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Abstract

We consider an extension of conventional univariate Kaplan-Meier type

estimators for the hazard rate and the survivor function to multivariate cen-

sored data with a censored random regressor. It is an Akritas (1994) type

estimator which adapts the nonparametric conditional hazard rate estima-

tor of Beran (1981) to more typical data situations in applied analysis. We

show with simulations that the estimator has nice finite sample properties

and our implementation appears to be fast. As an application we estimate

nonparametric conditional quantile functions with German administrative un-

employment duration data.
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1 Motivation

More and more national governments make samples of administrative individual

data available to the research community. As these data sets are large, applied re-

searchers can use flexible statistical models for detailed data exploration. Existing

estimators, however, are not always applicable because administrative data comes

with important limitations as its data generating process can cause, among other

things, various forms of censoring. The most common example in administrative

data is an individual’s wage, which is not observed below and above a certain limit.

In this paper we suggest simple nonparametric estimators for conditional hazard

rates and conditional quantile functions in the presence of censoring. We demon-

strate that they can be directly applied to German administrative unemployment

duration data.

Economic theory is often not fully conclusive for the specification of an econo-

metric model as results are generally limited to partial effects. Being left without

a full parametrization of the problem, empirical economists commonly apply clas-

sical models that are available in the main econometric software packages. In the

case of unemployment duration these are, for example, the accelerated failure time

or the proportional hazard model. These models impose restrictive conditions on

the relationship between the regressors and the response that may not be met by

the underlying empirical distribution (Koenker and Geling, 2001, Portnoy, 2004,

Fitzenberger and Wilke, 2006). For this reason quantile regression is emerging as a

popular alternative in applied economics, see Koenker and Bilias (2001), Machado

and Portugal (2002), and others. In a (censored) quantile regression framework,

however, the response may depend on the regressors in a variety of ways and it is

difficult in an application to determine an appropriate functional form specification.

For this reason this paper considers nonparametric estimators as they can provide

beneficial information in this respect. In particular, we focus on conditional hazard

rates and conditional quantile functions without imposing shape restrictions on the

conditional density of the response. The resulting estimates provide insights into

whether the shape of the functional is invariant across quantiles or they may de-

tect important nonlinearities. We follow the nonparametric conditional hazard rate
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estimator of Beran (1981) with the main difference that we use a nearest neigh-

bour estimator (Yang, 1981) design. Akritas (1994) considers a similar estimation

strategy and he derives asymptotic properties for this class of estimators.

We aim to convince applied researchers that our estimation strategy is an applica-

ble solution to common empirical problems and take unemployment duration analy-

sis as an example. A small application to German administrative data demonstrates

the applicability of the estimator and it highlights the need for flexible functional

form specifications. We perform simulations to study finite sample performance and

computing time.

2 The Estimator

We consider a model for a pair of random variables (Y, X) with unknown joint distri-

bution, where Y is a discrete response or duration and X is a continuous regressor.

Let C denote a censoring variable. The duration Y and censoring C are assumed

conditionally independent given x. Suppose there are i = 1, . . . , n independent re-

alisations Yi, Xi and Ci. In our data, however, we have i = 1, . . . , n observations

(τi, νi, di), where di is an indicator for censoring of Yi with di = 0 if Yi is censored

and τi = min(Yi, Ci). The censoring of X can be from below and from above. If a

realization of X falls below (or above) a threshold cl (or cu), it is set to any number

xl < cl (or xu > cu):

νi =





xl if Xi < cl

Xi if cl ≤ Xi ≤ cu

xu if Xi > cu.

Let F (y|x) be the distribution function of Y given x and S(y|x) = 1 − F (y|x) is

the conditional survivor function. Let h(y|x) = f(y|x)/S(y|x) be the conditional

hazard rate with f(y|x) as the conditional probability (mass) function. Our aim

is to estimate the unknown conditional hazard rate and the conditional α quantile

function qα(x) = inf{y|S(y|x) ≥ α}.
The well-known classical Kaplan-Meier type estimator for the unconditional haz-
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ard rate of the distribution of Y , h(y), is

hn(y) =

∑n
i=1 1τi=y1di=1∑n

i=1 1τi≥y

, (1)

where 1θ is the indicator function for the event θ. The numerator divided by n

estimates the conditional probability P (Y = y|d = 1) and the denominator divided

by n estimates the survivor function of the response P (Y ≥ y). If in an application

Y is continuous, it may be useful for finite sample reasons to use an evaluation grid

on the support of Y and uniform weights in the neighborhood of each grid point yj.

The ordered grid points yj satisfy yj−yj−1−2∆ = 0 with ∆ > 0. The numerator in

equation (1) is then
∑n

i=1 1τi∈[y−∆,y+∆]1di=1 and the denominator is
∑n

i=1 1τi≥y−∆.

This is in fact rounding of τi towards the closest grid point. Alternatively, one may

use kernel smoothing in the dimension of Y as done by e.g., McKeague and Utikal

(1990) and Van Keilegom and Veraverbeke (2001).

In order to study regression problems with censored data, Beran (1981) suggests

the so-called conditional Kaplan-Meier estimator (see also Van Keilegom, 1998).

Beran assumes for simplicity ordered design points x on [0, 1]. In case of no censoring

his estimator is equivalent to Stone’s (1977) estimator. In the case of uniform weights

1/n it is the univariate Kaplan-Meier estimator.

Our estimation strategy additionally accounts for possible censoring of the re-

gressor. For this reason we adopt the nearest neighbour design of Yang’s (1981)

SNN estimator. The SNN estimator for the density of the marginal distribution of

X, g(x), is defined as:

gn(x) =
1

nbn

n∑
i=1

K

(
Gn(x)−Gn(νi)

bn

)
,

where Gn(x) = (1/n)
∑n

i=1 1νi≤x is the empirical distribution function and bn is a

bandwidth. In our model Gn(x) is a uniformly consistent estimator for the marginal

distribution of x for x ∈ [cl, cu]. The estimator gn has also nice properties for

other censoring schemes of X than considered in this paper if there is a consistent

estimator for the marginal distribution. For example in case of random censoring

of X, one can use the univariate Kaplan-Meier estimator. Yang (1981) shows mean

squared and uniform convergence of gn under several conditions on K and the choice
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of bn. For this reason we assume that K is a continuous density function and the

bandwidth goes to zero as the sample size tends to infinity. We suggest the following

estimator for h(y|x):

hn(y|x) =

∑n
i=1 1τi=y1di=1K

(
Gn(x)−Gn(νi)

bn

)

∑n
i=1 1τi≥yK

(
Gn(x)−Gn(νi)

bn

) (2)

for x ∈ [cl, cu]. The numerator and the denominator estimate the conditional prob-

abilities P (Y = y|d = 1, X = x) and P (Y ≥ y|X = x) which are smoothed in the

dimension of x. While Beran’s (1981) estimator and our estimator can be used for the

same purpose, our implementation is very intuitive and it does not require distinct

values τi. The advantages and disadvantages of Yang’s estimator carry over to the

estimation of conditional hazard rates: it is sufficient to have a consistent estimate

of the rank of the Xi. The SNN smoothing works like a variable bandwidth which

extenuates the boundary problems of the locally constant smoothing approach. We

do not present a rule for the bandwidth choice here, since in exploratory data anal-

ysis an eye ball based bandwidth choice is justifiable. Note that in case of arbitrary

uniform weights K the estimator becomes the conventional Kaplan-Meier estimator.

According to Kaplan and Meier (1958), one can estimate the univariate survivor

function with the product limit estimator:

Sn(y) =
∏
yj≤y

(
1− hn(yj)

)
,

with hn(yj) as defined in equation (1), where yj are the j = 1, . . . , m points of

support of Y . In our framework the S(y|x) can then be estimated by

Sn(y|x) =
∏
yj≤y

(
1− hn(yj|x)

)
, (3)

for x ∈ [cl, cu] and qα(x) can be estimated by

qnα(x) = inf{y|Sn(y|x) ≥ α}. (4)

Akritas (1994) derives asymptotic properties for the estimator of the conditional

survivor function (3). Weak convergence can be established by an appropriate choice
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of the bandwidth and under some technical assumptions. The numerator and the

denominator of our estimator then converge to the conditional probabilities P (Y =

y|d = 1, X = x) and P (Y ≥ y|X = x), respectively. Akritas (1994) also derives

an expression for the covariance function, but it is alternatively possible to use the

bootstrap (Akritas, 1992). We follow the second approach because it appears to be

more simple.

3 Simulation

We analyse the behaviour of estimator (4) for different functional relationships be-

tween X and Y and different distributions of error terms. We draw 500 random

samples of size n = 500 or 5,000 for the models given in table 1. The specifica-

tion of model 2 is adapted from Fan (1992) who investigates the behavior of kernel

estimators in the mean regression model. In the following we focus mainly on the

0.3, 0.5 and 0.7 quantile function. As the kernel function we use the Epanechnikov

kernel K(x) = max{0.75(1− x2); 0}. As Y and C are continuous we round the τi’s

to the first decimal point. We use three different bandwidths to analyze the sensi-

tivity of the estimates with respect to the bandwidth choice. The mean runtime for

one simulation is about 0.5 seconds for 500 observations and 2.5 seconds for 5,000

observations (AMD64 1.4 GHz, 64 Bit Linux, 64BIT Matlab v7.01) where we have

l = 1, . . . , 50 grid points in the interval [cl, cu] and 50 grid points on the support of

y. This is evidently fast enough for real world applications.

In order to investigate the properties of our estimator in presence of a censored

regressor, we censor the distribution of X on both sides. νi = 0 if Xi < 3 and

νi = 10 if Xi > 7. Figure 1 illustrates the distribution of X and ν for one sample

used in the simulation. 5% of the observations are on average affected by this data

manipulation. Figure 2 presents the mean 0.3, 0.5 and 0.7 quantile functions as well

as the 2.5%- and the 97.5%-quantile of the simulation distribution with bn = 0.1

and the true quantile functions. The estimator generally recovers the true shape

of the conditional quantile functions. The bias at both sides of the support of ν is

due to two reasons: first, our estimator fits locally a constant. Therefore we have
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Model Description

1 Y = X + ε, X ∼N(5,1), C ∼N(6.5,0.5)

a) ε ∼N(0,0.5), 10% right censoring of Yi

b) ε ∼exp(0.5), 20% right censoring of Yi

c) ε ∼N(0,0.2X), 10% right censoring of Yi

2) Y = sin(0.75X) + 0.3 · ε, X ∼N(5,1), C ∼N(6.5,0.5)

ε ∼N(0,0.5), 10% right censoring of Yi

Table 1: Models for simulation study.

a boundary bias that starts at a distance of the bandwidth apart of the edge of

observations. Second, Gn is inconsistent below cl and above cu. This aggravates

the boundary bias but it does not affect interior estimates. Since we use the SNN

smoothing we have a variable bandwidth given ν. The low density of ν at the

boundaries implies a larger bandwidth given ν than in the interior of the support of

ν.

Table 2 presents the mean squared error (MSE), the squared bias and variance

of the estimator for the different models. We only present the result for the median

as the results for other quantiles (α = 0.3 and α = 0.7) do not differ remarkably.

The MSE is calculated by using

MSE =
1

500 · 50

500∑

k=1

50∑

l=1

(q̂k(xl)− q(xl))
2.

It is apparent from the table that the estimator has the typical behaviour with

respect to the bandwidth choice. In particular, there is a bandwidth which minimises

the MSE. In our small numerical exercise it takes on the smallest value for bn = 0.1

in all models, but this would certainly not be the case for other simulation designs.
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Model n Bandwidth MSE Bias2 Variance

1a) 500 0.02 0.0307 0.0049 0.0258

0.1 0.0133 0.0038 0.0095

0.2 0.0436 0.0365 0.0071

5,000 0.02 0.0056 0.0019 0.0038

0.1 0.0047 0.0028 0.0019

0.2 0.0404 0.0389 0.0014

1b) 500 0.02 0.0485 0.0289 0.0197

0.1 0.0229 0.0169 0.0060

0.2 0.0541 0.0487 0.0054

5,000 0.02 0.0204 0.0175 0.0029

0.1 0.0153 0.0143 0.0010

0.2 0.0484 0.0473 0.0011

1c) 500 0.02 0.1248 0.0209 0.1041

0.1 0.0394 0.0087 0.0307

0.2 0.0395 0.0221 0.0174

5,000 0.02 0.0339 0.0211 0.0129

0.1 0.0116 0.0076 0.0041

0.2 0.0218 0.0194 0.0024

2) 500 0.02 0.0210 0.0011 0.0199

0.1 0.0039 0.0009 0.0030

0.2 0.0570 0.0034 0.0023

5,000 0.02 0.0028 0.0010 0.0018

0.1 0.0020 0.0013 0.0008

0.2 0.0046 0.0040 0.0006

Table 2: Simulation results for α = 0.5.
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Figure 1: Distribution of X (left) and observed distribution of ν (right) used in the

simulation study.

4 Empirical Results

We estimate conditional quantile functions with a sample of German administrative

individual unemployment duration data. It is extracted from the IAB-Employment

Sample 1975-2001 (IABS-R01) which contains employment trajectories of about

1.1 million individuals from West-Germany and about 200K individuals from East-

Germany. It is a 2% random sample of the socially insured workforce. It contains

daily information about periods of employment subject to social security taxation

and periods of receipt of unemployment compensation. See Hamann et al. (2004)

and Drews et al. (2006) for further details on this data such as the sampling design

and the data structure. For estimation we use the same sample of unemployment

spells that is used by Fitzenberger and Wilke (2007). However, we restrict the

set of regressors to the age, gender and last daily wage before unemployment for

all ”nonemployment” spells starting in 1996 or 1997 in West-Germany. A nonem-

ployment spell contains periods of unemployment compensation transfers and un-

observed periods after an employment period. It requires at least one day of income

transfers and it ends with a transition into employment. Otherwise it is right cen-
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Figure 2: Mean of the simulation estimates of the quantile functions qα(x) for

α=0.3;0.5;0.7 (from bottom to top), the 2.5%- and the 97.5%-bootstrap quantile for

each estimate (dashed lines) and the true model (lighter lines) for 5,000 observations

and a kernel bandwidth b = 0.1.
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sored at the last observed day of income transfers. See Fitzenberger and Wilke

(2004) for more details on the definition of unemployment periods in this data. Our

sample comprises 21, 685 observations with less than 150 individuals generating more

than one spell.

We use the estimator defined in (4) to estimate smooth nonparametric condi-

tional quantile functions of the distribution of unemployment duration conditional

on age or previous wage level. According to our simulations, the bandwidth should

not be too large or too small. After checking that the quality of our results does

not change with small variations in the bandwidth, we decided to use bn = 0.1.

For the estimation of the standard errors we use the bootstrap method by drawing

500 resamples with replacement and plot the 5%− and the 95%- quantiles of the

bootstrap distribution.

Figure 3 shows the estimation results conditional on age for the 0.3-, 0.5- and

the 0.7-quantile for males (left) and females (right) with the 5- and 95%-bootstrap

quantiles for each quantile. While age plays a less important role for the short-term

unemployed men and women, there is a strongly positive influence of age in the

group of the long-term unemployed men. The pattern for the longer unemployed

women isn’t as clear as it is for men, especially not for the 0.7-quantile. According

to Lechner (1997), in Germany the probability of fertility has its maximum between

the age of 26 and 30 in 1995. This fact could offer a possible explanation for the

peak of the curve at the age of 32: At that age, mothers have passed their maternity

leave and claim remaining entitlements for unemployment benefits. However, some

of them may not actually look for a job. Note that both ends of the estimated curves

can have some boundary bias.

For the estimations conditional on the previous daily wage we only use the males.

This is because of some lack of information about part-time work which is rather

frequent for females. The histogram in figure 4 (left) shows the distribution of the

variable ”previous wage”. The value ”0” means an income below and the value

”200” means an income above the social security contribution ceiling (”Beitragsbe-

messungsgrenze”). For this reason we only plot results for the 10%− 90%-quantile

of former income. The right panel of Figure 4 shows a weakly decreasing conditional
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Figure 3: Estimated quantile functions conditional on age (for α = 0.3; 0.5; 0.7

from bottom to top); left: males, right: females; dashed lines: 5%- and the 95%-

bootstrap quantile for each estimate.

0.3 quantile function. At the 0.5 and 0.7-quantiles, the decrease is much stronger

until a previous wage level of 65 Euro per day. As discussed in detail by Fitzen-

berger and Wilke (2007), the much longer long-term unemployment periods for low

wage individuals are probably related with high and almost time invariant wage

replacement rates. The income transfers for this group generally do not decrease

after expiration of unemployment benefits as they often do not exceed the level of

social benefits. It is unlikely that presented estimates have a boundary bias as we

only report them in the range 20-120 EUR.

Biewen and Wilke (2005) and Fitzenberger and Wilke (2007) estimated the semi-

parametric hazard rate model, the accelerated failure time model and Box-Cox quan-

tile regression to similar or the same data. While there is no evident contradiction

between their and our results, we claim that the estimated conditional quantile

functions of this paper give more detailed insights on the conditional distribution of

unemployment duration.
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Figure 4: left: Histogram of the previous wage for males; right: Estimated quantile

functions conditional on the previous wage (for α = 0.3; 0.5; 0.7 from bottom to top)

for males; dashed lines: 5%- and the 95%-bootstrap quantile for each estimate.

5 Conclusion and Outlook

This paper proposes simple nonparametric estimators for the conditional hazard

rate and the conditional quantile function when the distribution of the response

and of the regressor are both censored. Our simulations and our application show

that these estimators are a meaningful and fast tool for data exploration that works

without strong assumptions. Resulting estimates can be used for the specification

of a statistical model of more structure.

There are several interesting topics for future research that may be beneficial for

applied analysis: one could introduce a partially linear approach or one may establish

a link to the approach of Portnoy (2004). One could allow for discrete regressors

or an additive nonparametric structure. In our application we found some evidence

that the conditional quantile functions possess different shapes across quantiles.

Therefore one may also develop a test for shape invariance of those functions. Such

a test would then provide elaborate information whether a more structural model,

such as censored quantile regression, would require different model specifications
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across the quantiles. It would also be straightforward to extend the estimator given

in (2) to multivariate X of dimension k = 1, . . . , D by applying the idea of product

kernels. The estimator for the conditional hazards rates is then

hn(y|x) =

∑n
i=1 1τi=y1di=1

∏
k K

(
Gn(xk)−Gn(νik)

bnk

)

∑n
i=1 1τi≥y

∏
k K

(
Gn(xk)−Gn(νik)

bnk

) .

Note that this estimation strategy, however, suffers from the curse of dimensionality.

For multivariate regressors see also Dabrowska (1995).

References

Akritas, M.G. (1992) Boostrapping the nearest neighbor estimator of a bivariate

function. unpublished manuscript.

Akritas, M.G. (1994) Nearest neighbor estimation of a bivariate distribution under

random censoring. Annals of Statistics, 22, 1299–1327.

Beran, R. (1981) Nonparametric Regression with Randomly Censored Survival

Data. Technical Report, University of California, Berkeley, CA.

Biewen, M. and Wilke, R.A. (2005) Unemployment duration and the length of

entitlement periods for unemployment benefits: do the IAB employment sub-

sample and the German Socio-Economic Panel yield the same results?. All-

gemeines Statistisches Archiv , 89(2), 409–425.

Dabrowska, D.M. (1995) Nonparametric regression with censored covariates. Jour-

nal of Multivariate Analysis, 54(2), 253–283.
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