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Abstract

We propose an estimator for identifiable features of correlated random coefficient
models with binary endogenous variables and nonadditive errors in the outcome
equation. These features are of central interest to economists and are directly
linked to the marginal and average treatment effect in policy evaluation. They
are identified under assumptions weaker than typical exclusion restrictions used
in the context of instrumental variables. In an application, we estimate expected
levels of wages as well as a variety of average ceteris paribus effects of changes in
covariates and schooling. Moreover, we uncover the dependencies between wages
and unobserved ability, measured ability, social background, and college education.
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1. Introduction

Consider a correlated random coefficient model of the form

Y = X ′ϕ(D, U, V )(1)

D = 1I{P (Z) ≥ V }.(2)

with a binary endogenous regressor D such as an indicator for college attendance in the
returns to schooling case or an indicator for program participation in policy evaluation.
Y is an outcome such as wages, X is a K-vector of covariates in the outcome equation
(1), and Z is a vector of covariates in the selection equation (2), which we shall refer to
as a vector of instrumental variables. X and Z include a constant as their respective first
elements. U is a vector and V is a scalar. We observe Y , D, X, and Z and assume that
(U, V ) are jointly independent of (X,Z) and that Z is independent of V .

This correlated random coefficients model is similar to the one discussed by Heckman
and Vytlacil (1998). However, we allow both the random coefficient and D to depend on
V . Hence, we do not exclude selection on unobservables of the type discussed by Heckman
and Robb (1985, 1986).1

The model is nonadditive in the unobservables. Moreover, the vector X, in principle,
could include approximating functions in a way such that the number of approximat-
ing functions grows with the sample size. Then, along with Newey (1997), (1) could
be interpreted as a series approximation of a general nonseparable structural equation
Y = g(X, D, U, V ). Together with (2) this is a triangular structure similar to the ones
considered by Chesher (2003) and Imbens and Newey (2003). The key difference, how-
ever, is that here (2) is not invertible in V and hence identification fails since V enters as
an argument. Chesher (forthcoming) shows that in this case set identification may still
be feasible.

Here, we are not interested in identification of the structure itself, i.e. the coefficient
function ϕ(D, U, V ), but in identifiable features such as the expected level of Y for a given
D, X, and V ,2

E[Y |D = d,X = x, V = v] = x′E[ϕ(d, U, v)].

We will refer to this as the conditional average structural function. This terminology was
introduced by Blundell and Powell (2001) who suggest to focus on the average structural
function, E[Y |D = d,X = x], and argue that it is a “parameter of central interest in the
analysis of semiparametric and nonparametric models with endogenous regressors”.3 We
believe that the dependence of the average structural function on V is of central economic
interest and can be given a structural interpretation. For example, if Y is earnings and
D is an indicator for college, V has the interpretation of unobserved ability. Then, high
values of V are associated with low unobserved ability.

1This selection, together with selection on observables Z, gives rise to the endogeneity of D. In the
statistics literature, V is sometimes referred to as a confounding variable, see e.g. Fisher (1935, Ch. 7)
and Yates (1937).

2We will denote (vectors of) random variables by uppercase letters and their respective typical elements
by lowercase letters.

3Imbens and Newey (2003) call it the average conditional response.
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Likewise, a second object of interest is the expected ceteris paribus effect of changes
in Xk for a given D, X−k, and V ,4

∂E[Y |D, X = x, V ]

∂xk

= E[ϕk(d, U, v)].

Moreover, we are interested in the expected ceteris paribus effect of changes in D for a
given X and V ,

E[Y |D = 1, X = x, V = v]− E[Y |D = 0, X = x, V = v]

=x′
(
E[ϕ(1, U, v)]− E[ϕ(0, U, v)]

)
.

This is Björklund and Moffit’s (1987) marginal treatment effect. In the returns to school-
ing example, since high values of V have the interpretation of low unobservable ability,
we would expect the marginal treatment effect to be nonincreasing in V .5

Our approach combines the identification strategy suggested by Heckman and Vytlacil
(1999, 2000a, 2000b) and desirable features of instrumental variables estimators in a
natural way. In particular, we suggest to estimate identifiable features of the outcome
equation by a local linear smoothing estimator. It is built on the conventional two stage
least squares IV estimator, except that we let the coefficients depend on the value of
P (Z). It is easily implementable and does not rely on strong support conditions.6

First applications building on the identification result of Heckman and Vytlacil are
Carneiro, Heckman, and Vytlacil (2003) and Carneiro and Lee (2004). However, the
model they estimate is restrictive. Write X as (1, X ′

−1)
′. Then, instead of (1), which can

be written as
Y = ϕ1(D,U, V ) + X ′

−1ϕ−1(D,U, V ),

they estimate an outcome equation of the form

Y = µ(D,U, V ) + X ′
−1β(D,U).

That is, they do not allow for the effect of X on Y to depend on V . This dependence is
an important aspect of unobserved heterogeneity and—as we have argued before—is of
economic interest in many applications with binary endogenous variables.

In our application, we implement the proposed estimator using U.K. data. The virtue
of the data set that was used, the National Child Development Survey (NCDS), is that

4The kth element of a vector x is denoted by xk. The remaining elements are denoted by x−k.
5The well known average treatment effect for a given X = x is given by

x′
∫ 1

0

(
E[ϕ(1, U, v)]− E[ϕ(0, U, v)]

)
fV (v)dv,

where fV (·) is the density of V .
6Heckman and Vytlacil (2005) discuss the relationship between the conventional IV estimator and

the “local” IV estimator of Heckman and Vytlacil (1999, 2000a, 2000b). Nonparametric identification
requires conditions on the support of P (Z) conditional on X to hold. In our approach, these conditions
have only to hold for the unconditional support of P (Z). This will be discussed in detail in Section 2.
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detailed ability measures and family background variables are available. In particular,
we seek to identify the determinants of earnings. Hereby, we focus on the differences
in earnings that are due to a higher education degree, social background as well as the
unobserved ability in V .

The paper is organized as follows. In Section 2, we present the econometric model,
the identification result, and the proposed estimator. Section 3 contains the empirical ap-
plication and Section 4 concludes. A description of the data including summary statistics
as well as detailed results of the econometric analysis are contained in an appendix.

2. Econometric Model

Our point of departure is the correlated random coefficients model that was given in (1)
and (2). We restate it for convenience

Y = X ′ϕ(D, U, V )(1)

D = 1I{P (Z) ≥ V }.(2)

We impose the following stochastic restrictions.

Assumption 1 (Stochastic Restrictions): (i) (U, V ) are jointly independent of (X, Z) and
(ii) U is independent of V .

This allows Z to contain variables also included in X and vice versa. Assumption 1(i)
requires the unobservables (U, V ) to be jointly independent of the observables (X, Z).
This is stronger than the usual instrumental variables condition that (U, V )⊥⊥Z|X needed
for nonparametric identification. However, it is weaker than the exclusion restrictions
usually invoked in correlated random coefficient models.7 Assumption 1(ii) restricts the
randomness in Y through U to be completely random so that U represents luck, whereas
V can be thought of as a confounding factor.8

Apart from the stochastic restrictions we assume that the following regularity condi-
tions hold.

Assumption 2 (Regularity Conditions): (i) All first moments exist and (ii) the distrib-
ution of V is absolutely continuous with respect to Lebesgue measure.

7A version of the assumptions made in Heckman and Vytlacil (1998) is that V in (1) can be replaced
by the elements in Z which are not in X.

8Assumption 1(ii) is not restrictive. ϕ(D, U, V ) is a nonparametric function of the observable D and
unobservables (U, V ). Therefore, it can only be identified up to normalizations on the joint distribution
of unobservables. Assume that the joint distribution of unobservables is absolutely continuous with
respect to Lebesgue measure. Then, the restrictions on the joint distribution of observables imposed by
any joint distribution of (Ũ , Ṽ ) are the same as the ones imposed by the joint distribution of (U, V ),
where v = FeV |eU (ṽ) with V being uniformly distributed independently of U . For example, we could have

U = Ũ or any positive monotone transformation thereof. See also Imbens and Newey (2003) for a related
discussion.
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Assumption 2(i) ensures that all parameters of interest are well defined. Assumption 2(ii)
implies that V is a continuous random variable. Then, w.l.o.g., we can normalize V to
be uniformly distributed, see, e.g., Vytlacil (2002) for details. Then, from Assumption
1(i) it follows immediately that P (Z) is identified from observations since it is equal to
Pr(D = 1|Z). For simplicity, we will write P for P (Z) in the remainder, with typical
element p.

In the next subsection, we show identification under Assumption 1 and 2. Estimation
built on local linear smoothing is dealt with thereafter.

2.1. Identification

In this subsection, we show that, under appropriate support and differentiability condi-
tions, the parameters of interest can be point identified from observations.

From the model in (1), it follows that

(3) E[Y |X = x, P = p,D = 1] = E[X ′ϕ(1, U, V )|X = x, P = p,D = 1]

which is equal to
E[X ′ϕ(1, U, V )|X = x, P = p, P ≥ V ]

by the selection model in (2). But this is

E[X ′ϕ(1, U, V )|X = x, p ≥ V ].

By Assumption 1(i) we get that this is equal to

E[x′ϕ(1, U, V )|p ≥ V ] = x′E[ϕ(1, U, V )|p ≥ V ] := x′β(1, p).

Note that E[ϕ(1, U, V )|p ≥ V ] is a function of p which we will denote by β(1, p) in the
remainder. Since the left hand side of (3) is identified from observations at points X = x
and P = p, β(1, p) is identified if we observe at least K linearly independent values of X
for every D (rank condition).

Starting from this, we can show that the parameters of interest are identified. We
state the result in a theorem which resembles Lemma 1 from Carneiro and Lee (2004).

We call p a limit point of the support of P , if P has a continuous density in a neigh-
borhood around p which is bounded away from zero. Note that at P = p derivatives of
functions of P are identified from observations.

Theorem 1 (Carneiro and Lee): Assume that β(0, p) and β(1, p) are continuously differ-
entiable with respect to p and that we observe at least K linearly independent realizations
of X for every D and P = p (rank condition). Then, under Assumptions 1 and 2 the
conditional average structural function is identified at V = p, where p is a limit point of
the support of P , and given by

E[ϕ(0, U, p)] = x′
(

β(0, p)− (1− p)
∂β(0, p)

∂p

)

E[ϕ(1, U, p)] = x′
(

β(1, p) + p
∂β(1, p)

∂p

)
.
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Proof. We prove identification of E[ϕ(D, U, V )|D = 1, V = p]. The proof for E[ϕ(D, U, V )|D =
0, V = p] is similar. Recall that we have normalized V to be uniformly distributed. By
definition,

x′E[ϕ(1, U, V )|p ≥ V ] = x′β(1, p).

From the normalization on V and Assumption 1(ii) it follows that

x′
∫ p

0

∫ ∞

−∞
ϕ(1, u, v) µ(du) dv/p = x′β(1, p),

where µ(du) is the marginal probability measure of u. Multiplying both sides by p gives

x′
∫ p

0

∫ ∞

−∞
ϕ(1, u, v) µ(du) dv = x′β(1, p)p

and differentiating both sides with respect to p using Leibnitz’ rule reveals that

x′
∫ ∞

−∞
ϕ(1, u, p) µ(du) = x′β(1, p) + px′

∂β(1, p)

∂p
.

If p is a limit point of the support of P both β(1, p) and ∂β(1, p/∂p are identified from
observations at P = p. The left hand side is the object of interest.

From Theorem 1 it follows immediately that average ceteris paribus effects are iden-
tified. The marginal treatment effect is identified if p is a limit point of the support of P
for both D = 0 and D = 1.

2.2. Estimation

We have established in our discussion that from the model and the conditions of Theorem
1 it follows that

E[Y |D = d, P = p,X = x] = xβ(d, p) , d ∈ {0, 1},

where β(d, p) is a coefficient vector with coefficient functions βk(d, p), k = 1, . . . , K. Both
depend on the observable D and P , which is identified from observations. This is a
version of the varying coefficient model which was suggested by Cleveland, Grosse, and
Shyu (1991) and Hastie and Tibshirani (1993).

In a first step, we parametrically estimate the propensity score P (Z). For the second
step we assume that the coefficient functions are bounded and have bounded second
derivatives which allows us to estimate them by local linear smoothing. See, for example
Fan and Zhang (1999) and Xia and Li (1999) for details as well as a proof on consistency
and results on rates of convergence of the estimator. This estimation procedure is usually
motivated by a Taylor expansion of the coefficient function in p̂ about p = p̂ which yields

βk(d, p̂) = βk(d, p) +
∂βk(d, p)

∂p
(p̂− p) +

1

2

∂2βk(d, p̃)

∂p2
(p̂− p)2,
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where p̃ is a point between p and p̂. We select all observations with D = d and index
them by i, i = 1, . . . , n. Our estimator of β(d, p) and ∂β(d, p)/∂p is the solution of a and
b to the following minimizer

arg min
a,b

{
n∑

i=1

K

(
pi − p

h

)
·
(

yi −
[

xi

(pi − p) · xi

]′ (
a
b

))2
}

,

where K(·) is a kernel function with the usual properties and h is the bandwidth. Since
fitted values pi were parametrically estimated in a first step we do not expect them to have
an impact on the distribution of the second step estimator in a first order sense. However,
confidence intervals, accounting for the first step estimation error, were obtained using a
bootstrap procedure.9

Estimates of the objects of interest can be obtained from these estimates of β(d, p) and
∂β(d, p)/∂p using the formulas from Theorem 1. The next section contains the empirical
application.

3. Returns to College Education in the U.K.

The question of how to estimate the returns to schooling and college education is one of
the classical questions in econometrics for several reasons.10

First, it is of high practical relevance. Earnings, interpreted as a function of ability
and education, are market prices which, in turn, are indicators of scarcity of resources in
an economy. Therefore, the returns to college education are an indicator for the scarcity of
college graduates relative to high school graduates and the characterization of returns to
college education are a valuable piece of information for politicians designing educational
policy.11

Second, it is still an open question whether we should think of college education and
schooling as an investment in human capital or as a signalling device.12 Human capital
theory assumes that a person’s ability and time spent in educational institutions enter as
production factors into the production of human capital.13 Then, it can be argued that

9Fan and Zhang (1999) show that if the degree of smoothness is different across coefficient functions
the rate of convergence of the estimator will in general not be optimal. They suggest a two step procedure
to overcome this problem.

10For two excellent surveys of the literature on the returns to schooling see Griliches (1977) and Card
(2001). For early surveys on the returns to college education see Solmon and Taubman (1973) and
Taubman and Wales (1974).

11If college education is complementary to a student’s unobserved and observed ability, these returns
are likely to be heterogeneous across students just because of differences in ability.

12See Becker (1964, 1993) on human capital theory and, e.g., Taubman and Wales (1973), Spence
(1972), Stiglitz (1973) and Arrow (1974) on signalling.

13The term “ability” is often used in different contexts and with different meanings. Griliches (1977,
p. 7) defines it as “an unobserved latent variable that both drives people to get relatively more schooling
and earn more income, given schooling, and perhaps also enables and motivates people to score better
on various tests.” Along those lines, Taubman and Wales (1972) and Taubman (1973) call it “mental
ability” and Willis and Rosen (1979) use the expression “talent”. On the other hand, Griliches (1977,
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the higher a person’s human capital the more she will earn since her productivity will
increase in the amount of human capital he has acquired, and this will be rewarded by the
labor market. On the other hand, once we interpret educational institutions as signalling
devices, education by itself does not increase a person’s productivity but reveals it. For
these reasons, it is consistent with both signalling and human capital theory that ability
and productivity are interrelated. Furthermore, since ability is hardly measurable, or—in
econometric terms—is likely to be partly unobservable or measured with error14, it is in
general not possible to reject one of the two theories in favor of the other.

Third, the return to schooling and college education is likely to be correlated with
schooling and college choice once it results from optimizing behavior by economic agents
who act on their knowledge of their ability. This gives rise to the classical selection prob-
lem in econometrics.15 A variety of approaches to this challenging problem has been taken
over the last four decades. Identifying assumptions include parametric assumptions, con-
ditional (mean) independence and monotonicity in order to identify mean returns. Also,
quantile invariance has proved to be a powerful identifying assumption.16 However, most
of these approaches rely on the presence of instrumental variables that can be excluded
from the earnings equation. Instrumental variables that have been used are quarter of
birth (Angrist and Krueger 1991) and parental interst in education (Blundell, Dearden,
and Sianesi forthcoming) as well as, e.g., the level of tuition fees, distance to college, and
parental education, see Card (2001) for details. Angrist and Krueger (2001) advocate
the use of natural experiments such as institutional changes as instruments giving rise to
variation exogenous to the earnings equation.

In our application, we suppose the selection model in (2),

D = 1I{P (Z) ≥ V },

was appropriate. Then, for a given vector of observables Z, and hence for a given P =
P (Z), only those with values of V less than or equal to P would decide to attend college.

p. 8) suggests that one could interpret ability also as “initial human capital”. More broadly, Becker
(1967) elaborates on whether there are several types of ability and Willis and Rosen (1979, p. S29)
note that ability is potentially multi factoral. For the link between ability and earnings see Ashenfelter
and Mooney (1968), Griliches and Mason (1972), Hansen, Weisbrod, and Scanlon (1970), Weisbrod and
Karpoff (1968) and Leibowitz (1974).

14Griliches (1977) discusses econometric consequences when ability is measured with error. Alterna-
tively, we could think of unobserved ability as being a left-out variable (Chamberlain 1977, e.g.).

15See, e.g., Heckman (1978), Willis and Rosen (1979), and Garen (1984).
16For distributional assumptions see, e.g., Heckman (1978), and Aakvik, Heckman, and Vytlacil (forth-

coming). Conditional independence is assumed in Rosenbaum and Rubin (1983). Heckman and Vytlacil
(1998) exploit additivity of the error term in a random coefficient framework. Garen (1984), Heckman
(1978), Newey, Powell, and Vella (1999) as well as Pinske (2000) and Blundell and Powell (2003) persue
a control function approach based on a similar structure. Imbens and Newey (2003) generalize this ap-
proach. Newey and Powell (2003), Darolles, Florens, and Renault (2003), and Das (2005) investigate the
case in which the error term is additive. Imbens and Angrist (1994), Angrist, Graddy, and Imbens (2000),
Carneiro, Heckman, and Vytlacil (2003) and Heckman and Vytlacil (2005) as well as Abadie, Angrist,
and Imbens (2002) exploit monotonicity. Quantile invariance is relied on in Chernozhukov, Imbens, and
Newey (2004) and Chernozhukov and Hansen (2005).
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Therefore, low values of V have the interpretation of high unobserved ability.17 Hence, a
priori, we would expect the conditional average structural function to be nonincreasing
in V and the average ceteris paribus effects to depend on V .

We estimate the expected levels of earnings for college graduates and nongraduates
conditional on a vector of covariates containing information on social background as well
as other characteristics.18

For a detailed data description the reader is referred to the appendix and Blundell,
Dearden, and Sianesi (forthcoming). Tables and figures referred to here can also be found
in the appendix. Table 1 contains a list of variables and summary statistics for our data.
Table 2 contains OLS coefficients from a regression of log wages on a dummy for college
and the covariates in our data. This regression can be interpreted as a best linear predictor
under a square loss, i.e. a descriptive statistic. The covariates include ability test scores,
school type, family background, and region. The point estimates suggest that ability has
a significant impact on earnings. Figure 1 plots the distribution of ability test scores at
the age of 7 and 11, respectively.

We estimate a probit model in order to obtain fitted probability values of college
attendance for every individual.19 Following Blundell, Dearden, and Sianesi (forthcoming)
we argue that parental interest in education can be excluded from the outcome equation.
These instrumental variables generate some variation in the fitted values even conditional
on X. Note, however, that variation is not even needed conditional on X for identification
in our model—as was already pointed out above. Figure 2 shows the unconditional support
of P for observations with D = 0 and D = 1, respectively. In Sections 1 and 2 the
fitted values have been referred to as values of the propensity score. Note that whereas
the interpretation of the estimated probit coefficients as causal ceteris paribus effects
heavily relies on the distributional assumptions in a probit model, the fitted values of the
propensity score are less sensitive to violations of those assumptions once we interpret the
usual probit model as a reduced form.20 The results from the reduced form probit model
are contained in Table 3.21 Figure 2 shows the support of the propensity score. For both
D = 0 and D = 1 it is almost equal to the full unit interval. Note that the distributions
differ between D = 0 and D = 1. This indicates that the variables included in Z have
explanatory power. Figure 3 is a scatter plot of log hourly wages against values of the
propensity score.

17We interpret unobservable ability as being the confounding factor, cf. footnote 1. In principle, V is
the projection of all unobservable factors that give rise to the endogeneity of D into a scalar. Examples
of these factors include unobservable wealth, unobservable status or social origin, and ideosyncratic
preferences.

18To be precise, we distinguish between higher education graduates (D = 1) and those who have
obtained just A-levels (D = 0).

19In principle, we could also have estimated these fitted values by ordinary least squares, see Kelejian
(1971) and the discussion in Angrist and Krueger (2001).

20Willis and Rosen (1979) use longitudinal data which allows them to estimate both a reduced form
and a structural probit. See also the discussion in Angrist and Krueger (2001) for an opposite point of
view.

21For expositional purposes, we report them for the case in which we include dummies for quintiles of
ability test scores as regressors. In the specification that was finally used for the first step estimates we
used absolute values of these ability test scores.
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The bandwidths for the second step estimates were chosen using a cross validation
procedure. The criterion, the mean integrated square error, is shown in Figure 4. Our
point estimates of the conditional average structural function as well as derivatives and
differences thereof, including bootstrapped 95% pointwise confidence intervals, were ob-
tained using the results from Section 2 (1,000 bootstrap repetitions). The estimates are
shown in Figures 5 through 7. In our bootstrap procedure we acknowledge the fact that
the propensity score is estimated in a first step by estimating it within every bootstrap
repetition. Figure 8 contains the result of a simulation in which we generate the distri-
bution of gross gains from college attendance for the whole population, the subset that
attended college, and the subset that did not, respectively. That is, the distribution of
marginal treatment effects of the treated, untreated, and both. Every cumulative distri-
bution function reflects differences of individuals with respect to observables X, which
we observe in our data, and unobservables V , which we randomly draw. To be specific,
for individuals with D = 0, we draw values of V which are strictly greater than p from a
uniform distribution. Similarly, for individuals with D = 1, we draw values of V which
lie between 0 and p.

Figures 5 and 6 reveal that, for a representative individual with X = x (see the
Appendix for details), the gains from a college degree do not depend on unobserved
ability. This is, we find that in contrast to the findings in Carneiro and Lee (2004) and
Willis and Rosen (1979) our results do not support the comparative advantage hypothesis.
However, Figure 7 shows that the effect of X on Y depends on the value of the unobserved
ability V . In particular, Figure 7 suggests that high values of measured math ability at the
age of 7 and 11 are associated with large premia for college graduates. That is, for lower
values of observed math ability, expected earnings for our representative individual would
have been decreasing in V . In general, the effects of observables on wages seem to depend
on the confounding factor V . This shows that it was important to allow for dependence of
the correlated random coefficient on V in our model. Otherwise, these effects would have
been attributed either to the returns to college, which is likely if conventional instrumental
variables methods are used (see Heckman and Vytlacil 2005), or to the effect of college
education on earnings once only these effects are allowed to depend on V .

In the population, the observed difference in earnings can be traced back to a selec-
tion effect and a causal effect of a higher education degree. Figure 8 indicates that the
benefits from a higher education degree are highest for those who did in fact not attend
college. According to the model this can be traced back to differences in observables
and unobservable ability. Still, this finding may be well in accordance with a desirable or
even efficient allocation of college education once mostly high opportunity costs determine
individuals’ choice rather than financial limitations or social background.

4. Concluding Remarks

In this paper, we have proposed a set of assumptions which enabled us to derive a semi-
parametric estimator for the conditional average structural function which is of central
interest to economists whenever we face the problem of potentially endogenous binary
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regressors. The virtue of our approach to the problem lies in dimensionality reduction
along the dimension of the usually higher dimensional vector of exogenous covariates.
Moreover, we are able to circumvent the problem of limited support of the propensity
score given the vector of covariates since we require only conditions on the unconditional
support of P . On the other hand, we do not impose any limiting restrictions on the joint
distribution of unobservables.

The estimator we propose is a two step version of a local linear regression estimator.
The usefulness of our approach was outlined in the empirical example, the returns to
schooling in the United Kingdom. In particular, our results suggest that differences
in wages can be attributed to differences in observables in interaction with unobserved
ability. In previous studies, for example by Carneiro, Heckman, and Vytlacil (2003) and
Carneiro and Lee (2004), this complementarity between observables and unobservables
was largely neglected for reasons of tractability. In this paper, we have suggested an
estimation procedure which does allow for such effects on the one hand and which is
easily implementable on the other.

Appendix

The National Child Development Survey (NCDS)

The NCDS is conducted by the Centre for Longitudinal Studies at the Institute of Education in London.
It is a longitudinal data set and keeps detailed records for all those living in Great Britain who were born
between 3rd and 9th March, 1958. Data was collected in 1965 (when members were aged 7 years), in 1969
(age 11), in 1974 (age 16), in 1981 (age 23), in 1985 (age 33) and 1999-2000 (age 41-42). The NCDS has
gathered data from respondents on child development from birth to early adolescence, child care, med-
ical care, health, physical statistics, school readiness, home environment, educational progress, parental
involvement, cognitive and social growth, family relationships, economic activity, income, training, and
housing.

The purpose of this paper is to identify and quantify the determinants of earnings in the United
Kingdom. Following Blundell, Dearden, and Sianesi (forthcoming), our outcome of interest is log hourly
wages in 1985, this is at the age of 33. We select individuals who at least completed their A-levels,
from which 51.4% are higher education graduates. We say that an individual completes his A-levels if he
completed at least one A level which is generally obtained at the end of secondary school. Additionally,
we say so for a variety of similar degrees, see Blundell, Dearden, and Sianesi (forthcoming) for details.
We proceed similarly for a higher education degree. As they do, we focus on males. Detailed summary
statistics are given in Table 1.

All results are reported for white males who attended Comprehensive school at the age of 16, whose
father and mother had 9.4 and 9.6 years of education and are 44.5 and 42.4 years old, and whose father
was an intermediate employee when the child was 16. At the age of 16, they lived in the London area,
had 2 siblings and their mother was employed.
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Figure 1: Distribution of math test scores.
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standard standard
mean deviation mean deviation

log hourly wage 2.186 0.414 mother’s years of education 7.787 4.685
fraction of HE graduates 0.514 0.500 missing 0.243 0.429
white 0.978 0.146 father’s years of education 7.836 5.021
math ability at 7 missing 0.255 0.436
lowest quintile 0.082 0.274 mother’s age 41.612 10.753
second quintile 0.135 0.341 missing 0.048 0.214
third quintine 0.186 0.389 father’s age 43.362 13.490
fourth quintile 0.204 0.403 missing 0.072 0.259
highest quintile 0.282 0.450 father’s social class when the child was 16

reading ability at 7 professional 0.070 0.256
lowest quintile 0.088 0.283 intermediate 0.185 0.389
second quintile 0.147 0.354 skilled non-manual 0.089 0.284
third quintile 0.198 0.399 skilled manual 0.273 0.445
fourth quintile 0.228 0.419 semi-skilled non-manual 0.006 0.074
highest quintile 0.228 0.419 semi-skilled manual 0.075 0.264

ability at 7 missing 0.112 0.315 unskilled 0.206 0.404
math ability at 11 missing 0.097 0.296
lowest quintile 0.048 0.213 mother’s interest in education
second quintile 0.115 0.319 expects too much 0.039 0.194
third quintile 0.152 0.359 is very interested 0.418 0.493
fourth quintile 0.223 0.416 has some interest 0.330 0.470
highest quintile 0.287 0.453 father’s interest in education

reading ability at 11 expects too much 0.018 0.132
lowest quintile 0.057 0.231 is very interested 0.323 0.468
second quintile 0.127 0.334 has some interest 0.216 0.412
third quintile 0.164 0.370 parental interest missing 0.080 0.271
fourth quintile 0.218 0.413 region at the age of 16
highest quintile 0.259 0.438 North Western 0.106 0.308

ability at 11 missing 0.176 0.381 North 0.066 0.248
school type at the age of 16 East and West Riding 0.071 0.257
Comprehensive 0.445 0.497 North Midlands 0.073 0.260
Secondary 0.124 0.330 Eastern 0.070 0.256
Grammar 0.143 0.350 London and South East 0.148 0.355
Private 0.083 0.277 Southern 0.067 0.250
other 0.014 0.118 South Western 0.070 0.256
missing school type 0.191 0.393 Midlands 0.078 0.269
family background variables Wales 0.052 0.221
mother was employed 0.533 0.499 other 0.103 0.304
number of siblings 1.517 1.503

Summary statistics for all N = 1977 employed males who completed A-levels.

Table 1: Summary statistics.
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standard
covariate point estimate error t-statistic
higher education 0.227 0.018 12.371
math ability at 7 relative to the lowest
second quintile -0.022 0.038 -0.590
third quintile -0.019 0.038 -0.503
fourth quintile 0.007 0.037 0.189
highest quintile 0.058 0.038 1.543

reading ability at 7 relative to the lowest
second quintile 0.093 0.038 2.485
third quintile 0.092 0.038 2.442
fourth quintile 0.095 0.039 2.444
highest quintile 0.077 0.040 1.927

ability at 7 missing 0.127 0.047 2.710
math ability at 11 relative to the lowest
second quintile 0.005 0.049 0.100
third quintile 0.030 0.051 0.587
fourth quintile 0.044 0.052 0.850
highest quintile 0.059 0.054 1.083

reading ability at 11 relative to the lowest
second quintile 0.026 0.046 0.572
third quintile 0.066 0.049 1.251
fourth quintile 0.102 0.052 1.969
highest quintile 0.092 0.055 1.677

ability at 11 missing 0.070 0.052 1.362
number of siblings -0.018 0.007 -2.664
The dependent variable is log hourly wage at the age of 33. We also control for
school type, family background, and region. N = 1977, R2 = 0.205.

Table 2: OLS estimates.
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Figure 2: Distribution of values of the propensity score.
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standard
covariate dF/dx error t-statistic
math ability at 7 relative to the lowest
second quintile 0.069 0.056 1.23
third quintile 0.119 0.053 2.19
fourth quintile 0.142 0.053 2.62
highest quintile 0.139 0.054 2.55

reading ability at 7 relative to the lowest
second quintile 0.087 0.055 1.55
third quintile 0.105 0.054 1.89
fourth quintile 0.161 0.055 2.86
highest quintile 0.217 0.055 3.77

missing ability at 7 0.289 0.072 3.44
math ability at 11 relative to the lowest
second quintile 0.053 0.076 0.69
third quintile 0.102 0.077 1.31
fourth quintile 0.186 0.074 2.40
highest quintile 0.219 0.077 2.67

reading ability at 11 relative to the lowest
second quintile 0.189 0.069 2.59
third quintile 0.200 0.071 2.66
fourth quintile 0.219 0.074 2.79
highest quintile 0.234 0.077 2.86

ability at 11 missing 0.344 0.066 4.39
white -0.028 0.089 -0.31
number of siblings -0.019 0.010 -1.88
father is a professional 0.220 0.063 3.17
went to Grammar school in 1974 0.153 0.050 2.94
went to Private school in 1974 0.149 0.058 2.45
mother’s interest in education
expects too much 0.007 0.079 0.09
is very interested 0.063 0.049 1.27
has some interest -0.031 0.044 -0.72

father’s interest in education
expects too much 0.253 0.090 2.38
is very interested 0.031 0.042 0.74
has some interest 0.072 0.035 2.04

parental interest missing 0.017 0.081 0.21
We also control for school type, family background, and region. We report
estimates for the effect of being white, the number of siblings, whether the
father is professional and whether the child attended Grammar or Private
school. N = 1977, Pseudo R2 = 0.136.

Table 3: Probit estimates.
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Figure 3: Scatter plot of log hourly wages against the propensity score.
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Figure 5: Level estimates for wages without (left) and with (right) a higher education
degree against V . The dotted lines are bootstapped 95% confidence intervals.
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Figure 7: Decomposition of wages into ceteris paribus effects of constant and family
background, London area rather than Wales, Comprehensive school rather than Private
school, the father being intermediate, and measured math ability (from bottom to top)
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