How General is Specific Human Capital? A Task-Based Approach

Christina Gathmann

Stanford University

Uta Schönberg University of Rochester

Motivation

- This paper asks: How specific is human capital?
- Why is it important? For instance: determines displacement costs and reallocation costs due to technological change
- → This paper introduces the concept of task-specific human capital

Economic Mechanism

- Multiple General Skills in the Labor Market, e.g. Analytical and Manual Skills
- Occupations: combine tasks in different ways
- Individuals are endowed with productivities in each task and search over occupations

Employee Panel

- 2% Sample of Social Security Records in Germany from 1975 - 2001
- Our sample: men in West Germany whom we observe from labor market entry onwards
- Advantages:
 - large samples
 - little measurement error in occupational codes
 - little measurement error in wages

Data on Tasks Performed

- <u>Repeated Cross-sectional Survey</u>
 - 30,000 Employees Each Wave
 - 1979, 1985, 1991/2, 1997/8
- <u>19 Tasks Performed in Each Occupation</u>
 - Clean, Measure, Repair, Negotiate, ...
 - Main Task, Task Performed, Not Performed

Tasks Performed in Occupations

	Fraction	<u>Std.Dev.</u>
Research, Evaluate, Measure	0.251	0.434
Calculate, Bookkeeping	0.260	0.439
Manufacture, Install	0.120	0.325
Equip, operate machines	0.200	0.400
Manage Personnel, Organize	0.371	0.483
Teach or Train Others	0.171	0.377

Waves: 1979, 1985, 1991, 1997; 19 Tasks observed

Distance Measure: Angular Separation

$$AngSep_{oo'} = \frac{\sum_{j=1}^{J} q_{jo} * q_{jo'}}{\left[\left(\sum_{j=1}^{J} q_{jo}^2 \right) * \left(\sum_{k=1}^{J} q_{ko'}^2 \right) \right]^{1/2}}$$

where q_{jo} is fraction of workers in o using task j

- Distance_{oo'}=1-AngSep_{oo'}
- Properties: Ranges from 0 and 1

1 = Maximum Distance

Distant vs. Similar Occupations

Occupation 1	Occupation 2	<u>Distance</u>
Mean		0.244
Standard Deviation		0.221
Minimum Distance:		
Paper and Pulp Processing	Printer, Type- Setter	0.002
Maximum Distance:		
Unskilled Construction Worker	Banker	0.939

Empirical Results: Patterns in Mobility and Wages

Mobility is to Similar Occupations

Distance of Moves \downarrow with Experience

Correlation of Wages \downarrow Distance

Based on Tobit model

Past Occupational Tenure and Wages

Based on Tobit model; standard errors bootstrapped

14

Task-Specific Human Capital and Wage Growth

 $\ln w_{iot} = \gamma_{1o} E x p_{it} + \gamma_{2o} O T_{iot} + \gamma_{3o} T T_{iot} + \eta' \widetilde{X}_{iot} + u_{iot},$

$$u_{iot} = \beta_o T_i^A + (1 - \beta_o) T_i^M + \varepsilon_{iot}.$$

Example 1: old occ.: Processing, OT = 3 new occ.: Printer, OT = 0, TT = 2.99 Example 2: old occ.: Banker, OT=3 new occ.: Unskilled Construction Worker, OT = 0, ST = 0

Task Tenure and Wages: High-Skilled

	OLS	OLS	Displaced	Control
				Function
Experience	0.082	0.065	0.037	0.091
	(0.001)***	(0.001)***	(0.006)***	(0.022)***
Experience	-0.003	-0.003	-0.002	-0.008
Squared	(0.000)***	(0.000)***	(0.000)***	(0.000)***
Occupation	0.006	0.004	0.010	-0.037
Tenure	(0.000)***	(0.000)***	(0.003)***	(0.010)***
Task Tenure		0.021	0.023	0.068
		(0.001)***	(0.005)***	(0.029)**
				16

Task Tenure and Wages: Medium-Skilled

	OLS	OLS	Displaced	Control
				Function
Experience	0.040	0.034	0.028	0.029
-	(0.000)***	(0.000)***	(0.002)***	(0.003)***
Experience	-0.001	-0.001	-0.002	-0.001
Squared	(0.000)***	(0.000)***	(0.000)***	(0.000)***
Occupation	0.007	0.005	0.013	-0.002
Tenure	(0.000)***	(0.000)***	(0.001)***	(0.003)
Task		0.009	0.012	0.027
Tenure		(0.001)***	(0.002)***	(0.007)***

Task Tenure and Wages: Low Skilled

	OLS	OLS	Displaced	Control Function
Experience	0.062	0.054	0.031	0.044
	(0.001)***	(0.000)** *	(0.004)***	(0.018)***
Experience	-0.002	-0.002	-0.001	-0.002
Squared	(0.000)***	(0.000)** *	(0.000)***	(0.000)***
Occupation	0.009	0.007	0.014	-0.016
Tenure	(0.001)***	(0.001)** *	(0.002)***	(0.005)
Task		0.012	0.020	0.035
Tenure		(0.001)***	(0.003)***	(0.015)***

Bias: Why do workers move to similar/distant occupations ?

$$\widetilde{u}_{iot} = (\gamma_{1o} - \overline{\gamma}_1) Exp_{it} + (\gamma_{2o} - \overline{\gamma}_2) OT_{it} + (\gamma_{3o} - \overline{\gamma}_3) TT_{it} + \beta_o T_i^A + (1 - \beta_o) T_i^M + \varepsilon_{iot}.$$

- Occupational mobility depends on loss in specific skills, task-match, and occupation-specific skill prices
- Control function approach
- \rightarrow Instruments:
 - 1) OT: deviation from occupation-specific mean
 - 2) variation in occupational structure over time and across regions ¹⁹

Conclusion

- Strong patterns in mobility and wages that are consistent with task-based approach
- Task-specific human capital is important for wage growth
- → Approach may be useful to study patterns of specialization, skill-biased technological change, wage inequality ...