58% 42%

Reference group: occupation

	Transitory effect		Permanent effect	
	Marginal effect	% of total effect	Marginal effect	% of total effect
Total effect	0.099	100%	0.078	100%
Absolute effect	0.109	110%	0.038	48%
Relative effect	-0.010	-10%	0.040	52%
Information effect	-0.028	-28%	-0.028	-35%
Prestige effect	0.018	18%	0.068	87%

Interpretation: Example Calculation Decomposition of income effect

Reference group: region

	Transitory effect		Permanent effect	
	Marginal effect	% of total effect	Marginal effect	% of total effect
Total effect	0.129	100%	0.109	100%
Absolute effect	0.052	40%	0.000	0%
Relative effect	0.077	60%	0.109	100%
Deprivations effect	0.054	42%	0.063	58%
Prestige effect	0.023	18%	0.046	42%

Reference group: occupation

	Transitory effect		Permanent effect	
	Marginal effect	% of total effect	Marginal effect	% of total effect
Total effect	0.099	100%	0.078	100%
Absolute effect	0.109	110%	0.038	48%
Relative effect	-0.010	-10%	0.040	52%
Information effect	-0.028	-28%	-0.028	-35%
Prestige effect	0.018	18%	0.068	87%

Interpretation: Example Calculation Decomposition of income effect

Reference group: region

	Transitory effect		Permanent effect	
	Marginal effect	% of total effect	Marginal effect	% of total effect
Total effect	0.129	100%	0.109	100%
Absolute effect	0.052	40%	0.000	0%
Relative effect	0.077	60%	0.109	100%
Deprivations effect	0.054	42%	0.063	58%
Prestige effect	0.023	18%	0.046	42%

Reference group: occupation

	Transitory effect		Permanent effect	
	Marginal effect	% of total effect	Marginal effect	% of total effect
Total effect	0.099	100%	0.078	100%
Absolute effect	0.109	110%	0.038	48%
Relative effect	-0.010	-10%	0.040	52%
Information effect	-0.028	-28%	-0.028	-35%
Prestige effect	0.018	18%	0.068	87%

Interpretation: Example Calculation Decomposition of income effect

Reference group: region

	Transitory effect		Permanent effect	
	Marginal effect	% of total effect	Marginal effect	% of total effect
Total effect	0.129	100%	0.109	100%
Absolute effect	0.052	40%	0.000	0%
Relative effect	0.077	60%	0.109	100%
Deprivations effect	0.054	42%	0.063	58%
Prestige effect	0.023	18%	0.046	42%

Reference group: occupation

	Transitory effect		Permanent effect	
	Marginal effect	% of total effect	Marginal effect	% of total effect
Total effect	0.099	100%	0.078	100%
Absolute effect	0.109	110%	0.038	48%
Relative effect	-0.010	-10%	0.040	52%
Information effect	-0.028	-28%	-0.028	-35%
Prestige effect	0.018	18%	0.068	87%

Literature

- Browne, W. (2003). MCMC Estimation in MLwiN, Centre for Multilevel Modelling, London.
- Clark, A., Kristensen, N. and Westergård-Nielsen, N. (2009). Job satisfaction and co-worker wages: Status or signal?, Economic Journal 119(536): 430–447.
- D'Ambrosio, C. and Frick, J. R. (2007). Individual well-being in a dynamic perspective, *Discussion Papers of DIW Berlin 673*, DIW Berlin, German Institute for Economic Research.
- Fehr, E. and Schmidt, K. M. (1999). A theory of fairness, competition, and cooperation, The Quarterly Journal of Economics 114(3): 817–868.
- Ferrer-i-Carbonell, A. and Van Praag, B. M. S. (2003). Income satisfaction inequality and its causes, *Journal of Economic Inequality* 1(2): 107–127.
- Haisken-DeNew, J. P. and Hahn, M. (2006). Panelwhiz: A flexible modularized Stata interface for accessing large scale panel data sets, mimeo.
- Mundlak, Y. (1978). On the pooling of time series and cross section data, Econometrica 46(1): 69–85.
- Raftery, A. E. and Lewis, S. M. (1992). How many iterations in the Gibbs Sampler?, in J. M. Bernardo, J. O. Berger, A. Dawid and A. F. M. Smith (eds), Bayesian Statistics 4, Oxford University Press, Oxford, pp. 763–773.
- Shorrocks, A. F. (1984). Inequality decomposition by population subgroups, Econometrica 52(6): 1369–1385.
- Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Linde, A. (2002). Bayesian measures of model complexity and fit, *Journal of the Royal Statistical Society. Series B (Statistical Methodology)* 64(4): 583–639.
- Wunder, C. and Schwarze, J. (2009). Income inequality and job satisfaction of full-time employees in Germany, *Journal of Income Distribution* **18**(2): 70–91.