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1 Introduction

There is a large literature on estimating average treatment effects under assumptions of uncon-
foundedness or ignorability following the seminal work by Rubin (1973, 1978) and Rosenbaum
and Rubin (1983a). Researchers have developed estimators based on regression methods (e.g.,
Hahn, 1998, Heckman, Ichimura and Todd, 1998), matching (e.g., Rosenbaum, 1989, Abadie
and Imbens, 2004), and methods based on the propensity score (e.g., Rosenbaum and Ru-
bin, 1983a, Hirano, Imbens and Ridder, 2003). Related methods for missing data problems
are discussed in Robins, Rotnitzky and Zhao (1995) and Robins and Rotznitzky (1995). See
Rosenbaum (2001), Heckman, Lalonde and Smith (1999), Wooldridge (2002), Blundell and
Costa-Diaz (2002) and Imbens (2004) for surveys of this literature. In practice an important
concern in implementing all these methods is that one needs sufficient overlap between covariate
distributions in the two subpopulations. Even if there exist areas with sufficient overlap, there
may be other parts of the covariate space with few units of one of the treatment levels. Such
areas of limited overlap can lead to estimators for average treatment effects with poor finite
sample properties. In particular, such estimators can have substantial bias, large variances, as
well as considerable sensitivity to the exact specification of the regression functions or propen-
sity score. Heckman, Ichimura and Todd (1997), and Dehejia and Wahba (1999) point out the
empirical relevance of this overlap issue.1

One strand of the literature has focused on assessing the robustness of existing estimators
to a variety of potential problems including lack of overlap. See for example Rosenbaum and
Rubin (1983b), Imbens (2003), and Ichino, Mealli, and Nannicini (2005). A second strand of the
literature focuses on developing new estimators that are more robust and precise. With this goal
in mind researchers have proposed discarding or downweighting observations with covariates in
areas with limited overlap. A number of specific methods have been proposed for implementing
this. In simplest setting with a discrete covariate Rubin (1977) suggests simply discarding all
units with covariate values with either no treated or no control units. Rubin and Cochran (1973)
suggest caliper matching where potential matches are dropped if the within-match difference in
propensity scores exceeds some threshold level. Dehejia and Wahba (1999) focus on the average
treatment effect for the treated and suggest discarding all controls with estimated propensity
scores below the smallest value of the propensity score among the treated. Heckman, Ichimura,
Smith and Todd (1997) and Heckman, Ichimura and Todd (1998) drop units from the analysis
if the estimated density of the covariate distribution conditional on treatment status is below
some threshold. Ho, Imai, King and Stuart (2004) propose preprocessing the data by matching
units and carrying out parametric inferences using the matched data. All of these methods
have some advantages as well as drawbacks. All of them change the estimand, at least in finite
samples. They all do tend to reduce sensitivity of the final estimates to model specification.
However, they rely on arbitrary choices regarding thresholds for discarding observations, and

1Dehejia and Wahba (1999) write: “... our methods succeed for a transparent reason: They only use the subset
of the comparison group that is comparable to the treatment group, and discard the complement.” Heckman,
Ichimura and Todd (1997) write “A major finding of this paper is that comparing the incomparable – i.e.,
violating the common support condition for the matching variables – is a major sources of evaluation bias as
conventionally measured.”
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there are few formal results on their properties.
In this paper we propose a systematic approach to account for subpopulations with limited

overlap in the covariates. This approach has asymptotic optimality properties under some
conditions and is straightforward to implement. We consider two specific methods. First we
focus on average treatment effects within a selected subpopulation defined in terms of covariate
values. Conditioning on a subpopulation reduces the effective sample size, thus increasing the
variance of the estimated average treatment effect. However, if the subpopulation is chosen
appropriately, it may be possibly to estimate the average treatment within this subpopulation
more precisely than the average effect for the entire population despite the smaller sample size.
It turns out that in general this tradeoff is well defined and leads under some conditions to
choosing the subpopulation with the propensity score in an interval [a, 1− a], with the optimal
value of a solely determined by the distribution of the propensity score. We refer to this as the
Optimal Subpopulation Average Treatment Effect (OSATE).

Second, we consider weighted average treatment effects with the weights depending only on
the covariates. The first approach of choosing a subpopulation can be viewed as a special case
in this framework where the weight function is restricted to be an indicator function. Without
imposing this restriction we characterize the weight function that leads to the most precisely
estimated average treatment effect. Note that this class of estimands includes the average
treatment effect for the treated where the weight function is proportional to the propensity
score. Under the same conditions as before the optimal weight function will again be a function
of the propensity score alone, proportional to the product of the propensity score and one minus
the propensity score. We refer to this as the Optimally Weighted Average Treatment Effect
(OWATE).

The switch to average treatment effect for an optimally selected subpopulation or to a opti-
mally weighted average treatment effect has a second benefit beyond the increase in precision.
The subpopulations for treated and control group in this selected or weighted population tend
to be more balanced in the distribution of the covariates. This is a consequence of the fact that,
under homoskedasticity, the variance of the conditional average treatment effect is proportional
to (e(X) · (1 − e(X)))−1, and thus lowering the weight on high-variance observations increases
the weight on observations with propensity scores close to 1/2. The increased balance in the
selected or weighted sample reduces the sensitivity of any estimators to changes in the specifi-
cation. In the extreme case where the selected sample is completely balanced in covariates in
the two treatment arms one can simply use the average difference in outcomes between treated
and control units.

It is important to stress that these methods change the estimand. Instead of focusing on
the traditional estimands, the population average treatment effect, the average effect for the
subpopulation of the treated or another a priori defined subpopulation of interest, we focus on
average effects for a statistically defined (weighted) subpopulation.2 This change of focus is not
motivated by an intrinsic interest in the subpopulation we ultimately estimate the average causal
effect for. Rather, it acknowledges and addresses the difficulties in making inferences about the
population of primary interest. Instead of reporting solely the potentially imprecise estimate for

2This is also true for the method proposed by Heckman, Ichimura and Todd, (1998).
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the population average treatment effect we propose reporting both estimates for the population
of interest and estimates for subpopulations where we can make more precise inferences. In
settings where we cannot ascertain with much confidence the sign of the population average
treatment effect such estimates may serve to demonstrate that there are subpopulations that
benefit from or are harmed by the program, as well as the extent of this benefit or harm. It is
also important to note that the subpopulation for which these estimands are valid are defined
in terms of the observed covariate values so that one can determine for each individual whether
they are in the relevant subpopulation or not.

This change of estimand is uncommon in econometric analyses.3 Typically in such analyses
the estimand is defined a priori, followed by a presentation of estimates that turn out to be
more or less precise depending on the actual data. In cases where even large data sets would not
permit point identification of the estimand or interest regions of the parameter space consistent
with the model may be reported in a bounds analysis of the type developed by Manski (1990,
2003). Here our approach is different and to some extent complementary. Sacrificing some
external validity by changing the sample from one that was potentially representative of the
population of interest we potentially gain some internal validity by changing it to a sample where
we can obtain more precise and credible estimates.4 Our proposed stress on internal validity at
the expense of external validity is similar to that in randomized experiments which are often
carried out in populations unrepresentative of the population of interest.5 More generally, the
primacy of internal validity over external validity is advocated in many discussions of causality
(see, for example, Shadish, Cook, and Campbell, 2002).

In interpreting our results it is also of interest to consider estimation of the average treatment
effect under the assumption that it does not vary with the covariates.6 This assumption is
generally informative except in the case where the propensity score is constant. Under this
assumption the model is a special case of Robinson’s (1988) partial linear model. The efficient
estimator for that case is identical to the efficient estimator in the heterogenous case for the
weighted average treatment effect with the weights chosen to obtain the most precisely estimated
average treatment effect.

We also develop a set of three new nonparametric tests. We first test the hypothesis that
there is no variation in the conditional average treatment effect by covariates. Second, we
test the hypothesis that the conditional average treatment effect is zero for all values of the
covariates. Third, we test the hypothesis that the optimally weighted average treatment effect
is equal to zero.

We illustrate these methods using three data sets. The first is the non-experimental part of
a data set on labor market programs previously used by Lalonde (1986), Dehejia and Wahba
(1999), Smith and Todd (2005) and others. In this data set the overlap issue is a well known

3One exception is the local average treatment effect introduced by Imbens and Angrist (1994), which is the
average effect of the treatment for the subpopulation of compliers.

4A separate issue is that in practice in many cases even the original sample is not representative of the
population of interest. For example, we are often interested in policies that would extend small pilot versions of
job training programs to different locations and times.

5Even in those settings this can be controversial and lead to misleading conclusions.
6The possible presence of heterogeneity of the treatment effect is an important consideration in much of this

literature. See for applications Dehejia and Wahba (1999), Lechner (2002) and others.
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problem, with the control and treatment group far apart on some of the most important co-
variates including lagged values for the outcome of interest, yearly earnings. Here the optimal
subpopulation method suggests dropping 2363 out of 2675 observations (leaving only 312 obser-
vations, or 12% of the original sample) in order to minimize the variance. Calculations suggest
that this lowers the variance by a factor 1/160000, reflecting the fact that most of the controls
are very different from the treated that it is essentially impossible to estimate the population
average treatment effect. More relevant, given the fact that most of the researchers analyzing
this data set have focused on the average effect for the treated, is that the variance for the op-
timal subsample is only 40% of that for the propensity score weighted sample (which estimates
the effect on the treated).

The second data set, containing a sample of lottery players, was collected by Imbens, Rubin
and Sacerdote (2001), They compare labor market outcomes for lottery winners and losers.
Here the differences between the control and treatment group are much smaller, although they
are still significantly different from zero at conventional levels. Here the optimal subpopulation
approach suggests dropping 108 observations out of 496, and leads to an reduction in the
variance of 60%.

The last example uses data from the Greater Avenue for INdependence (GAIN) experiments
designed to evaluate labor market programs in California. We use data from the Los Angeles
and Riverside locations to see if controls from one location can be used as a nonexperimental
comparison group in the other location. Here the covariates are quite close. The optimal
subpopulation approach suggests dropping only 407 observations out of 4035. The calculations
suggest that even though the two subpopulations are close, this still leads to a decrease in the
variance of 20%.

In all three cases the improvement in precision from focusing on the restricted sample is
substantial. The additional improvement from moving from the optimal subpopulation to the
optimally weighted sample is considerably smaller. The increased difficulty in interpretation of
the weighted average treatment effect may not be worth this additional increase in precision.

It is important to note that our calculations are not tied to a specific estimator. The
results formally refer to differences in the efficiency bound for different subpopulations. As
a consequence, they are relevant for all efficient estimators, including the ones proposed by
Hahn (1998), Hirano, Imbens and Ridder (2003), Imbens, Newey and Ridder (2004), Robins,
Rotnitzky and Zhao (1995). Although not directly applicable to estimators that do not reach
the efficiency bound, such as the nearest neighbor matching estimators in Abadie and Imbens
(2002) and the local linear estimators in Heckman, Ichimura and Todd (1998), the close relation
between those estimators and the efficient ones suggests that with matching the same issues
are relevant.

2 A Simple Example

To set the stage for the issues to be discussed in this paper, consider an example with a scalar
covariate X taking on two values, 0 and 1. Let Nx be the sample size for the subsample with
X = x, and let N = N0 +N1 be the total sample size. Also let p = N1/N be the population
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share of X = 1 units. Let the average treatment effect conditional on the covariate be equal to
τx. The population average treatment effect is then τ = p·τ1+(1−p)·τ0. Let Nxw be the number
of observations with covariate Xi = x and treatment indicator Wi = w. Also, let ex = Nx1/Nx

be the propensity score for x = 0, 1. Finally, let ȳxw =
∑N

i=1 Yi · 1{Xi = x,Wi = w}/Nxw be
the average within each of the four subpopulations. Assume that the variance of Y (w) given
Xi = x is σ2 for all x.

The natural estimator for the treatment effects for each of the two subpopulations are

τ̂0 = ȳ01 − ȳ00, and τ̂1 = ȳ11 − ȳ10,

with variances

V (τ̂0) = σ2 ·
(

1
N00

+
1
N01

)
=

σ2

N · (1− p)
· 1
e0 · (1− e0)

,

and

V (τ̂1) = σ2 ·
(

1
N10

+
1
N11

)
=

σ2

N · p · 1
e1 · (1− e1)

.

The estimator for the population average treatment effect is

τ̂ = p · τ̂1 + (1− p) · τ̂0.

Because the two estimates τ̂0 and τ̂1 are independent, the variance of the population average
treatment effect is

V (τ̂) = p2 · V (τ̂1) + (1 − p)2 · V (τ̂0)

=
σ2

N
·
(

p

e1 · (1 − e1)
+

1 − p

e0 · (1 − e0)

)
=
σ2

N
· E
[

1
eX · (1 − eX)

]
.

The first point of the paper concerns the comparison of V (τ̂), V (τ̂0), and V (τ̂1)). Define
Vmin = min(V (τ̂), V (τ̂0), V (τ̂1). Then

Vmin =





V (τ̂0) if (e1(1− e1))/(e0(1 − e0)) ≤ (1 − p)/(2− p),
V (τ̂) if (1 − p)/(2− p) ≤ (e1(1− e1))/(e0(1 − e0)) ≤ (1 + p)/p,
V (τ̂1) if (1 + p)/p ≤ (e1(1 − e1))/(e0(1− e0)).

(2.1)

The key is the ratio of the product of the propensity score and one minus the propensity score,
e1(1− e1)/(e0(1− e0)). If the propensity score for units with X = 0 is close to zero or one, we
cannot estimate the average treatment effect for this subpopulation precisely. In that case the
ratio e1(1− e1)/(e0(1− e0)) will be high and we may be able to estimate the average treatment
effect for the X = x0 subpopulation more accurately than for the population as a whole, even
though we may lose a substantial number of observations by discarding units with Xi = 0.
Similarly, if the propensity score for the X = 1 subpopulation is close to zero or one, the ratio
e1(1 − e1)/(e0(1− e0)) is close to zero, and we may be able to estimate the average treatment
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effect for the X = x1 subpopulation more accurately than for the population as a whole. If
the ratio is close to one, we can estimate the average effect for the population as a whole more
accurately than for either of the two subpopulations.

The second advantage of focusing on subpopulation average treatment effects is in this case
obvious. Within the two subpopulations we can estimate the within-subpopulation average
treatment effect without bias by simply differencing average treatment and control outcomes.
Thus our results are not sensitive to the choice of estimator, whereas in the population as a
whole there is potentially substantial bias from simply differencing average outcomes.

The second point is that one need not limit the choice to the three average treatment effects
discussed so far. More generally one may wish to focus on a weighted average treatment effect

τλ = λ · τ1 + (1− λ) · τ0,

for fixed λ, which can be estimated as

τ̂λ = λ · τ̂1 + (1− λ) · τ̂0,

The variance for this weighted average treatment effect is

V (τ̂λ) = λ2 · V (τ̂1) + (1 − λ)2 · V (τ̂0)

= λ2 · σ2

N · p · 1
e1 · (1− e1)

+ (1 − λ)2 · σ2

N · (1− p)
· 1
e0 · (1− e0)

.

The variance is minimized at

λ∗ =
1/V (τ̂1)

1/V (τ̂1) + 1/V (τ̂0)
=

p · e1 · (1 − e1)
(1 − p) · e0 · (1 − e0) + p · e1 · (1− e1)

. (2.2)

with the minimum value for the variance equal to

V (τλ∗) =
σ2

N
· 1
((1 − p) · e0 · (1 − e0) + p · e1 · (1− e1))

=
σ2

N
· 1
E[eX · (1 − eX)]

.

The ratio of the variance for the population average to the variance for the optimally weighted
average treatment effect is

V (τP )/V (τλ∗) = E
[

1
eX · (1− eX)

]/
1

E[eX · (1− eX)]
(2.3)

= E
[

1
V (eX)

]/
1

E[V (eX)]
.

By Jensen’s inequality this is greater than one if V (eX) > 0, that is, if the propensity score
varies across the population.

In summary, suppose in this case one is interested in the population average treatment
effect τ . One may find that the efficient estimator is imprecise. This is consistent with two
different states of the world. In one state the average effect for both of the subpopulations
are also imprecisely estimated, and in effect one cannot say much about the effect of the
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treatment at all. In the other state of the world it is still possible to learn something about
the effect of the treatment because one of the subpopulation average treatment effects can be
estimated precisely. In that case, which corresponds to the propensity score for one of the two
subpopulations being close to zero or one, one may wish to report also the estimator for the
precisely estimable average treatment effect to convey the information the data contain about
the effect of the treatment. It is important to stress that the message of the paper is not that
one should report τ̂m or τ̂f instead of τ̂ . Rather, in cases where τ̂m or τ̂f are precisely estimable
and τ̂ is not, one should report both.

In this paper we generalize this analysis to the case with a vector of potentially continu-
ously distributed covariates. We study the existence and characterization of a partition of the
covariates space into two subsets. For one of the subpopulations the average treatment effect is
at least as accurately estimable as that for any other subset of the covariate space. This leads
to a generalization of (2.1). Under some assumptions this problem has a well-defined solution
and these subpopulations have a very simple characterization, namely the set of covariates such
that the propensity score is in the closed interval [a, 1− a]. The optimal value of the boundary
point a is determined by the distribution of the propensity score and its calculation is straight-
forward. In addition we characterize the optimally weighted average treatment effect and its
variance, the generalization of (2.2) and (2.3).

3 Set Up

The basic framework is standard in this literature (e.g., Rosenbaum and Rubin, 1983; Hahn,
1998; Heckman, Ichimura and Todd, 1998; Hirano, Imbens and Ridder, 2003). We have a
random sample of size N from a large population. For each unit i in the sample, let Wi indicate
whether the treatment of interest was received, with Wi = 1 if unit i receives the treatment
of interest, and Wi = 0 if unit i receives the control treatment. Using the potential outcome
notation popularized by Rubin (1974), let Yi(0) denote the outcome for unit i under control
and Yi(1) the outcome under treatment. We observe Wi and Yi, where

Yi ≡ Yi(Wi) = Wi · Yi(1) + (1−Wi) · Yi(0).

In addition, we observe a vector of pre-treatment variables, or covariates, denoted by Xi.
Define the two conditional means, µw(x) = E[Y (w)|X = x], the two conditional variances,
σ2

w(x) = Var(Y (w)|X = x), the conditional average treatment effect τ(x) = E[Y (1)−Y (0)|X =
x] = µ1(x) − µ0(x), and the propensity score, the probability of selection into the e(x) =
Pr(W = 1|X = x) = E[W |X = x].

Initially we focus on two average treatment effects. The first is the (super-)population
average treatment effect

τP ≡ E[Y (1) − Y (0)].

We also consider the conditional average treatment effect:

τC =
1
N

N∑

i=1

τ(Xi),

[7]



where we condition on the observed set of covariates. The reason for focusing on the second
one is twofold. First, it is analogous to the common conditioning on covariates in regression
analysis. Second, it can be estimated more precisely if there is indeed variation in the treatment
effect by covariates.

To solve the identification problem, we maintain throughout the paper the unconfoundedness
assumption (Rubin, 1978; Rosenbaum and Rubin, 1983), which asserts that conditional on
the pre-treatment variables, the treatment indicator is independent of the potential outcomes.
Formally:

Assumption 3.1 (Unconfoundedness)

W ⊥ (Y (0), Y (1))
∣∣∣∣ X. (3.4)

In addition we assume there is overlap in the covariate distributions:

Assumption 3.2 (Overlap)

For some c > 0,

c ≤ e(x) ≤ 1− c.

In addition for estimation we often need smoothness conditions on the two regression functions
µw(x) and the propensity score e(x).

4 Efficiency Bounds

Next, we review some results for efficient estimation of treatment effects. First we discuss
efficient estimators previously developed by Hahn (1998) and Hirano, Imbens and Ridder (2003)
for treatment effects allowing for heterogeneity in the treatment effects. Second, we present
some results for efficient estimation of treatment effects under a variety of assumptions that
restrict the heterogeneity of the treatment effects. This setting is closely related to the partial
linear model developed by Robinson (1988).

Hahn (1998) calculates the efficiency bound for τP .

Theorem 4.1 (Hahn, 1998) Suppose Assumptions 3.1 and 3.2 hold. Then the semiparametric
efficiency bounds for τ is

V eff
P = E

[
(τ(X)− τ)2 +

σ2
1(X)
e(X)

+
σ2

0(X)
1 − e(X)

]
. (4.5)

Proof: See Hahn (1998).
Robins, Rotznitzky and Zhao (1995) present a similar result in a missing data setting.
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Hahn (1998) also proposes an estimator that achieves the efficiency bound.7 Hahn’s esti-
mator is asymptotically linear,

τ̂H =
1
N

N∑

i=1

ψ(Yi,Wi, Xi) + op

(
N−1/2

)
,

where

ψ(y, w, x) = w · y − µ1(x)
e(x)

− (1 − w) · y − µ0(x)
1 − e(x)

+ µ1(x) − µ0(x) − τ.

One implication of this representation is that we can view Hahn’s estimator, as well as the
other efficient estimators not only as estimators of the population average treatment effect τP
but also as estimators of the conditional average treatment effect τC . As an estimator of τC the
efficient estimator τ̂H has asymptotic variance

V eff
C = E

[
σ2

1(X)
e(X)

+
σ2

0(X)
1− e(X)

]
. (4.6)

Next we consider a larger set of estimands. Instead of looking at the average treatment
effect within a subpopulation we consider weighted average treatment effects of the form

τP,g = E[τ(X) · g(X)]/E[g(X)],

for nonnegative functions g(·). For estimands of this type the efficiency bound is given in the
following theorem:

Theorem 4.2 (Hirano, Imbens and Ridder, 2003) Suppose Assumptions 3.1 and 3.2 hold,
and suppose that g(·) is known. Then the semiparametric efficiency bounds for τg is

V eff
P,g =

1
E[g(X)]2

·E
[
g(X)2 (τ(X)− τg)

2 +
g(X)2

e(X)
σ2

1(X) +
g(X)2

1 − e(X)
σ2

0(X)
]

Proof: See Hirano, Imbens and Ridder (2003).
Again there is an asymptotically linear estimator that achieves this efficiency bound. The

same argument as above therefore shows that the efficient estimator for τP,g, as an estimator
for the conditional average treatment effect version of this estimand,

τC,g =
N∑

i=1

τ(Xi) · g(Xi)
/ N∑

i=1

g(Xi),

has asymptotic variance

V eff
C,g =

1
E[g(X)]2

· E
[
g(X)2

e(X)
σ2

1(X) +
g(X)2

1 − e(X)
σ2

0(X)
]
. (4.7)

Finally, we consider the case where we know that the average treatment effect does not vary
by covariates.

7Other efficient estimators have been proposed by Hirano, Imbens and Ridder (2003) and Imbens, Newey and
Ridder (2004).
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Assumption 4.1 (Constant Conditional Average Treatment Effect)

For all x, µ1(x)− µ0(x) = τ .

This assumption is slightly weaker than assuming a constant treatment effect. Under this
assumption the efficiency bound is a generalization of the bound given in Robins, Mark and
Newey (1992) to the heteroskedastic case:

Theorem 4.3 (Robins, Mark and Newey, 1992) Suppose Assumptions 3.1, 3.2, and 4.1
hold. Then the semiparametric efficiency bounds for τ is

V eff
cons =

(
E

[(
σ2

1(X)
e(X)

+
σ2

0(X)
1 − e(X)

)−1
])−1

. (4.8)

Proof: See Robins, Mark and Newey (1992).
It is interesting to compare the efficiency bound for τ under the constant average treatment

effect assumption given in (4.8) with the efficiency bound for the average conditional treatment
effect τC given in (4.6). By Jensen’s inequality the former is smaller, unless σ2

1(x)/e(x) +
σ2

0(x)/(1− e(x)) is constant. Under homoskedasticity the ratio of the variances V eff
C and V eff

cons

reduces to

E
[

1
V (W |X)

]/
1

E[V (W |X)]
,

the same expression we obtained in the binary covariate case. This ratio is greater than one
unless the propensity score is constant. If the propensity score takes on values close to zero
or one this ratio can be large. The implication is that knowledge of the treatment effect being
constant as a function of the covariates can be very valuable.

5 Previous Approaches to Dealing with Limited Overlap

In empirical application there is often concern about the overlap assumption (e.g., Dehejia and
Wahba, 1999; Heckman, Ichimura, and Todd, 1997). To ensure that there is sufficient overlap
researchers have sometimes trimmed their sample by excluding observations with propensity
scores close to zero or one. Cochran and Rubin (1977) suggest caliper matching where units
whose match quality is too low according to the distance in terms of the propensity score are
left unmatched.

Dehejia and Wahba (1999) focus on the average effect for the treated, They suggest dropping
all control units with an estimated propensity score lower than the smallest value, or larger than
the largest value, for the estimated propensity score among the treated units. Formally, they
first estimate the propensity score. Let the estimated propensity score for unit i be ê(Xi). Then
let ē1 be the minimum of the ê(Xi) among treated units and let e1 be the maximum of the
ê(Xi) among treated units. DW then drop all control units such that ê(Xi) < ē1 or ê(Xi) > e1.

Heckman, Ichimura and Todd (1997) and Heckman, Ichimura, Smith and Todd (1998)
also focus on the average effect for the treated. They propose discarding units with covariate
values at which the estimated density is below some threshold. The precise method is as
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follows.8 First they estimate the propensity score ê(x). Next, they estimate the density of the
estimated propensity score in both treatment arms. Let f̂w(e) denote the estimated density of
the estimated propensity score. The specific estimator they use is a kernel estimator

f̂w(e) =
1

Nw · h
∑

i|Wi=w

K

(
ê(Xi) − e

h

)
,

with bandwidth h.9 First HIT discard observations with f̂0(ê(Xi)) or f̂1(ê(Xi)) exactly equal
to zero leaving J observations. Observations with the estimated denstiy equal to zero may exist
when the kernel has finite support. Smith and Todd for example use a quadratic kernel with
K(u) = (u2 − 1)2 for |u| ≤ 1 and zero elsewhere. Next, they fix a quantile q (Smith and Todd
use q = 0.02). Among the J observations with positive densities they rank the 2J values of
f̂0(ê(Xi)) and f̂1(ê(Xi)). They then drop units i with f̂0(ê(Xi)) or f̂1(ê(Xi)) less than or equal
to cq, where cq is the largest real number such that

1
2J

J∑

i=1

(
1{f̂0(ê(Xi)) < cq} + 1{f̂1(ê(Xi)) < cq}

)
≤ q.

Ho, Imai, King and Stuart (2004) propose combining any specific parametric procedure
that the researcher may wish to employ with a nonparametric first stage in which the units
are matched to the closest unit of the opposite treatment. This typically leads to a data set
that is much more balanced in terms of covariate distributions between treated and control. It
therefore thus reduces sensitivity of the parametric model to specific modelling decisions such
as the inclusion of covariates or functional form assumptions.

All these methods tend to make the estimators more robust to specification decisions. How-
ever, few formal results are available on the properties of these procedures.

6 The Optimal Subpopulation Average Treatment Effect

First we consider trimming the sample by excluding units with covariates outside of a set A,
where A ⊂ X, with X ⊂ Rk the covariate space. For a given set A we define a corresponding
average treatment effect τC(A):

τC(A) =
∫

A
τ(x)f(x)dx.

The efficiency bound for this parameter is

V eff
C (A) = E

[
σ2

1(X)
e(X)

+
σ2

0(X)
1 − e(X)

∣∣∣∣X ∈ A
]
.

Because the relative size of the subpopulation in A is q(A) = Pr(X ∈ A), the efficiency bound
normalized by the original sample size is

V eff′
C (A) =

1
q(A)

· E
[
σ2

1(X)
e(X)

+
σ2

0(X)
1 − e(X)

∣∣∣∣X ∈ A
]
. (6.9)

8See Heckman, Ichimura and Todd (1997) and Smith and Todd (2005) for details, and Ham, Li and Reagan
(2005) for an application of this method.

9In their application Smith and Todd (2005) use Silverman’s rule of thumb to choose the bandwidth.
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We look for an optimal A, denoted by A∗, that minimizes the asymptotic variance (6.9) among
all subsets A.

There are two competing effects. First, by excluding units with covariate values outside
the set A one reduces the effective sample size from N to N · q(A). This will increase the
asymptotic variance, normalized by the original sample size, by a factor 1/q(A). Second, by
discarding units with high values for σ2

1(X)/e(X) + σ2
0(X)/(1 − e(X)) (that is, units with

covariate values such that it is difficult to estimate the average treatment effect) one can lower
the conditional expectation E[σ2

1(X)/e(X) + σ2
0(X)/(1 − e(X))|X ∈ A]. Optimally choosing

A involves balancing these two effects. The following theorem gives the formal result for the
optimal A∗ that minimizes the asymptotic variance.

Theorem 6.1 (OSATE)

Let f ≤ f(x) ≤ f , and σ2(x) ≤ σ2 for w = 0, 1 and all x ∈ X. We consider sets A ⊂ X that are
elements of the sigma algebra of Borel subsets of Rk. Then the Optimal Subpopulation Average
Treatment Effect (OSATE) is τC(A∗), where, if

sup
x∈X

σ2
1(x) · (1− e(x)) + σ2

0(x) · e(x)
e(x) · (1 − e(x))

≤ 2 ·E
[
σ2

1(X) · (1 − e(X)) + σ2
0(X) · e(X)

e(X) · (1− e(X))

]
,

then A∗ = X and otherwise,

A∗ =
{
x ∈ X

∣∣∣∣
σ2

1(x) · (1 − e(x)) + σ2
0(x) · e(x)

e(x) · (1 − e(x))
≤ a

}
,

where a is a positive solution to

a = 2 ·E
[
σ2

1(X) · (1− e(X)) + σ2
0(X) · e(X)

e(X) · (1− e(X))

∣∣∣∣
σ2

1(X) · (1− e(X)) + σ2
0(X) · e(X)

e(X) · (1− e(X))
< a

]
.

Proof: See Appendix.
The result in this theorem simplifies under homoskedasticity.

Corollary 6.1 Optimal Overlap Under Homoskedasticity Suppose that σ2
w(x) = σ2 for

all w ∈ {0, 1} and x ∈ X. If

sup
x∈X

1
e(x) · (1 − e(x))

≤ 2 · E
[

1
e(X) · (1 − e(X))

]
,

then A∗ = X. Otherwise,

A∗ =
{
x ∈ X

∣∣∣∣
1

e(x) · (1 − e(x))
≤ a

}
,

where a is a solution to

a = 2 ·E
[

1
e(X) · (1− e(X))

∣∣∣∣
1

e(X) · (1 − e(X))
< a

]
.
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We can find the smallest value of a that satisfies the first order conditions (and which
therefore must correspond to a local minimum for g(a)) by iteratively solving equation (??).
Start with a0 = 0. Calculate

γk = γ(ak) = E[(e · (1− e))−1|ak ≤ e ≤ 1− ak].

Note that γk > 4 Then solve ak by solving for the solution in (0, 1/2) of

1
ak+1 · (1 − ak+1)

= 2 · γk,

leading to

ak+1 =
1
2
−
√

1
4
− 1

2 · γk
.

In an application we would typically not know the propensity score. In that case we would
carry out the calculations with the conditional expectation E[(e · (1 − e))−1|a ≤ e ≤ 1 − a]
replaced by

N∑

i=1

1
e(Xi) · (1 − e(Xi))

· 1{a ≤ e(Xi) ≤ 1 − a}
/ N∑

i=1

1{a ≤ e(Xi) ≤ 1 − a}.

7 The Optimally Weighted Average Treatment Effect

Lemma 7.1 Suppose Assumptions – hold, and that σ2
0(x) = σ2

1(x) = σ2 and that τ(x) = τ for
all x. Then the Optimally Weighted Average Treatment Effect (OWATE) is τg∗, where

g∗(x) = e(x) · (1 − e(x)).

8 Testing

In this section we discuss some statistical tests. Most of the statistical tests discussed in this
literature focus on the appropriateness of the various estimators (Heckman and Hotz, 1989).
Some attempt to provide assessments of the unconfoundedness assumptions (Imbens, 2004). We
focus on three different hypotheses concerning the conditional average treatment effect τ(x).
The first hypothesis we consider is that the conditional average treatment effect is zero for all
values of the covariates. The second one is the hypothesis that τ(x) is constant as a function
of x. The third test concerns the hypothesis that the optimally weighted conditional average
treatment effect τC,g∗ is equal to zero. The latter test is very simple. The previous results lead
to a root-N consistent estimator that is asymptotically normal with zero asymptotic bias so
that we can use a simple Wald test. The other tests are more complext, requiring comparisons
of nonparametric estimators of regression functions over the entire support of the covariates.

There are some obvious relationships between the null hypotheses. H0 implies H′
0 and H′′

0.
The last two hypotheses, H′

0 and H′′
0 combined imply H0. There is no direct relationship

between H′
0 and H′′

0.
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In order to develop these tests we need estimators for the two regression functions. We use
the series estimator for the regression function µw(x) developed by Imbens, Newey and Ridder
(2004). Let K denote the number of terms in the series. As the basis we use power series. Let
λ = (λ1, ..., λd) be a multi-index of dimension d, that is, a d-dimensional vector of non-negative
integers, with |λ| =

∑d
k=1 λk, and let xλ = xλ1

1 . . . xλd
d . Consider a series {λ(r)}∞r=1 con-

taining all distinct vectors such that |λ(r)| is nondecreasing. Let pr(x) = xλ(r), where Pr(x) =
(p1(x), ..., pr(x))′. Given the assumptions below the expectation ΩK = E[PK(X)PK(X)′|W = 1]
is nonsingular for all K. Hence we can construct a sequence RK(x) = Ω−1/2

K PK(x) with
E[RK(X)RK(X)′|W = 1] = IK . Let RkK(x) be the kth element of the vector RK(x). It will
be convenient to work with this sequence of basis function RK(x). The nonparametric series
estimator of the regression function µw(x), given K terms in the series, is given by:

µ̂w(x) = rK(x)′


 ∑

Wi=w

RK(Xi)RK(Xi)′




−
∑

Wi=w

RK(Xi)Yi = RK(x)′γ̂w,K ,

where

γ̂w,K =


 ∑

Wi=w

RK(Xi)RK(Xi)′




−
∑

Wi=w

RK(Xi)Yi.

Define the Nw×K matrix Rw,K with rows equal to RK(Xi) for units withWi = w, and Yw to be
theNw vector with elements equal to Yi for the same units, so that γ̂w,K = (R′

w,KRw,K)−1(R′
w,KYw).

Note that we use A− here to denote a generalized inverse of A.
Given the estimator µ̂w,K(x) we estimate the error variance σ2

w as

σ̂2
w,K =

1
Nw

∑

i|Wi=w

(Yi − µ̂w,K(Xi))2.

Let Ωw,K be the limiting variance of
√
Nγ̂w,K as the sample size increases for fixed K. We

estimate this variance as

Ω̂w,K = σ̂2
w,K · (R′

w,KRw,K/N)−1.

We make the following assumptions.

Assumption 8.1 (Distribution of Covariates)

X ∈ X ⊂ Rd, where X is the Cartesian product of intervals [xjL, xjU ], j = 1, . . . , d, with
xjL < xjU . The density of X is bounded away from zero on X.

Assumption 8.2 (Propensity Score)

(i) The propensity score is bounded away from zero and one.
(ii) The propensity score is s times continuously differentiable.

Assumption 8.3 (Conditional Outcome Distributions)

(i) The two regression functions µw(x) are t times continuously differentiable.
(ii) the conditional variance of Yi(w) given Xi = x is equal to σ2

w.
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Assumption 8.4 (Rates for Series Estimators)

K = Nν, with < ν <.

We assume homoskedasticty, although this assumption is not essential and can be relaxed to
allow the conditional variance to depend onx, as long as it is bounded from above and below.

8.1 Testing the Null Hypothesis of Zero Conditional Average Treatment
Effects

Here we are interested in the null hypothesis that the conditional average treatment effect τ(x)
is zero for all values of the covariates. Formally,

H0 : ∀ x ∈ X, τ(x) = 0.

To test this hypothesis we compare estimators for µ1(x) and µ0(x). Given our use of series
estimators we can compare the estimated parameters γ̂0,K and γ̂1,K. Specifically, we use as the
test statistic for the test of the null hypothesis H0 the normalized quadratic form

T =
(
(γ̂1,K − γ̂0,K)′(Ω̂1,K + Ω̂0,K)−1(γ̂1,K − γ̂0,K) −K

)
/
√

2K.

Theorem 8.1 Suppose Assumptions ??-?? hold. Then if τ(x) = 0 for all x ∈ X,

T
d−→ N (0, 1).

Proof: See Appendix.

8.2 Testing the Null Hypothesis of a Constant Conditional Average Treat-
ment Effect

H′
0 : ∃ τ0, such that ∀ x ∈ X, τ(x) = τ0.

Let τ̂C,g∗ be an estimator for τC,g∗ .
For testing the null hypothesis H′

0 we use the test statistic

T ′ =
N∑

i=1

(µ̂1(Xi)− µ̂0(Xi) − τ̂C,g∗)
2 · g∗(Xi).

8.3 Testing the Null Hypothesis of a Zero Average Treatment Effect

H′′
0 : τC,g∗ = 0.

For the testing the third null hypothesis we use the fact that τ̂g∗ has a limiting normal
distribution.
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9 Some Illustrations Based on Real Data

In this section we apply the methods developed in this paper to three data sets. The data
sets differ by the amount of balance between controls and treated, to highlight the effectiveness
and importance of ensuring balance in a range of settings. In each case we first calculate the
optimal cutoff point e∗ based on an estimate of the propensity score. We report the number
of observations discarded by the proposed sample selection. We also report the estimated
asymptotic variance for four cases. First, the efficiency bound for the average treatment effect
using the full sample. Second, the efficiency bound for the selected sample. Third, the efficiency
bound for the optimally weighted sample. Fourth, we report the efficiency bound for the average
effect for the treated.

9.1 The Lalonde Data

The first data set we use is a data set originally put together by Lalonde (1986), and subse-
quently used by Dehejia and Wahba (1999) and Smith and Todd (2004). The sample we use
here is the one used by Dehejia and Wahba. The treatment of interest is a job training program.
The trainees are drawn from an experimental evaluation of this program. The control group is
a sample drawn from the Panel Study of Income Dynamics (PSID). The control and treatment
group are very unbalanced. Table 1 presents some summary statistics. The fourth and fifth
column present the averages for each of the covariates separately for the control and treatment
group. Consider for example the average earnings in the year prior to the program, earn ’75.
For the control group from the PSID this is 19.06, in thousands of dollars. For the treatment
group it is only 1.53. Given that the standard deviation is 13.88, this is a very large difference
of 1.26 standard deviations, suggesting that simple covariance adjustments are unlikely to lead
to credible inferences.

For this data set we estimate the propensity score using a logistic model with all nine
covariates entering linearly. We then use the estimated propensity score to calculate the optimal
cutoff point, a in the notation of Lemma ?. The optimal cutoff point is a = 0.0660. The number
of observations that should be discarded according to this criterion is substantial. Out of the
original 2675 observations (2490 controls and 185 treated) only 312 are left (183 controls and
129 treated). In Table 3 we present the number of observations in the various categories.

The next table presents asymptotic standard errors for four estimands. First the standard
error for the population average treatment effect. Second, the asymptotic standard error for
the average treatment effect in the subpopulation with a < e(x) < 1 − a, for the optimal value
of a = 0.0660. Third, the standard error for the optimally weighted average treatment effect
τ∗g . Fourth, the asymptotic standard error for the average treatment effect for the treated.

The second row in this table presents ratios of the asymptotic standard error to the asymp-
totic standard error for the population average treatment effect. There is a huge gain to moving
from the population average treatment effect to any of the three other estimands. This follows
from the huge differences between the treated and control covariate distributions. As a result
of these differences there are large areas in the covariate space where there are essentially no
treated units. Hence estimating the average treatment effects in those areas is difficult, and even

[16]



under the assumptions made it can only be done with great uncertainty. For this example this
is well known in the literature. See for example Dehejia and Wahba (1999). More interesting
is the fact that there is still a large difference in asymptotic standard errors between the three
other estimands. The asymptotic standard error for the average effect for the treated is much
larger than for the optimal area (2.58 versus 1.62), with the latter still substantially larger than
the standard error for the optimally weighted average treatment effect (1.28).
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Appendix

Before proving Theorem 8.1 we present a couple of preliminary results.

Lemma A.1 Suppose Assumptions XX-XX hold. Then (i)
∥∥∥Ω̂w,K − Ωw,K

∥∥∥ = Op

(
ζ(K)K

1
2 N− 1

2

)
,

and (ii) The eigenvalues of Ωw,K are bounded and bounded away from zero and (iii) The eigenvalues of

Ω̂w,K are bounded and bounded away from zero if Op

(
ζ(K)K

1
2 N− 1

2

)
= op(1).

Proof: We will generalize the proof found in Imbens, Newey and Ridder (2004). For (i) we will show

E
[∥∥∥Ω̂w,K − Ωw,K

∥∥∥
2
]
≤ C · ζ(K)2K/N

so that the result follows by Markov’s inequality.

E
[∥∥∥Ω̂w,K − Ωw,K

∥∥∥
2
]

= E
[∥∥(R′

w,KRw,K/Nw

)
− Ωw,K

∥∥2
]

= E
[
tr
(
(R′

w,KRw,K/Nw) − Ωw,K

)′ ((R′
w,KRw,K/Nw) − Ωw,K

)]

= E
[
tr
(
R′

w,KRw,KR′
w,KRw,K/N2

w − Ωw,K

(
R′

w,KRw,K/Nw

)
−
(
R′

w,KRw,K/Nw

)
Ωw,K + Ω2

w,K

)]

= tr
(
E
[
R′

w,KRw,KR′
w,KRw,K/N2

w

]
− Ωw,KE

[
R′

w,KRw,K/Nw

]
− E

[
R′

w,KRw,K/Nw

]
Ωw,K + Ω2

w,K

)

= tr
(
E
[
R′

w,KRw,KR′
w,KRw,K/N2

w

]
− 2 · Ω2

w,K + Ω2
w,K

)

= tr
(
E
[
R′

w,KRw,KR′
w,KRw,K/N2

w

])
− tr

(
Ω2

w,K

)

The second term is

tr(Ω2
w,K) =

K∑

k=1

K∑

l=1

(E [RkK(X)RlK (X)|W = w])2 (A.1)

The first term is

tr
(
E
[
R′

w,KRw,KR′
w,KRw,K

]
/N2

w

)

= E




K∑

k=1

K∑

l=1




N∑

i|Wi=w

RkK(Xi)RlK(Xi)




2

 /N2

w

=
K∑

k=1

K∑

l=1

N∑

i|Wi=w

N∑

j|Wj=w

E [RkK(Xi)RlK (Xi)RlK(Xj)RkK(Xj)|W = w] /N2
w

We can then partition this expression into terms with i = j,

K∑

k=1

K∑

l=1

N∑

i|Wi=w

E
[
RkK(Xi)2RlK (Xi)2|W = w

]
/N2

w (A.2)

and with terms i 6= j,

Nw(Nw − 1)
K∑

k=1

K∑

l=1

(E [RkK(X)RlK (X)|W = w])2 /N2
w (A.3)
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Combining equations (1), (2) and (3) yields,

E
[∥∥∥Ω̂w,K − Ωw,K

∥∥∥
2
]

=
K∑

k=1

K∑

l=1

N∑

i|Wi=w

E
[
RkK(Xi)2RlK(Xi)2|W = w

]
/N2

w

+Nw(Nw − 1)
K∑

k=1

K∑

l=1

(E [RkK(X)RlK (X)|W = w])2 /N2
w

−
K∑

k=1

K∑

l=1

(E [RkK(X)RlK (X)|W = w])2

=
K∑

k=1

K∑

l=1

N∑

i|Wi=w

E
[
RkK(Xi)2RlK(Xi)2|W = w

]
/N2

w

−
K∑

k=1

K∑

l=1

(E [RkK(X)RlK (X)|W = w])2 /Nw

<

K∑

k=1

K∑

l=1

N∑

i|Wi=w

E
[
RkK(Xi)2RlK(Xi)2|W = w

]
/N2

w

=
1

N2
w

N∑

i|Wi=w

E

[
K∑

k=1

RkK(Xi)2
K∑

l=1

RlK(Xi)2|W = w

]

≤ 1
N2

w

N∑

i|Wi=w

ζ(K)2 · E

[
K∑

l=1

RlK(Xi)2|W = w

]

=
1

N2
w

N∑

i|Wi=w

ζ(K)2 ·
K∑

l=1

E
[
RlK(Xi)2|W = w

]

=
1

Nw
ζ(K)2 · tr (Ωw,K)

≤ 1
Nw

ζ(K)2 · K · λmax (Ωw,K)

≤ C · Kζ(K)2/N

where the fifth line follows by

ζ(K) = sup
x

‖RK(x)‖ = sup
x

(
K∑

k=1

R2
kK(x)

) 1
2

which then implies that

K∑

k=1

R2
kK(x) ≤ ζ(K)2.

The eighth line follows since the maximum eigenvalue of Ωw,K is O(1) (see below).

For (ii), let us first show that for any two positive semi-definite matrices A and B, and conformable
vectors c and d, if A ≥ B in a positive semi-definite sense, then for

λmin(A) = min
c′c=1

c′Ac = c∗
′
Ac∗, λmin(B) = min

d′d=1
d′Ad = d∗′Ad∗,
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we have that,

λmin(A) = c∗
′
Ac∗ ≥ c∗

′
Bc∗ ≥ d∗′Bd∗ = λmin(B).

Now, let fw(x) = fX|W (x|W = w) and recall that Ωw,K = E [RK(X)RK (X)′|W = w] where Ω1,K is
normalized to equal IK . Next define

c(x) = f0(x)/f1(x)

and note that by Assumptions 8.1 and 8.2 we have that

0 < c ≤ c(x) ≤ c̄.

Thus we may define c(x) ≡ c + c̃(x) so that,

Ω0,K = E [RK(x)RK(x)′|W = 0]

=
∫

RK(x)RK(x)′f0(x)dx

=
∫

RK(x)RK(x)′c(x)f1(x)dx

=
∫

RK(x)RK(x)′ (c + c̃(x)) f1(x)dx

= c

∫
RK(x)RK(x)′f1(x)dx +

∫
RK(x)RK(x)′c̃(x)f1(x)dx

= c · Ω1,K +
∫

RK(x)RK(x)′c̃(x)f1(x)dx

= c · Ω1,K + C̃

Where C̃ is a positive semi-definite matrix. Thus,

Ω0,K ≥ c · Ω1,K ⇒ λmin (Ω0,K) ≥ c · λmin (Ω1,K) = c

so that the minimum eigenvalue of Ω0,K is bounded away from zero. The minimum eigenvalue of
Ω1,K is bounded away from zero by construction. Then note that for a positive definite matrix A,
1/λmin(A) = λmax(A−1), so that the eigenvalues of Ωw,K are also bounded from above.

For (iii) consider the minimum eigenvalue of Ω̂w,K :

λmin

(
Ω̂w,K

)
= min

c′c=1
c′
(
Ω̂w,K

)
c

= min
c′c=1

(
c′ (Ωw,K) c + c′

(
Ω̂w,K − Ωw,K

)
c
)

≥ min
c′c=1

c′ (Ωw,K) c + min
d′d=1

d′
(
Ω̂w,K − Ωw,K

)
d

= λmin (Ωw,K) + λmin

(
Ω̂w,K − Ωw,K

)

≥ λmin (Ωw,K) −
∥∥∥Ω̂w,K − Ωw,K

∥∥∥

= λmin (Ωw,K) − Op

(
ζ(K)K

1
2 N− 1

2

)

Where the fifth line follows since for a symmetric matrix A

‖A‖2 = tr
(
A2
)
≥ λmin

(
A2
)

= λmin(A)2,
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and since the norm is nonnegative

‖A‖ ≥ −λmin(A).

The last line follows by part (i). �

Newey (1994) showed that ζ(K) is O(K), so this lemma implies that if K3/N → 0 (as implied by
Assumption XX), ‖Ω̂w,K − Ωw,K‖ = op(1).

Next, define the pseudo true value γ∗
w,K as

γ∗
w,K ≡ (E[RK(X)RK(X)′|W = w])−1 E[RK(X)Y |W = w] = Ω−1

w,KE[RK(X)Y |W = w].

and

γ̃w,K ≡ γ∗
w,K + Ω−1

w,KR′
w,Kεw/Nw

where

εw ≡ Yw − µw(X).

Then we can write
√

Nw(γ̃w,K − γ∗
w,K) as

Ω−1
w,K

1√
Nw

R′
w,Kεw =

1√
Nw

N∑

i|Wi=w

Ω−1
w,KRK(Xi)εi

with

E[Ω−1
w,KRK(Xi)εi] = Ω−1

w,KE [RK(Xi)E [εi|Xi]] = 0

and

V
[
Ω−1

w,KRK(Xi)εi

]
= σ2

w · Ω−1
w,K

Therefore,

Sw,K ≡ 1√
Nw

N∑

i|Wi=w

[
σ2

w ·Ωw,K

]− 1
2 RK(Xi)εi ≡

1√
Nw

N∑

i|Wi=w

Zi

is a normalized summation of Nw independent random vectors distributed with expectation 0 and
variance-covariance matrix IK .

Denote the distribution of Sw,K by QNw and define β3 ≡
∑N

i=1 E
∥∥∥ Zi√

N

∥∥∥
3

. Then, by Theorem 1.3, Götze
(1991), provided that K ≥ 6,

supA∈AK |QNw (A) − Φ(A)| ≤ CKβ3N
− 1

2

where AK is the class of all measurable convex sets in K-dimensional Euclidean space, CK is O(K), and
Φ is a multivariate standard Gaussian distribution.

Lemma A.2 Suppose that K(N ) = Nν where ν < 2
11 . Then,

sup
A∈AK

|QNw(A) − Φ(A)| → 0

[21]



Proof: First we will show that β3 is O(K
9
2 N− 1

2 )

β3 ≡
N∑

i|Wi=w

E
∥∥∥∥

Zi√
Nw

∥∥∥∥
3

= N
− 3

2
w

N∑

i|Wi=w

E
∥∥∥
[
σ2

w · Ωw,K

]− 1
2 RK(Xi)εi

∥∥∥
3

=
(
Nw · σ2

w

)− 3
2

N∑

i|Wi=w

E
∥∥∥Ω− 1

2
w,KRK(Xi)εi

∥∥∥
3

≤
(
Nw · σ2

w

)− 3
2

N∑

i|Wi=w

E
[
‖Ω− 1

2
w,K‖3 ‖RK(Xi)εi‖3

]

First, consider

‖Ω− 1
2

w,K‖3 =
[
tr(Ω−1

w,K)
] 3

2 ≤
[
K · λmax(Ω−1

w,K)
] 3

2 ≤ C ·K 3
2

which is O(K
3
2 ) because λmin(Ωw,K) is bounded away from zero by Lemma 0.1. Next, consider

E ‖RK(Xi)εi‖3 ≤ sup
x

‖RK(x)‖3 ·E |εi|3 ≤ C · K3

where the third moment of εi is bounded by Assumption XX and so the factor is O(K3). Since σ2
w is

also bounded by Assumption XX, β3 is O(K
9
2 N− 1

2 ). Thus,

CKβ3N
− 1

2
w = K

N∑

i|Wi=w

E
∥∥∥∥

Zi√
Nw

∥∥∥∥
3

N
−1

2
w ≤ C · K · K 9

2 N
− 1

2
w · N− 1

2
w = C · K 11

2 N−1

and the result follows. �

We may proceed further to detail conditions under which the quadratic form, S′
w,KSw,K , properly

normalized, converges to a univariate standard Gaussian distribution. The quadratic form S′
w,KSw,K

can be written as

S′
w,KSw,K =

K∑

j=1

( 1√
Nw

N∑

i|Wi=w

Zij

)2

where Zij is the jth element of the vector Zi. Thus, S′
w,KSw,K is a sum of K uncorrelated, squared

random variables with each random variable converging to a standard Gaussian distribution by the
previous result. Intuitively, this sum should converge to a χ2 random variable with K degrees of freedom.

Lemma A.3 Under Assumptions XX-XX,

sup
c

∣∣P(S′
w,KSw,K ≤ c) − χ2

K(c)
∣∣→ 0.

Proof: Define the set A(c) ≡
{
S ∈ RK |S′S ≤ c

}
. Note that A(c) is a measurable convex set in RK .

Also note that for ZK ∼ N (0, IK), we have that χ2
K(c) = P[Z′

KZk ≤ c]. Then,

sup
c

∣∣P[S′
w,KSw,K ≤ c]− χ2

K(c)
∣∣ = sup

c

∣∣P(S′
w,KSw,K ≤ c) − P(Z′

KZK ≤ c)
∣∣

= sup
c

|P(Sw,K ∈ A(c)) − P(ZK ∈ A(c))|

≤ sup
A∈AK

|QNw (A) − Φ(A)|

≤ CKβ3N
− 1

2

= O(K
11
2 N−1)

[22]



which is o(1) for ν < 2
11

by Lemma 0.2. �

The proper normalization of the quadratic form yields the studentized version, (S′
w,KSw,K − K)/

√
2K.

This converges to a standard Gaussian distribution by the following lemma.

Lemma A.4 Under Assumptions XX-XX,

sup
c

∣∣∣∣P
(

S′
w,KSw,K − K

√
2K

≤ c

)
− Φ(c)

∣∣∣∣→ 0.

Proof:

sup
c

∣∣∣∣P
(

S′
w,KSw,K − K

√
2K

≤ c

)
− Φ(c)

∣∣∣∣

= sup
c

∣∣∣P
(
S′

w,KSw,K ≤ K + c
√

2K
)
− Φ(c)

∣∣∣

≤ sup
c

∣∣∣P
(
S′

w,KSw,K ≤ K + c
√

2K
)
− χ2(K + c

√
2K)

∣∣∣ + sup
c

∣∣∣χ2(K + c
√

2K) − Φ(c)
∣∣∣

The first term goes to zero by Lemma 0.3. For the second term we may apply the Berry-Esséen Theorem
which yields,

sup
c

∣∣∣P
(

Z′
KZK − K√

2K
≤ c

)
− Φ(c)

∣∣∣ ≤ C ·K− 1
2 .

Thus for ν > 0 the right-hand side converges to zero as well and the result is established. �

In order to proceed we need the following selected results from Imbens, Newey and Ridder (2004).
These results establish convergence rates for the estimators of the regression function.

Lemma A.5 (Imbens, Newey and Ridder (2004)): Suppose Assumptions XX-XX hold. Then,

(i) there is a sequence γ0
w,K such that

sup
x

∣∣µw(x) − RK(x)′γ0
w,K

∣∣ ≡ sup
x

∣∣µw(x) − µ0
w,K

∣∣ = O(K− s
d )

(ii)

sup
x

∣∣RK(x)′γ∗
w,K − RK(x)′γ0

w,K

∣∣ ≡ sup
x

∣∣µ∗
w,K − µ0

w,K

∣∣ = Op

(
ζ(K)2K− s

d

)

(iii)
∥∥γ∗

w,K − γ0
w,k

∥∥ = O(ζ(K)K− s
d )

(iv)
∥∥γ̂w,K − γ0

w,k

∥∥ = Op(K
1
2 N− 1

2 + K− s
d )

The following lemma describes the limiting distribution of the infeasible test statistic.

Lemma A.6 Under Assumptions XX-XX,
(

Nw ·
(
γ̂w,K − γ∗

w,K

)′ (
σ̂2

w,K · Ω̂−1
w,K

)−1 (
γ̂w,K − γ∗

w,K

)
− K

)
/
√

2K
d→ N (0, 1)

[23]



Proof: We need only show that,
∥∥∥∥
[
σ̂2

w,K · Ω̂−1
w,K

]− 1
2 √

Nw

(
γ̂w,K − γ∗

w,K

)
− Sw,K

∥∥∥∥ = op(1).

then the result follows by Lemmas 0.2, 0.3, and 0.4.

First, notice that we can rewrite γ̂w,K as

γ̂w,K = γ∗
w,K + Ω̂−1

w,KR′
w,Kεw,K/Nw

where

εw,K ≡ Yw − Rw,Kγ∗
w,K ,

with ith row equal to

εKi = Yi − RK(Xi)′γ∗
w,K .

Then,
∥∥∥∥
[
σ̂2

w,K · Ω̂−1
w,K

]− 1
2 √

Nw

(
γ̂w,K − γ∗

w,K

)
− Sw,K

∥∥∥∥

=
∥∥∥∥
[
σ̂2

w,K · Ω̂−1
w,K

]− 1
2 √

Nw · Ω̂−1
w,K · R′

w,Kεw,K/Nw −
[
σ2

w · Ωw,K

]− 1
2
√

Nw · R′
w,Kεw/Nw

∥∥∥∥

=
∥∥∥σ̂−1

w,KΩ̂− 1
2

w,K · R′
w,Kεw,K/

√
Nw − σ−1

w Ω− 1
2

w,K ·R′
w,Kεw/

√
Nw

∥∥∥

=
∥∥∥σ̂−1

w,KΩ̂− 1
2

w,K · R′
w,Kεw,K/

√
Nw − σ̂−1

w,KΩ̂− 1
2

w,K · R′
w,Kεw/

√
Nw

+ σ̂−1
w,KΩ̂− 1

2
w,K · R′

w,Kεw/
√

Nw − σ−1
w Ω̂− 1

2
w,K · R′

w,Kεw/
√

Nw

+ σ−1
w Ω̂− 1

2
w,K · R′

w,Kεw/
√

Nw − σ−1
w Ω− 1

2
w,K · R′

w,Kεw/
√

Nw

∥∥∥

≤
∥∥∥σ̂−1

w,KΩ̂− 1
2

w,K · R′
w,Kεw,K/

√
Nw − σ̂−1

w,KΩ̂− 1
2

w,K · R′
w,Kεw/

√
Nw

∥∥∥

+
∥∥∥σ̂−1

w,KΩ̂− 1
2

w,K · R′
w,Kεw/

√
Nw − σ−1

w Ω̂− 1
2

w,K · R′
w,Kεw/

√
Nw

∥∥∥

+
∥∥∥σ−1

w Ω̂− 1
2

w,K · R′
w,Kεw/

√
Nw − σ−1

w Ω− 1
2

w,K · R′
w,Kεw/

√
Nw

∥∥∥

=
∣∣∣σ̂−1

w,K

∣∣∣
∥∥∥Ω̂− 1

2
w,KR′

w,K (εw,K − εw) /
√

Nw

∥∥∥ (A.4)

+
∣∣∣σ̂−1

w,K − σ−1
w

∣∣∣
∥∥∥Ω̂− 1

2
w,K · R′

w,Kεw/
√

Nw

∥∥∥ (A.5)

+
∣∣σ−1

w

∣∣
∥∥∥
(
Ω̂− 1

2
w,K − Ω− 1

2
w,K

)
R′

w,Kεw/
√

Nw

∥∥∥ (A.6)

First, consider equation (4),
∣∣∣σ̂−1

w,K

∣∣∣
∥∥∥Ω̂− 1

2
w,KR′

w,K (εw,K − εw) /
√

Nw

∥∥∥

=
(
σ−1

w + op

(
N− 1

2

))
·
∥∥∥Ω̂− 1

2
w,KR′

w,K (εw,K − εw) /
√

Nw

∥∥∥

=
(
O (1) + op

(
N− 1

2

))
·
∥∥∥Ω̂− 1

2
w,KR′

w,K (εw,K − εw) /
√

Nw

∥∥∥
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where

E
∥∥∥Ω̂− 1

2
w,KR′

w,K (εw,K − εw) /
√

Nw

∥∥∥
2

= E
[

1
Nw

tr
(
(εw,K − εw)′ Rw,KΩ̂−1

w,KR′
w,K (εw,K − εw)

)]

= E
[(

(εw,K − εw)′ Rw,K

(
R′

w,KRw,K

)−1
R′

w,K (εw,K − εw)
)]

≤ E
[
(εw,K − εw)′ (εw,K − εw)

]

= E
[(

µw(X) − Rw,Kγ∗
w,K

)′ (
µw(X) − Rw,Kγ∗

w,K

)]

≤ Nw · sup
x

∣∣µw(x) − RK(x)′γ∗
w,K

∣∣2

≤ Nw · sup
x

(∣∣µw(x) − RK(x)′γ0
w,K

∣∣+
∣∣RK(x)′γ0

w,K − RK(x)′γ∗
w,K

∣∣)2

= Nw

(
O
(
K− s

d

)
+ O

(
ζ(K)2K− s

d

))2

= O (N ) ·
(
O
(
ζ(K)2K− s

d

))2

so that equation (4) is Op

(
N

1
2 ζ(K)2K− s

d

)
by Markov’s inequality and consistency of the sample vari-

ance. The third line follows since (INw − Rw,K(R′
w,KRw,K)−1R′

w,K) is a projection matrix and so it is
positive semi-definite. The seventh line follows from Lemma 0.5 (i) and (ii).

Now consider equation (5),
∣∣∣σ̂−1

w,K − σ−1
w

∣∣∣
∥∥∥Ω̂− 1

2
w,K ·R′

w,Kεw/
√

Nw

∥∥∥

The first factor is op(N− 1
2 ) and

E
∥∥∥Ω̂− 1

2
w,K · R′

w,Kεw/
√

Nw

∥∥∥
2

= E
[

1
Nw

tr
(
ε′wRw,KΩ̂−1

w,KR′
w,Kεw

)]

= E
[
tr
(
ε′wRw,K

(
R′

w,KRw,K

)−1
R′

w,Kεw

)]

= E
[
tr
(
Rw,K

(
R′

w,KRw,K

)−1
R′

w,Kεwε′w

)]

= tr
(

E
[
Rw,K

(
R′

w,KRw,K

)−1
R′

w,KE [εwε′w|X]
])

= σ2
w · tr

(
E
[
Rw,K

(
R′

w,KRw,K

)−1
R′

w,K

])

= σ2
w · E

[
tr
(
Rw,K

(
R′

w,KRw,K

)−1
R′

w,K

)]

= σ2
w · E

[
tr
((

R′
w,KRw,K

)−1
R′

w,KRw,K

)]

= σ2
w · tr (IK )

= σ2
w · K

so that the second factor is O
(
K

1
2

)
. Thus equation (5) is op

(
K

1
2 N− 1

2

)
.

Finally, consider equation (6),
∣∣σ−1

w

∣∣
∥∥∥
(
Ω̂− 1

2
w,K − Ω− 1

2
w,K

)
R′

w,Kεw/
√

Nw

∥∥∥

≤ C ·
∥∥∥Ω̂− 1

2
w,K − Ω− 1

2
w,K

∥∥∥
∥∥∥R′

w,Kεw/
√

Nw

∥∥∥
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The first factor is Op

(
ζ(K)K

1
2 N− 1

2

)
by Lemma 0.1 and the continuous mapping theorem, and

E
∥∥∥R′

w,Kεw/
√

Nw

∥∥∥
2

= E
[

1
Nw

tr
(
ε′wRw,KR′

w,Kεw

)]

= E
[

1
Nw

tr
(
R′

w,Kεwε′wRw,K

)]

= tr
(

1
Nw

E
[
R′

w,KE [εwε′w|X]Rw,K

])

= σ2
w · tr

(
E
[
R′

w,KRw,K/Nw

])

= σ2
w · tr (Ωw,K)

≤ σ2
w · K · λmax (Ωw,K)

≤ C · K

so that the second factor is O
(
K

1
2

)
by Assumption XX, Lemma 0.1 (ii) and Markov’s inequality. Thus,

equation (3) is Op

(
ζ(K)KN− 1

2

)
.

Combining these results yields:
∥∥∥∥
[
σ̂2

w,K · Ω̂−1
w,K

]− 1
2 √

Nw

(
γ̂w,K − γ∗

w,K

)
− Sw,K

∥∥∥∥

= Op

(
N

1
2 ζ(K)2K− s

d

)
+ op

(
K

1
2 N− 1

2

)
+ Op

(
ζ(K)KN− 1

2

)

= Op

(
N

1
2 K(2− s

d )
)

+ op

(
K

1
2 N− 1

2

)
+ Op

(
K2N− 1

2

)

All three terms are op(1) by Assumption XX and for s
d > 4ν+1

2ν . �

Proof of Theorem 8.1: From the previous lemma we have that 10

T ∗ ≡
(
Nw ·

(
(γ̂1,K − γ̂0,K) − (γ∗

1,K − γ∗
0,K)

)′ · V̂ −1 ·
(
(γ̂1,K − γ̂0,K) − (γ∗

1,K − γ∗
0,K)

)
− K

)
/
√

2K

converges in distribution to a N (0, 1) random variable, where V̂ is defined as

V̂ ≡ (σ̂2
0,K · Ω̂−1

0,K + σ̂2
1,K · Ω̂−1

1,K).

To complete the proof we must show that under our assumptions |T ∗ − T | = op(1), where T is defined
as

T ≡
(
Nw · (γ̂1,K − γ̂0,K)′ · V̂ −1 · (γ̂1,K − γ̂0,K) − K

)
/
√

2K.

Note that under the null hypothesis µ1(x) = µ0(x) so we may choose the same approximating sequence
γ0
1,K = γ0

0,K for µ0
1,K(x) = µ0

0,K(x). Then,
∥∥γ∗

1,K − γ∗
0,K

∥∥ =
∥∥γ∗

1,K − γ0
1,K + γ0

0,K − γ∗
0,K

∥∥
≤

∥∥γ∗
1,K − γ0

1,K

∥∥+
∥∥γ0

0,K − γ∗
0,K

∥∥
= O(ζ(K)K− s

d ) (A.7)

10For simplicity of notation we assume N1 = N0
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by Lemma 0.5 (iii), and

‖γ̂1,K − γ̂0,K‖ =
∥∥γ̂1,K − γ0

1,K + γ0
0,K − γ̂0,K

∥∥
≤

∥∥γ̂1,K − γ0
1,K

∥∥+
∥∥γ0

0,K − γ̂0,K

∥∥

= Op(K
1
2 N− 1

2 + K− s
d ) (A.8)

by Lemma 0.5 (iv). So then,

|T ∗ − T | =
∣∣∣
(
Nw ·

(
(γ̂1,K − γ̂0,K) − (γ∗

1,K − γ∗
0,K)

)′
V̂ −1

(
(γ̂1,K − γ̂0,K) − (γ∗

1,K − γ∗
0,K)

)
− K

)
/
√

2K

−
(
Nw · (γ̂1,K − γ̂0,K)′V̂ −1(γ̂1,K − γ̂0,K) − K

)
/
√

2K
∣∣∣

=
Nw√
2K

·
∣∣∣
(
(γ̂1,K − γ̂0,K) − (γ∗

1,K − γ∗
0,K)

)′
V̂ −1

(
(γ̂1,K − γ̂0,K) − (γ∗

1,K − γ∗
0,K)

)

−(γ̂1,K − γ̂0,K)′V̂ −1(γ̂1,K − γ̂0,K)
∣∣∣

=
Nw√
2K

·
∣∣∣−2 · (γ̂1,K − γ̂0,K)′ V̂ −1

(
γ∗
1,K − γ∗

0,K

)
+
(
γ∗
1,K − γ∗

0,K

)′
V̂ −1

(
γ∗
1,K − γ∗

0,K

)∣∣∣

≤ Nw√
2K

·
(
2 ·
∣∣∣(γ̂1,K − γ̂0,K)′ V̂ −1

(
γ∗
1,K − γ∗

0,K

)∣∣∣+
∣∣∣
(
γ∗
1,K − γ∗

0,K

)′
V̂ −1

(
γ∗
1,K − γ∗

0,K

)∣∣∣
)

Consider the first term,

2 ·
∣∣∣(γ̂1,K − γ̂0,K)′V̂ −1(γ∗

1,K − γ∗
0,K)

∣∣∣ = 2 ·
∣∣∣tr
(
(γ̂1,K − γ̂0,K)′V̂ −1(γ∗

1,K − γ∗
0,K)

)∣∣∣

≤ 2 · ‖γ̂1,K − γ̂0,K‖ ·
∥∥γ∗

1,K − γ∗
0,K

∥∥ · λmax(V̂ −1)

≤ C · ‖γ̂1,K − γ̂0,K‖ ·
∥∥γ∗

1,K − γ∗
0,K

∥∥ + op(1)

=
(
Op(K

1
2 N− 1

2 + K− s
d ) · O(ζ(K)K− s

d )
)

Where the third line follows from Lemma 0.1 (iii) and Assumption XX. The last line follows from equa-
tions (7) and (8).

Now, consider the second term,
∣∣∣(γ∗

1,K − γ∗
0,K)′V̂ −1(γ∗

1,K − γ∗
0,K)

∣∣∣ =
∣∣∣tr
(
(γ∗

1,K − γ∗
0,K)′V̂ −1(γ∗

1,K − γ∗
0,K)

)∣∣∣

≤
∥∥γ∗

1,K − γ∗
0,K

∥∥2 · λmax(V̂ −1)

≤ C ·
∥∥γ∗

1,K − γ∗
0,K

∥∥2 + op(1)

= O(ζ(K)2K− 2s
d )

Where the third line follows from Lemma 0.1 (iii) and Assumption XX. The last line follows from equa-
tion (7).

So then,

|T ∗ − T | =
N√
2K

·
(
Op(K

1
2 N− 1

2 + K− s
d ) ·O(ζ(K)K− s

d ) + O(ζ(K)2K− 2s
d )
)

= Op

(
N

1
2 ζ(K)K− s

d

)
+ Op

(
Nζ(K)K−( 1

2+ 2s
d )
)

+ O
(
Nζ(K)2K−( 1

2+ 2s
d )
)

For s
d

> 2ν+1
2ν

all three terms are op(1) and the result follows. �
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Table 1: Covariate Balance for Lalonde Data

mean stand. mean Normalized Dif. in Treat. and Contr. Ave’s
dev. contr. treat. all [t-stat] a < e(x) optimal prop score

< 1 − a weights weighted

age 34.23 10.50 34.85 25.82 -0.86 [-16.0] -0.18 -0.25 -0.35
educ 11.99 3.05 12.12 10.35 -0.58 [-11.1] -0.04 -0.08 -0.12
black 0.29 0.45 0.25 0.84 1.30 [21.0] 0.20 0.27 0.37
hispanic 0.03 0.18 0.03 0.06 0.15 [1.5] 0.07 -0.01 -0.08
married 0.82 0.38 0.87 0.19 -1.76 [-22.8] -0.81 -0.79 -0.70
unempl ’74 0.13 0.34 0.09 0.71 1.85 [18.3] 0.78 0.78 1.19
uenmpl ’75 0.13 0.34 0.10 0.60 1.46 [13.7] 0.51 0.47 0.90
earn ’74 18.23 13.72 19.43 2.10 -1.26 [-38.6] -0.20 -0.23 -0.26
earn ’75 17.85 13.88 19.06 1.53 -1.26 [-48.6] -0.14 -0.18 -0.18

log odds ratio -7.87 4.91 -8.53 1.08 1.96 [53.6] 0.42 0.48 0.57
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Table 2: Asymptotic Standard Errors for Lalonde Data

ATE ATT OSATE OWATE

Asymptotic Standard Error 636.58 2.58 1.62 1.29
Ratio to All 1.0000 0.0040 0.0025 0.0020

Table 3: Subsample Sizes for Lalonde Data: Propensity Score Threshold 0.0660

e(x) < a a ≤ e(x) ≤ 1 − a 1 − a < e(x) all

controls 2302 183 5 2490
treated 9 129 47 185
all 2311 312 52 2675
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Table 4: Covariate Balance for Lottery Data

mean standard mean mean Normalized Dif. in Treat. and Contr. Ave’s
deviation controls treated all [tstat] a < e(x) optimal prop score

< 1 − a weights weighted

year won 6.23 1.18 6.38 6.06 -0.27 [-3.0] -0.19 -0.18 -0.19
# tickets bought 3.33 2.86 2.19 4.57 0.83 [9.9] 0.42 0.42 0.86
education 13.73 2.20 14.43 12.97 -0.66 -7.8] -0.47 -0.42 -0.46
work then 0.78 0.41 0.77 0.80 0.08 [0.9] -0.03 -0.01 0.02
male 0.63 0.48 0.67 0.58 -0.19 [-2.1] -0.12 -0.10 -0.13
age won 50.22 13.68 53.21 46.95 -0.46 [-5.2] -0.26 -0.22 -0.38
earn -6 0.01 0.01 0.02 0.01 -0.27 [-3.0 -0.14 -0.15 -0.19
earn -5 0.01 0.01 0.02 0.01 -0.28 [-3.2 -0.17 -0.18 -0.21
earn -4 0.01 0.01 0.02 0.01 -0.30 [-3.6 -0.21 -0.20 -0.25
earn -3 0.01 0.01 0.02 0.01 -0.26 [-2.9 -0.20 -0.19 -0.21
earn -2 0.02 0.02 0.02 0.01 -0.27 [-3.0] -0.21 -0.20 -0.20
earn -1 0.02 0.02 0.02 0.01 -0.22 [-2.5] -0.19 -0.18 -0.17
work -6 0.69 0.46 0.69 0.70 0.03 [0.3] 0.07 0.02 0.05
work -5 0.71 0.45 0.68 0.74 0.14 [1.6] 0.10 0.09 0.12
work -4 0.71 0.45 0.69 0.73 0.09 [1.1] 0.02 0.05 0.10
work -3 0.70 0.46 0.68 0.73 0.13 [1.4] 0.03 0.05 0.11
work -2 0.71 0.46 0.68 0.74 0.15 [1.6] 0.06 0.06 0.15
work -1 0.71 0.45 0.69 0.74 0.10 [1.2] 0.03 0.01 0.17

log odds ratio 0.01 1.97 -1.12 1.25 1.20 [16.4] 0.72 0.67 1.03

Table 5: Subsample Sizes for Lottery Data: Propensity Score Threshold 0.0914

e(x) < a a ≤ e(x) ≤ 1 − a 1 − a < e(x) all

controls 37 216 6 259
treated 4 172 61 237
all 41 388 67 496
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Table 6: Asymptotic Standard Errors for Lottery Data

ATE OSATE OWATE ATT

Asymptotic Standard Error 1.6199 2.7586 1.0918 1.0055
Ratio to All 1.0000 1.7029 0.6740 0.6207

Table 7: Covariate Balance for Gain Data

mean standard mean mean Normalized Dif. in Treat. and Contr. Ave’s
deviation controls treated all [tstat] a < e(x) optimal prop score

< 1− a weights weighted

earn q-1 268 974 214 423 0.21 [ 5.1 ] 0.21 0.17 0.24
earn q-2 297 1033 219 521 0.29 [ 6.8 ] 0.28 0.26 0.39
earn q-3 307 1049 221 554 0.32 [ 7.1 ] 0.30 0.27 0.46
earn q-4 292 1010 208 533 0.32 [ 7.3 ] 0.31 0.29 0.47
earn y-2 1166 3697 750 2363 0.44 [ 9.2 ] 0.42 0.39 0.72
earn y-3 595 2037 363 1262 0.44 [ 9.1 ] 0.42 0.39 0.75
unempl q-1 0.85 0.36 0.88 0.77 -0.30 [ -7.4 ] -0.28 -0.27 -0.31
unempl q-2 0.85 0.36 0.88 0.76 -0.32 [ -8.0 ] -0.30 -0.30 -0.38
unempl q-3 0.84 0.36 0.87 0.76 -0.32 [ -8.0 ] -0.30 -0.29 -0.39
unempl q-4 0.84 0.36 0.88 0.75 -0.35 [ -8.7 ] -0.33 -0.32 -0.43
unempl y-2 0.73 0.44 0.78 0.59 -0.42 [ -10.8 ] -0.38 -0.37 -0.47
unempl y-3 0.81 0.39 0.85 0.69 -0.40 [ -9.9 ] -0.37 -0.37 -0.50
education 8.62 5.01 8.18 9.87 0.34 [ 10.8 ] 0.21 0.21 0.18
age 37.28 8.68 38.48 33.82 -0.54 [ -15.4 ] -0.39 -0.42 -0.43

log odds ratio -1.20 0.82 -1.35 -0.75 0.73 [ 20.2 ] 0.59 0.59 0.76

[33]



Table 8: Subsample Sizes for Gain Data: Propensity Score Threshold 0.0932

e(x) < a a ≤ e(x) ≤ 1 − a 1 − a < e(x) all

controls 366 2629 0 2995
treated 39 999 2 1040
all 405 3628 2 4035

Table 9: Asymptotic Standard Errors for Gain Data

ATE ATT OSATE OWATE

Asymptotic Standard Error 0.1326 0.1286 0.1283 0.1211
Ratio to All 1.0000 0.9697 0.9676 0.9130
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