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SAE and Business Data
I Small area methods are now in wide use

I Geographical areas of interest
I Domains of interest, e.g. NACE classes

I Business data characterized by outliers and skewed
distributions → violation of assumptions

I Relationships between variables may be multiplicative
I Applying transformations may help to recover some of these

assumptions
I Business surveys often based on designs with highly different

weights
I Interaction between designs and models is of crucial

importance
I Estimates for small areas should be coherent with estimates

for aggregates
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Estimators based on transformations

We may assume the following unit-level lognormal-mixed model
(Berg and Chandra, 2012)

log(ydj) = xTdjβ + ud + εdj , d = 1, . . . ,D, j = 1, . . . ,Nd

where xdj includes an intercept and the other components of it are

appropriately transformed. ud
i .i .d .∼ N(0, σ2u) is the domain-specific

random effect and εdj
i .i .d .∼ N(0, σ2ε) the individual error term. The

domain-specific random effect is assumed to be independent from
the error term.
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An optimal predictor

Minimizing the MSE under the unit-level lognormal mixed model
yields the Empirical Bayes predictor

θ̂EBLOG
d =

1

Nd

∑
j∈sd

ydj +
∑
j /∈sd

ŷEBLOG
dj

 (1)

derived by Berg and Chandra (2012). The predictions for the
non-sampled values (j /∈ sd) are given by :

ŷEBLOG
dj = exp

(
xTdj β̂ + ûd + 0.5σ̂2ε(γ̂d/nd + 1)

)
(2)

with γ̂d = σ̂2
u

σ̂2
u+σ̂

2
ε/nd

.
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Area Level Lognormal Model

Assuming that the direct means are lognormally distributed, Slud
and Maiti (2006) propose the following predictor:

θ̂ALLOG
d = exp

(
X̄

T
d β̂ + ûd + 0.5σ̂2u (1− γ̂d)

)
(3)

Estimator (3) corrects for the presence of the random effect but
ignores the variability of the parameter estimates.

Nuremberg, 09/09/2013 | Zimmermann and Münnich | 5 (16) SAE for skewed business data



Motivation
Estimators
Simulation Study
Concluding Remarks

Other Estimators

Design-based / Model-assisted Estimators

I Direct estimator, which is a weighted sample mean

I Generalized Regression Estimators:

θ̂GREGd =
1

N̂d

[ ∑
k∈Ud

ŷk +
∑
k∈sd

wk (yk − ŷk)

]
GREG Linear fixed-effects model used to predict ŷk
MLogGREG Predictions ŷEBLOG

k are used

Benchmarked Estimators
We benchmark estimator (1) against the weighted sample total for
the population to obtain the LOGBench predictor.
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Setup and Design
Results

Dataset

I Our dataset is based on
I the Italian register of enterprises (ASIA 2003)
I and the survey of small and medium enterprises (PMI)

I We focus on the subset of small and medium enterprises
→ about 4.3 million entries

I Our variable of interest is the mean of labour costs in each
domain

I Auxiliary information: Number of employees of each enterprise

I The original datasets were kindly provided by ISTAT
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Setup and Design
Results

Setup

I Strata are cross-classifications of the first digit of the industry
classification, Italian NUTS 1 areas and the classified size
variable in terms of numbers of employees

I As most enterprises in the data set have less than 5
employees, we aggregate the size variable

Group 1 All enterprises with 1 – 5 employees
Group 2 Enterprises with 6 – 99 employees

I Stratum sizes vary between 799 and 364294

I Focus on SME: no take-all stratum

I Total sample size of n = 67,989

I R = 10,000 simulation runs
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Setup and Design
Results

Domains

We consider two types of domains

1. Planned domain structures
Domains as cross-classifications of NUTS 1 and the first digit
of the industry classifcation
D = 45 domains
Domain sizes vary between 6340 and 398874

2. Unplanned domain structures
Domains as cross-classifications of Italy’s 20 regions and the
first digit of the industry classifcation
D = 180 domains
Domain sizes range from 144 to 229873
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Gelman Factors and distribution of weights

Following Münnich and Burgard (2012) the Gelman factor is
defined as the ratio of the largest to the smallest (design) weight:

GF =

max
i=1,...,N

1
πi

min
i=1,...,N

1
πi

Allocation max/min q95/q05 q75/q25
PROP 1.06 1.01 1.00
EQ 455.33 134.95 6.95
OPT 73.38 41.99 18.55
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Relative Bias - planned domains
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RRMSE - planned domains

relative root mean squared error
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Relative Bias - unplanned domains
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RRMSE - unplanned domains

relative root mean squared error
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RRMSE - unplanned domains

relative root mean squared error
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Summary and Outlook

I Model-assisted estimators best choice for planned (large)
domain structurs

I For unplanned domain structures model-based estimators help
to produce more reliable estimates

I In this application benchmarking is desirable for the
estimation at domain level as well

I Incorporating design information may be beneficial for
model-based estimators

I MSE estimation for log-transformed estimators is very
computerintense
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