International Trade and Collective Bargaining Outcomes: Evidence from German Employer-Employee Data

Gabriel Felbermayr $^{(a)}$, Andreas Hauptmann $^{(b)}$, Hans-Jög Schmerer $^{(b)}$

(a) ifo Institute for Economic Research, University of Munich
 (b) Institute for Employment Research (IAB), Nuremberg

CAED 2012, April 27th, 2012

The German wage gap

- Recent decades characterized by rising (residual) wage inequality, also in Germany
- Largely driven by wage growth at the top of the distribution

Source: Dustmann, Ludstek, Schönberg (2009, QJE)

Felbermayr, Hauptmann, Schmerer

The German wage gap

Potential explanations:

- Labor demand shifts
 - Skill biased technological change
 - Outsourcing of less skill intensive production stages
- The exporter wage premium
 - Egger and Kreickemeier (2009, 2010): more productive exporters pay higher wages
 - Rent sharing in combination with the surge in globalization can explain the evolution of wages
 - Empirical evidence: Schank, Schnabel, and Wagner (2009), Klein, Moser, and Urban (2010)
- Changing wage setting structure
 - Weakened bargaining power of the unions

Theoretical background

Egger and Etzel:

- Rent-sharing and sector-specific markups
- Globalization reduces sector-specific markups
- Argument holds for industry and firm level collective agreements
- Skaksen/Egger and Eckel:
 - Outsourcing is a potential threat for unions
 - Firms can discipline unions through outsourcing parts of the production

Our contribution

Our research question:

Is there another channel through which globalization has magnified wage inequality by reducing the bargaining position of the union?

- Rent-sharing subdued in international firms?
- The result hinges on the type of bargaining within the plant
- As theory predicts: the result only appears in the presence of collective bargaining!

The German linked employer-employee (LIAB) data

Person data: Employment statistics

- covers entire population under social security regulation (not self-employed, not some civil servants, ...); about 80-85% of all workers
- Employee's occupation, gross earnings, tenure
- Employee's individual characteristics: gender, age, nationality, education

Plant data: IAB Establishment panel

- Survey of about 1% of all establishments
- Information about plant characteristics: export share, investment, structure of employment, collective agreement coverage
- ► Focus on German manufacturing, between 1996-2007

Felbermayr, Hauptmann, Schmerer

The German linked employer-employee (LIAB) data

Advantages

- Germany: the world's first or second exporter nation in the period 1993-2007; a rich industrialized country
- High quality data (social security data)
- ► Fairly comprehensive data on workers and establishments
- Widely used: Dustman et al. (QJE, 2009); Schank et al. (JIE, 2007); Moser et al. (JIE, 2010); ...

Short-comings

- About 12% of all wages are censored: imputation needed (Gartner & Rässler, 2005)
- Over-sampling of large plants (but weights exist)
- No information on export destinations
- Plant-level (not firm-level) information, no data on within-firm trade

Empirical strategy

Dependent variable: log imputed wage

$$\ln w_{ijt} = \beta_1 \ln \varphi_{jt} + \beta_2 E X P_{jt} + \beta_3 \ln \varphi_{jt} \times E X P_{jt} + \alpha'_1 \mathbf{Z}_{it} + \alpha'_2 \mathbf{Z}_{jt} + \nu_t + \nu_i \times \nu_j + \nu_{ijt}$$

where:

- φ_{jt} is plant productivity/profitability
- EXP_{jt} is plant export share
- ▶ **Z**_{it} collects worker characteristics (age, tenure, skill level)
- Z_{jt} collects plant characteristics (size, capital intensity, shares of high skilled, females and part timers)
- Fixed effects ν_t, ν_i × ν_j (spell effects; take out all time-invariant match-specific characteristics)

Measuring TFP

- Capital stock (Müller, 2008,2010)
 - Investment per type (buildings, machinery, IT, transport equipment) for each plant/year
 - Type-specific sectoral depreciation rates
 - Perpetual inventory method (Müller, 2010)
- Accounting for unobserved productivity shocks
 - semi-parametric method of Levinson and Petrin (2003)
 - intermediate inputs used as proxies
- Regressions
 - Pooled data
 - Separately for exporters and non-exporters
 - Separately by industry
- ▶ How purge TFP measure from skill-composition effects?

Measuring TFP

Iranzo et al. (2008)

Production function

$$Y_{jt} = \varphi_{jt} \cdot K^{\alpha}_{jt} \cdot \tilde{L}^{\beta}_{jt}$$

where:

- $\blacktriangleright \varphi$ denotes total factor productivity
- \blacktriangleright K denotes the plant's capital stock
- Labor is measured in efficiency units as

$$\tilde{L}_{jt} = L_{jt} \cdot E\left(h_1, \dots, h_{L_{jt}}\right)$$

$$E = \left(1/L_{jt} \cdot \sum_{i=1}^{L_{jt}} h_{it}^{\rho}\right)^{1/\rho}$$

 Observed and unobserved components of worker ability measured by h_{it}

Measuring TFP

Iranzo et al. (2008)

2nd order Taylor series expansion around mean ability

$$\ln Y_{jt} \simeq \ln \varphi_{jt} + \alpha \ln K_{jt} + \beta \ln \left(L_{jt} \bar{h}_{jt} \right) + \delta \left(\frac{\sigma_{jt}}{\bar{h}_{jt}} \right)^2$$

• where
$$\delta = \beta \frac{1}{2} \left(\rho - 1 \right)$$

- h
 {jt} and σ{jt} are the first and second moments of ability distribution within each plant
- and approximations $\ln(x+y) \simeq \ln x + \ln(1+y/x) \simeq \ln x + y/x$ have been employed

Estimation of human capital index

Abowd et al. (1999)

$$w_{it} = \bar{w} + \eta \left(x_{it} - \bar{x} \right) + \gamma \left(y_{j(it)} - \bar{y} \right) + \theta_i + \phi_{j(it)} + \varepsilon_{it}$$

- "Person first, employer second" identification
- ▶ w_{i,t}... log of imputed wage
- x_{it}... employer characteristics
- ► $y_{j(it)} \dots$ firm characteristics
- "Grand" means: $ar{w},ar{x},ar{y}$
- Worker fixed effects θ_i; employer fixed effects φ_{j(it)} (identified by "movers")
- Human capital index

$$\hat{h}_{it} = \hat{\eta} x_{it} + \hat{\theta}_i$$

Production function estimates

Dependent variable: Value added (ln)						
	(1)	(2)	(3)	Non- exporter (4)	Exporter (5)	
	OLS	FE	LP	LP	LP	
Employment $ imes ar{h}_{jt}$ (ln)	0.854^{***} (0.010)	0.622^{***} (0.030)	0.692^{***} (0.015)	0.693^{***} (0.021)	0.692^{***} (0.024)	
Capital (ln)	0.157^{***}	0.135^{***} (0.025)	0.167^{***} (0.036)	0.132^{**} (0.053)	0.196***	
$VC(h_{jt})^2$	(0.1252^{**}) (0.126)	(0.152) (0.132)	(0.1000) (0.221^{**}) (0.109)	(0.461^{***}) (0.140)	(0.1810) -0.291 (0.188)	
Observations	21,771	21,771	21,771	9,566	12,011	

Standard errors in parenthesis, * significant at 10%, ** significant at 5%, *** significant at 1%. All estimations include industry and time fixed effects. Estimation methods: OLS is ordinary least squares, FE is fixed effects and LP is Levinsohn and Petrin (2003). Standard errors are clustered at the plant level in columns (1)-(2) and bootstrapped in columns (3)-(5).

Felbermayr, Hauptmann, Schmerer

Main Regression Results

Felbermayr, Hauptmann, Schmerer

International Trade and Collective Bargaining Outcomes

14

First results

Dependent variable: Logarithm of individual daily wage							
	(1) OLS	(2) FE-Spell	(3) OLS	(4) FE-Spell	(5) OLS	(6) FE-Spell	
Exports (share)	0.043*** (0.014)	-0.016 (0.018)			0.049*** (0.014)	0.001 (0.016)	
TFP (ln)		~ /	0.025^{**} (0.010)	0.011^{***} (0.003)	0.026 ^{***} (0.009)	0.011 ^{***} (0.004)	
R ² Plants Observations	0.618 5040 4658595	0.177 5040 4658595	0.620 5040 4658595	0.180 5040 4658595	0.621 5040 4658595	0.180 5040 4658595	

Inclusion of the interaction

Dependent variable: Logarithm of individual daily wage						
	(1) OLS	(2) FE-Spell	(3) OLS	(4) FE-Spell		
TFP (ln)	0.071*** (0.007)	0.029*** (0.006)	0.108*** (0.011)	0.053** (0.021)		
Exports (share)	0.785^{***} (0.111)	0.243^{***} (0.074)				
Exports \times TFP	-0.089^{***} (0.013)	-0.029^{***} (0.009)				
Openness			0.056^{***} (0.018)	0.033 (0.021)		
Openness \times TFP			-0.005^{***} (0.001)	-0.002^{**} (0.001)		
R ²	0.623	0.181	0.622	0.188		
Plants Observations	5040 4658595	5040 4658595	5003 4654547	5003 4654547		

Felbermayr, Hauptmann, Schmerer

Individual vs. collective bargaining

	No collective agreement			Collective agreement			
	OLS	FE-Spell	RE-Spell	OLS	FE-Spell	RE-Spell	
TFP (ln)	0.083***	0.031***	0.045***	0.066***	0.028***	0.041***	
	(0.010)	(0.010)	(0.010)	(0.008)	(0.008)	(0.007)	
Exports (share)	0.287	-0.100	0.018	0.726***	0.244***	0.423***	
	(0.207)	(0.183)	(0.164)	(0.124)	(0.088)	(0.079)	
Exports \times TFP	-0.037	0.008	-0.004	-0.081^{***}	-0.029^{***}	-0.049^{***}	
	(0.026)	(0.023)	(0.020)	(0.015)	(0.011)	(0.009)	
R ²	0.590	0.126		0.597	0.192		
Plants	2626	2626	2626	3302	3302	3302	
Observations	491828	491828	491828	4166767	4166767	4166767	

Dependent variable: Logarithm of individual daily wage

Key findings

- 1. Robust and consistent evidence for rent sharing, but magnitude is relatively small
- 2. Exporter wage premium appears to be small, not always positive
- 3. Wage schedules flatter for exporters
- 4. Accounting for TFP, one finds a robust positive exporter premium
- 5. Rent sharing is lower in firms more exposed to trade
- 6. Results are driven by plants that bargain wages collectively