Simultaneous adoption of technologies: Descriptive cross-country evidence from Europe

Michael Polder Statistics Netherlands

CAED ESSLimit invited session | April 27 2012 | IAB, Nuremberg

With thanks to George van Leeuwen, Eric J. Bartelsman, and ESSLimit Consortium Partners. The views expressed in this paper are those of the author only. This paper contains results from the ESSLimit database. Currently this database is still under construction and figures are preliminary and should not be quoted. Moreover, due to various methodological deviations figures may not necessarily match officially published national totals and should not be treated as such.

eurostat

What drives productivity?

 A_{it} is productivity

 X_{it} are drivers of productivity

What drives productivity?

Hausse of candidate variables for X_{it}

(e.g. Bartelsman and Doms (2000), Syverson (2011))

Our focus...

- Adoption of new technologies
 - Stage 1: adoption decision
 - Stage 2: productivity effects of adoption
- For example:
 - Innovation
 - Product, process, organizational, marketing
 - E-business
 - E-commerce, ERP, CRM, SCM

Stage 1: adoption

- Modelling the adoption of new technologies
 - What drives adoption?
 - Are there (anticipated) complementarities in the adoption phase?

What's driving this?

- Why simultaneous adoption (and why not?)
- Why cross-country/cross-industry differences?
- Two competing theories:

Complementarities in the production process (Milgrom and Roberts)

Cost advantages in simultaneous adoption (adjustment cost, see e.g. Shapiro, 1986, Asphjell et al 2010)

Adoption phase: comparing joint and marginal probabilities

Joint probability A and B:	$Pr(A \cap B)$
Marginal probabilities:	Pr(A) <i>,</i> Pr(B)
Joint probability A and B if independent:	Pr(A) x Pr(B)

'simultaneity ratio' $R(A,B) = Pr(A \cap B)/(Pr(A) \times Pr(B))$

 \rightarrow increase in joint probability with respect to independence

Adoption phase: comparing joint and marginal probabilities

Joint probability A and B:	$Pr(A \cap B)$
Marginal probabilities:	Pr(A), Pr(B)
Joint probability A and B if independent:	Pr(A) x Pr(B)

Expected differences in joint adoption under independence: $Pr(A)_i \times Pr(B)_i - Pr(A)_j \times Pr(B)_j$ for country *i* and *j*

Compare to observed $Pr(A \cap B)_i - Pr(A \cap B)_j$ to assess difference in simultaneous adoption.

Comparing joint and marginal probabilities

SCM vs Product innovation

• cross-country differences:

e.g. complementarity in services in almost all countries but not in UK or FI.

... and complementarity in manufacturing in all countries but not in NO

Testing simultaneity

combination	mean	std. dev.	<i>p</i> -value sign test	Ν
mob vs inpd	1.131	0.210	0.000	48
mob vs inps	1.076	0.204	0.003	48
mob vs orgin	1.069	0.214	0.040	33
mob vs mrkin	1.226	0.194	0.000	27
iterp vs inpd	1.176	0.177	0.000	42
iterp vs inps	1.140	0.180	0.000	42
iterp vs orgin	1.159	0.227	0.049	30
iterp vs mrkin	1.210	0.138	0.000	27
sisc vs inpd	1.164	0.153	0.000	30
sisc vs inps	1.186	0.180	0.000	30
sisc vs orgin	1.252	0.218	0.000	21
sisc vs mrkin	1.221	0.115	0.000	24

Table 3: Sign test for the simultaneity ratio (Pr(R > 1) > 50%))

Exploiting the countryindustry dimension of the dataset, we can test for Pr(R > 1).

... turns out to be significant for all cases considered (MOB, ERP, SCM vs innovations)

Table note: simultaneity ratio = $Pr(A \cap B)/(Pr(A) \times Pr(B))$.

 $Pr(A \cap B)$: the observed probability of joint occurrence of A and B.

Pr(A)×Pr(B): the theoretical probability of joint occurrence if A and B are independent events.

Econometric modelling of joint dependence

Estimation of adoption equations

$$Pr(tech_1 = 1) = f(a_1tech_2, B_1Z_1)$$

 $Pr(tech_2 = 1) = f(a_2tech_1, B_2Z_2)$

where Z_k are drivers of adoption

- multivariate probit model
- (with simultaneous discrete dependent variables)
- Complementarity if $a_1 + a_2 > 0$ (Lewbel, 2007)

Testing simultaneity

			for the N	etherlands (200)8).		,
		product innov	vation	process innov	vation	organizational in	novation
		α	se	α	se	α	se
ICT	ERP	0.070**	0.032	-0.128***	0.035	0.021	0.032
	CRM	0.176***	0.032	-0.026	0.031	0.112***	0.031
	SCM	0.197***	0.046	0.098***	0.035	0.306***	0.038
Ν	2175						
draws	50						

In general we find positive cross-dependence of Ebusiness systems with innovation

Negative crossrelation of ERP with process innovation, no relation with CRM No relation between ERP and organizational innovation

Productivity effects from joint adoption (to do)

 $A_{it} = f(X_{it})$ $f(X_{it}) = \gamma_1 \mathbb{I}[\text{profile}_1] + \gamma_2 \mathbb{I}[\text{profile}_2] + \dots + \gamma_N \mathbb{I}[\text{profile}_N]$

Complementarity:

compare productivity gains of *combined* adoption to *individual* adoption

To be run in all countries

Adoption profiles

- Often observe only 0/1 variable for adoption
- For example: product, process, and organizational innovation
- 8 innovation profiles (2 x 2 x 2)

PROD	PROC	ORG
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Productivity effects from joint adoption

 $f(X_{it}) = \gamma_1 \mathbb{I}[\text{profile}_1] + \gamma_2 \mathbb{I}[\text{profile}_2] + \dots + \gamma_N \mathbb{I}[\text{profile}_N]$

For example,

- gains to joint product-process innovation: γ_{11k} γ_{000}
- gains to individual adoption: $(\gamma_{01k} \gamma_{000}) + (\gamma_{10k} \gamma_{000})$
 - for $k \in \{0,1\}$ (joint organizational innovation yes or no)
- complementarity if
 - $\gamma_{11k} \gamma_{000} > (\gamma_{01k} \gamma_{000}) + (\gamma_{10k} \gamma_{000})$
 - test Kodde-Palm (1984), Lokshin et al. (2011)