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firms’ R&D-experience in the achievement of innovation results. To estimate R&D-
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“Learning is the product of experience. Learning can only take place through the attempt to 

solve a problem and therefore only takes place during activity.” (Arrow, 1962, p.155). 

 

“I advance the hypothesis here that technical change in general can be ascribed to 

experience, that it is the very activity of production which gives rise to problems for which 

favourable responses are selected over time.” (Arrow, 1962, p.156). 

 

 

1. INTRODUCTION 

Among the still scarce empirical literature on the dynamics of firms’ innovation behaviour, 

very recently a new strand of analysis has focused on persistence, or patterns of continuity, 

in innovation activities and results at the firm-level. From a theoretical point of view, there 

are three main hypotheses suggesting why firm innovative behaviour should exhibit 

persistence. First, innovative persistence may result from the existence of sunk costs 

associated with the performance of R&D activities (Sutton, 1991). These costs arise from 

the establishment of an R&D department, the purchasing of specific assets, and/or the 

hiring and training of specialized workforce, and may lead firms to spread innovation 

expenditures over a period of time, causing persistence. The second hypothesis states that 

“success-breeds-success”: past innovations raise the probability to innovate again, i.e., 

innovative success generates profits that may be reinvested in future R&D activities 

(Mansfield, 1968, Stoneman, 1983). Finally, a third hypothesis refers to the existence of 

dynamic increasing returns in innovation. This hypothesis, coming from the evolutionary 

theory, emphasises the cumulative nature of the learning process (Rosenberg, 1976; Nelson 

and Winter, 1982): the generation of knowledge is based on previous knowledge and 

affects future research. This stream of literature considers that innovations are the result of 
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a process of accumulation of firms’ specific competencies (Rosenberg, 1976). In particular, 

by investing in R&D projects, firms develop abilities in the form of knowledge, both 

scientific and informal know-how, which may be used to develop further innovations at 

consecutive times. According to this view, firms benefit from dynamic increasing returns 

in the form of learning-by-doing, learning-to-learn or scope economies in the production of 

innovations (Cohen and Levinthal, 1989). 

The existing empirical studies on innovation persistence have mainly focused on the 

analysis of patterns of continuity in the achievement of innovations, that is, the analysis of 

persistence in innovation output, usually measured as the number of patents and/or major 

innovations (Geroski et al., 1997; Crépon and Duguet, 1997; Malerba and Orsenigo, 1999; 

Cefis and Orsenigo, 2001; Cefis, 2003, Raymond et al., 2006). The analysis of innovation 

persistence in the realization of innovation activities, or input persistence, is still very scarce 

(Máñez et al., 2004, 2006, and Peters, 2005).  

How do the theoretical and the empirical approaches to innovation persistence 

match? On the one hand, it seems that the hypothesis of sunk costs associated with R&D 

investments should imply input persistence, that is, the observation of current R&D 

expenditures will be followed by the observation of future R&D expenditures. In particular, 

the hypothesis of sunk costs has been tested by Máñez et al., 2004, who analyzed 

innovation input persistence using firms’ engagement in R&D activities.  

On the other hand, if the “success-breeds-success” hypothesis suggests that past 

innovations raise the probability to innovate again, we should observe some degree of 

persistence in the achievement of innovations by firms. This approach has been assessed 

using innovation output measures, such as the number of patents or the number of major 

product or process innovations (see, e.g., Flaig and Stadler, 1994, 1998). 
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 Finally, the hypothesis of dynamic increasing returns has been used to justify the 

empirical analysis of both innovation input and innovation output persistence. However, we 

consider that the empirical testing of this hypothesis is more complex and can not be solely 

based on the analysis of persistence of one of these two sides of innovation. As pointed out 

before, the hypothesis of dynamic increasing returns is based on the idea that the learning 

process is cumulative, and that innovations are the result of a process of accumulation of 

firms’ specific competencies, both scientific and informal know-how, which determine 

their capabilities to achieve successful innovations. Therefore, we argue that the empirical 

hypothesis to be tested in this case is whether or not the continuity or persistence in the 

development of R&D activities affects the probability of successful innovation results.  

Following Arrow (1962) and evolutionary theorists, in this paper we hypothesize 

that experience in the process of accumulation of technological knowledge (learning) is one 

of the main sources of dynamic increasing returns in innovation. Innovation experience 

could be defined either as experience in the consecution of innovations, or as experience in 

the realisation of innovative efforts, such as performance of R&D activities. We consider 

innovation experience as experience accumulated through the performance of R&D 

activities, irrespective of the achievement of innovation results in a given period, since the 

process of knowledge accumulation may even result in that “failure-breeds-success”. We 

argue that the time dimension of the cumulative process of R&D knowledge, that is, 

technical skills and learning-by-doing accumulated through time, may not be properly 

measured by the standard inputs considered in the empirical literature, such as R&D 

expenditures or R&D capital stock. Our hypothesis is that R&D-experience, understood as 

time devoted to the performance of R&D activities, is a key driver in the innovation 

success: we consider that the effect of R&D in the achievement of innovations depends on 
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R&D-experience, that is, on the period of time during which the firm has been engaged in 

R&D activities. 

The aim of this paper is not only to address whether or not R&D-experience affects 

the firms’ innovation success, but also to measure R&D-experience effectiveness, that is, to 

determine to what extent the rate at which R&D investments yields innovation output 

depends upon firms’ accumulated R&D-experience.  

To the best of our knowledge, there is a lack of empirical evidence that explicitly 

deals with the measure of R&D-experience effectiveness, although the importance of 

continuity in R&D efforts has been stated in some empirical works. As an example, West 

and Iansiti (2003) assert that experience and experimentation are significantly correlated 

with innovation performance in the semiconductor industry, mainly because experience 

reduces search time and search costs. Their empirical setting (using a sample of 29 research 

projects in the semiconductor industry in the US) relies on a dummy variable indicating if 

the project members have previous experience in technology selection decisions. Still, a 

direct measure of R&D-experience is absent.1  

The lack of empirical evidence in measuring R&D-experience returns is likely to be 

also due to data restrictions: innovation surveys do not usually report, in a retrospective 

way, the number of years the firm has been carrying out innovative activities. In this paper 

we use a representative panel sample of the population of Spanish manufacturing firms for 

the period 1990 to 2002, drawn from the Encuesta sobre Estrategias Empresariales (ESEE, 

henceforth). Although we also lack retrospective information on firms’ R&D histories, we 

pay special attention to the empirical estimation of our measure of R&D-experience. For 

                                                 
1 More indirectly, the work of Griffith, et. al. (2006) suggests the importance of R&D-experience by including 

in their estimation of firms’ productivity an indicator for whether the firm answered yes to conducting R&D 

continuously. The same kind of indicator is used by Raymond, et al. (2006) to explain innovative sales. 
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this purpose, we first analyse firms R&D patterns in order to determine the duration of 

firms’ R&D spells, i.e. periods of time during which firms perform R&D activities in a 

continuous way. The estimation of this duration model allows us to identify firm and 

industry characteristics affecting R&D histories, information which, in turn, is used to 

make an estimation of the R&D-experience measure. Once we have estimated the R&D-

experience of firms, we proceed to estimate, within the framework of an innovation 

production function and using count data models, the influence of firms’ accumulated 

R&D-experience on their R&D innovative effectiveness. In order to do this, we treat R&D-

experience as a moderator variable and investigate how it influences the impact of R&D 

capital on firm innovation success.  

 Our work is also connected with that strand of the empirical literature that has 

focused on the analysis of the relationship between firms’ R&D input (measured as R&D 

capital stock, R&D expenditures, or as the ratio of R&D expenditures to sales or revenues) 

and innovation output (measured, e.g., in terms of patents or productivity). In particular, the 

relationship between innovation, R&D and patents has been surveyed by Griliches (1990), 

who reports a robust R&D-patents relationship at the firm level.2 More recently, the 

availability of CIS surveys has given rise to a number of empirical works that also analyse 

the innovative performance of firms by relating innovation inputs to innovation outputs3. 

However, these empirical studies do not explicitly take into account the possibility that the 

                                                 
2 Among the most well known works are those of Schmookler (1966, ch. 2), Scherer (1965), Bound et al. 

(1984), Hausman, Hall and Griliches (1984), Hall, Griliches and Hausman (1986), Pakes and Griliches (1984), 

Scherer (1983) and Acs and Audretsch (1989). See also Henderson and Cockburn (1993), Branstetter (1996) 

and Crépon et al. (1998). 

3 Some of these works are Klomp and van Leeuwen (2001) for the Netherlands, Smith and Sandven (2001) for 

Norway, Lööf and Heshmati (2001) for Sweden, or Mairesse and Mohnen (2005) and Kremp and Mairesse 

(2004) for France. 
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effectiveness of the innovation inputs changes as firms accumulate experience in the 

performance of their innovation activities.  

 Therefore, this paper is the first attempt to empirically address, in a direct and 

explicit way, the role of firms R&D-experience in their innovation success, and this is the 

main contribution of this paper to the existing literature. To anticipate our results we obtain 

that, after controlling for R&D capital stock and other firms’ individual heterogeneity, 

firms’ R&D effectiveness rises with R&D-experience, that is, with the accumulation of 

technical skills and knowledge that emerge as firms invest in R&D over time. In addition to 

past R&D-experience, we also find that the performance of informal innovation activities, 

and the technological intensity of the industry in which the firm operates, are significant 

determinants in the achievement of innovations. 

 The rest of the paper is organised as follows. In section two we present the 

empirical model and the econometric procedure, where we outline the empirical framework 

we use throughout the paper. Section 3 presents the data. Section 4 is devoted to the 

estimation of firms’ R&D-experience. Section 5 describes the estimation of the innovation 

production function. Finally, section 6 concludes. 

 

2. EMPIRICAL MODEL AND ECONOMETRIC PROCEDURE 

Our main hypothesis to be tested relies on the idea that the effectiveness of R&D activities 

may vary with the R&D-experience of the firm, that is, with the accumulation of 

knowledge that takes place along with the research effort that is undertaken. Technical 

skills and learning-by-doing accumulated with time may not be properly measured by the 

standard R&D inputs considered by the empirical literature that has tried to explain the 

factors underlying the achievement of innovation results. In this paper we attempt to 

measure the extent to which this R&D-experience matters in determining the effectiveness 
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of R&D activities. Our approach is based on the concept of an innovation production 

function that may, in a very general form, be expressed as follows 

 it itN  = f (x , ) β  (1) 

where i refers to the firm and t to the time period, Nit  stands for any chosen indicator of 

innovation outcomes and xit represents the vector of innovation inputs in the equation. A 

usual component of xit are R&D inputs, quite often measured by R&D capital. Our 

innovation production function will differ from the standard one in that the effectiveness of 

R&D capital is specified as a function of the R&D-experience of the firm. In particular, the 

parameter vector β may be decomposed as  

 1 it 2  = [ (E ),  ]β β β  (2) 

where β1 is the parameter that measures the “innovative effectiveness” of the R&D input, Eit 

stands for firms’ R&D-experience, and β2 stands for other inputs’ parameters. Therefore, 

the effect of R&D in the achievement of innovation outcomes depends on R&D-

experience, that is, on the time the firm has been engaged in R&D activities.  

 The econometric approach to estimate the parameters in (1) is conditioned by the 

kind of data used to measure innovation success, that is, the output of the innovation 

process (Nit). By far, the measure used more frequently is the number of patents registered 

by the firm. In this paper, two alternative measures of innovation output will be used: the 

number of patents registered, and the number of product innovations introduced by the firm 

during the period under analysis. These two measures share two common features: both of 

them are event counts (non-negative integers) for unit i during time period t, and in any 

given year many firms do not register patents or do not introduce innovations. 

 It is standard in the literature to assume that the Poisson distribution is a 

reasonable description for count data. According to the Poisson process, research results are 
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the outcome of an unknown number of Bernoulli trials with a small probability of success. 

The basic Poisson probability specification is 

 Pr( ) ( )
!

it itn
it

it it it
it

eN n f n
n

λ λ−

= = =  (3) 

We may model the single parameter of the Poisson distribution function, λ, as a function of 

our explanatory variables, x, and parameters, β, in the standard fashion4  

 it it  = exp(x )λ β  (4) 

It is easily shown that  

 λ βit it it it it itE[N |x ]=Var[N |x ]= =exp(x )  (5) 

so that λit represents the arrival rate of innovations per firm per year and also the expected 

number of innovation outcomes per firm per year. Taking logs in (5) we get 

 it it it itlog E[N |x ]  = log  =  x  λ β  (6) 

If the explanatory variables are used in logs, the estimated β are the elasticities of the 

expected number of innovations with respect to these variables. We will consider xit = (Rit , 

Eit , zit) where Rit is knowledge or R&D capital (derived from the flow of real R&D 

investments),5 Eit is the firm’s R&D-experience, and zit stands for an index of other inputs 

and control variables.  

 In our case, we assume that expression (5) takes the form 

                                                 
4 Note that λit is a deterministic function of xit and the randomness in the model comes from the Poisson 

specification for Nit. 

5 For a discussion on the use and construction of the R&D stock measure (the so-called R&D capital), see, for 

example, Hall and Mairesse (1995). The use of the stock measure has, at least, two advantages as compared 

with the use of R&D flows: it avoids making assumptions about distributed lags while being somewhat 

equivalent to imposing a geometric lag structure, and it prevents from having to drop much of the data in order 

to have a given number of lags in the R&D spending pattern of firms. Details about how we construct this 

stock are given in Table 1. 
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 ( )1
2( ) exp( )Eit

it ititA t R zβλ β=  (7) 

that is, the estimated function has a direct proportionate relationship between the R&D 

capital and innovation counts moderated by a multiplicative set of variables hypothesized 

to shift the distribution of expected innovation results. The impact of R&D capital on the 

rate of innovation is assumed to be a function of the R&D-experience of the firm. This 

function may be non-linear, so in order to allow for a non-linear relationship we assume the 

following quadratic form   

 2
1 0 1 2( )it it itE E Eβ α α α= + +   (8) 

Formally, β1 is defined as the percentage change in innovation output generated by one 

percent change in R&D capital. Thus, this elasticity represents the effectiveness of R&D 

capital, moderated by R&D-experience, in obtaining innovation outputs, such as product 

innovations or patents. Note that α0 would be the standard elasticity parameter if R&D-

experience would not matter for R&D success. In addition, α1 captures the impact of firm’s 

R&D-experience on R&D effectiveness and α2 is the change in the impact of firm’s R&D-

experience on R&D effectiveness. 

Substituting expression (8) into (7) gives  

 
2

0 1 2
2
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exp( )( ) it it

itit it
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and, taking logs, 

 
2

0 1 2 2

2
0 1 2 2

log log ( ) ( )log

log ( ) log log log

= + + + + =

+ + + +
it it it it it

it it it it it it

A t E E R z

A t R E R E R z

λ α α α β

α α α β
 (10) 

 We use equation (10) to examine the effect of firm’s R&D-experience on R&D 

effectiveness. If the estimate of α2 is significantly positive (negative), then the relationship 

between R&D effectiveness and firm’s R&D-experience approximates to a “U-type” 

(inverted “U-type”) relationship. However, if the estimate of α1 is significantly different 
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from zero but the estimate of α2 is not significant, then firm’ R&D effectiveness is a 

monotonically increasing or decreasing function of firm’s R&D-experience. 

In order to proceed further we need to address an important limitation of our 

measure of firms’ R&D-experience. The problem we face is an empirical one: our data set 

does not include (similar to most of innovation surveys) retrospective information about the 

R&D history of firms, that is, when a firm enters the survey we do not have information on 

how many years this firm has been undertaking R&D activities. To see this problem more 

clearly we can have a look at Figure 1 (which will be explained in more detail in section 

4.1). In this figure, the horizontal axis shows the passage of time, and the length of each 

horizontal line shows the time spent on performing R&D activities. If the year 1990 

represents the first year a firm is observed, and the firm reports R&D investment for that 

year, we do not have information on whether the firm has been investing in R&D during 

previous years. This lack of retrospective information brings about a serious limitation to 

our possibility of measuring the R&D-experience of this type of firms. To deal with this 

problem, we implement a procedure to estimate such (left) censored R&D-experiences. Our 

procedure is developed in three consecutive steps: first, we identify the factors underlying 

the length of firms’ R&D-spells, that is, the number of uninterrupted periods of R&D 

activities. To this end, we estimate a discrete time duration model.6 The essence of duration 

models is to analyse the length of time that an individual spends in a relevant state (in our 

case, the length of time a firm performs R&D activities) before experiencing the exit from 

that state to another state (in our case the cease in R&D activities).  

                                                 
6 The nature of our data set lead us to consider time as a discrete variable, not because it is intrinsically 

discrete but because the data in the survey is provided on a yearly basis.  
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 Secondly, once we have the estimates associated with the factors explaining spells 

duration, we proceed to predict the total duration of spells that are still in progress at the 

end of our sample period (right-censored spells). At this stage, we should obtain values for 

two key statistical functions in duration analysis: the hazard function, which in discrete-

time is defined as the probability of transition out of a state at each discrete point in time t 

given survival up to that point, and the discrete-time survival function, ( ) [ ]PrS t T t= > , 

which is the probability that the duration of the spell is higher than t. The mean or expected 

duration of a spell is the sum (in the case of discrete time) of the survival function 

evaluated at survival time 1 up to the maximum survival time (when the survival function 

reaches the value of 0). 

 Finally, we focus on the duration of R&D spells that were in progress at the 

moment the firms were firstly observed in our sample (the left-censored spells). For them, 

we cannot proceed as for right-censored spells because the key statistical measures in a 

duration model are conditional on past information until t, and for left-censored spells we 

do not have this necessary past information. Thus, for this type of spells we carry out a 

matching approach to impute them R&D spells durations non-parametrically. In this final 

step we use the information about both completed spells durations and the estimated total 

durations for right censored spells. Through non-parametric regression (kernel regression) 

we impute to each left censored spell a duration equivalent to a weighted sum of complete 

durations (either originally observed or estimated, as it is the case for right censored spells), 

with weights based on similarities in the firm and industry characteristics used in the 

duration model. 

 To sum up, our empirical procedure will proceed as follows: first, we estimate a 

duration model to identify firm and industry characteristics that affect R&D durations; 

secondly, we predict expected durations for right censored spells; thirdly, we use 
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information on spells duration for observed complete and estimated (right censored) spells 

to impute durations, by non-parametric regression methods, to left-censored spells. Finally, 

once a measure of our R&D-experience variable is available, we estimate a panel count 

data model for our innovation production function. Section 4 presents and explains in more 

depth these empirical steps. 

 

3. DATA 

The data are drawn from the ESEE, a representative annual survey of Spanish 

manufacturing firms carried out since 1990.7 The sampling procedure of the ESEE is the 

following. In the base year, 1990, firms were chosen using a selective sampling scheme 

with different participation rates depending on firm size. All firms with more than 200 

employees (large firms) were requested to participate and the participation rate reached 

approximately 70% of the number of firms in the population. Firms that employed between 

10 and 200 (small firms) were randomly sampled by industry and size strata, holding 

around 5% of the population.8 Important efforts have been made to minimise attrition and 

to annually incorporate new firms with the same sampling criteria as in the base year so 

that the sample of firms remains representative of the Spanish manufacturing industry over 

time. 

The sample used in this paper covers the period 1990-2002. To this sample, we have 

applied the following selection criteria. First, we have dropped out from the data those 

firms which do not respond to the questionnaire in some of the panel years, as well as those 

firms that have experienced any ownership change process such as a merger or absorption. 

Secondly, we have removed firms with missing observations in the R&D variables, and 

                                                 
7 See http://www.funep.es for a more detailed description of the ESEE.  

8 Firms with less than 10 employees in 1990 were not included in the survey. 
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selected those which have undertaken R&D activities at least during one of the observed 

periods. As a result, we are endowed with a sample of 6,627 observations, corresponding to 

671 firms.9  

 

4. THE ESTIMATION OF R&D-EXPERIENCE 

4.1. R&D Duration Model 

Duration models analyse the length of time that an individual spends in a relevant state 

before experiencing the transition to another state. In the case of the study of R&D 

activities, it consists in the analysis of the period of time for which a firm uninterruptedly 

performs R&D activities. The unit of observation in this section is the R&D spell, defined 

as the number of uninterrupted years a firm performs R&D activities. Figure 1 presents our 

observation window (period of time for which we follow firms R&D patterns), 

corresponding to the period 1990-2002, and it provides visual and simplified information 

about the sample distribution, number and types of R&D spells. The total number of R&D 

spells in our sample is 985 spells. 

[Insert Figure 1 about here] 

We refer to censored R&D spells as those spells for which we do not observe their 

initial and/or final date, that is, those spells for which we do not know their exact length. 

We denote with Te (elapsed duration) the length of time from the beginning of the spell still 

                                                 
9 The number of observations in the empirical applications outlined in sections 4 and 5 may vary due to 

additional missing data in the variables used. The details about the data used in each of these applications, as 

well as some descriptive statistics on the variables of interest in each case, will be given in the corresponding 

sections below. 
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in progress at the time the firm is incorporated to the survey, to the year of incorporation.10 

We denote with To (observed duration) the observed spell duration over the observation 

window, and Tr (remaining duration) the length of time from 2002 to the end of the R&D 

spell. The lines in Figure 1 represent the different types of R&D spells firms may exhibit. 

The actual duration of the spell, T*, is measured by the length of the line. There are four 

categories of R&D spells in relation to censoring. The first relates to completed spells (not 

censored), representing the 36.5% of the total number of sample spells, for which their full 

length is known and no problem of either right or left censoring arises (T*=To). The second 

category corresponds to right censored spells (22.2% of the total), for which Tr is not 

observed. Given that the observation window is finite, some spells are still in progress at 

the end of the period analyzed, and therefore, these spells are only partially observed (we 

only observe To from the actual duration T*=To+Tr). In the estimation of duration models 

the likelihood contribution of right censored spells can be easily handled.  

The third category refers to left censored spells (20.4% of the total), for which Te is 

not observed. As an example, consider the year 1990 (starting date of the survey). In this 

year, firms were asked to declare whether or not they invested in R&D activities. However, 

due to the lack of retrospective information on R&D activities performed by the firm 

previously to 1990, the starting date of the spells that were in progress in 1990 is unknown. 

Attempts to correct for left-censoring in empirical applications of duration models are rare, 

mainly because it is a very complex issue due to the lack of information on the value of the 

survival time, i.e., the previous duration of the spell (this is a kind of initial conditions 

                                                 
10 To make simpler the typological representation of spells in Figure 1, we made elapsed duration to coincide 

with unobserved periods before the year 1990. However, for firms incorporated to the survey later than 1990, 

the elapsed duration period reaches the corresponding year of incorporation. 
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problem). The standard approach to handle this problem in the estimation of duration 

models is to discard all left-censored spells.  

Finally, the fourth category corresponds to left-and-right censored spells (20.8% of 

the sample), for which both Te and Tr are unobserved. This censoring case presents the same 

complexity than left censoring and it is usually handled in a similar way. We follow the 

standard approach and in the estimation of our duration model we only use those spells that 

are either complete or right censored (which sum up to 58.7% of total spells). The inclusion 

in the estimation of the duration model of the observed durations of left censored spells and 

left-and-right censored spells would have lead to a well known underestimation of the 

duration of the R&D spells. 

 To choose the appropriate econometric model for estimation we should treat time 

either as continuous or discrete. In general, it is assumed that the transition out from one 

state may occur at any particular instant in time, thus the stochastic process generating 

durations occurs in continuous time. However, as pointed out by Jenkins (2004), survival 

time is not necessarily a continuous variable and, as in our case, it is not intrinsically 

discrete but it is observed in discrete intervals. In the ESEE the data is recorded yearly and, 

therefore, we do not have information on the exact date at which a firm starts or ends an 

R&D spell, we only know (at most) the starting or the exiting year.  

Further, we have to choose a family of duration models, that is, to choose between 

accelerated failure time models and proportional hazard duration models. We select a 

proportional hazard model, where the baseline hazard function (controlling for duration 

dependence) depends only on survival time t and multiplies an exponential component that 

incorporates the explanatory variables (covariates) and it is not a function of survival time t. 

The reason to select a proportional hazard model is threefold. First, it is the most widely 

used formulation in duration analysis. Secondly, it allows for a nice interpretation of the 
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coefficients in the hazard function. That is, in proportional hazard models the estimated 

coefficients are interpreted as the proportionate response of the hazard to a unit change in a 

given covariate. However, this nice interpretation is lost when the model incorporates 

individual unobserved heterogeneity, in which case it is called a mixed proportional hazard 

model. Thirdly, it can be easily extended to include time varying covariates and unobserved 

individual heterogeneity, and it allows treating time both in continuous and discrete terms. 

Therefore, the implemented duration model is a discrete time proportional hazard 

model that aims at capturing the particular nature of the dataset (the econometric procedure 

to estimate this model is explained in Appendix A). This duration model is estimated using 

both completed and right censored spells. We start up for estimation with 579 spells (1666 

observations). After deleting observations for which some of the relevant variables were 

missing, we end up with 1653 observations corresponding to 569 spells. The specification 

of the model includes a number of variables that are considered to be relevant in 

determining the continuity of the performance of R&D activities. In addition, given that the 

duration model is a first step in order to obtain the parameter estimates that will be used for 

prediction purposes in the next sections, we have avoided the inclusion of highly time 

varying variables and/or variables with a clearly increasing or decreasing trend. 

Table 1 presents a definition of all the variables used in the estimation. Among these 

variables we have included industry dummies to control for technological opportunities, 

appropriability conditions and spillovers at the industry level. We have also included a 

dummy variable indicating whether the firm sells in foreign markets, which may capture 

economic opportunities and competitive pressure; the age and size of the firm; its ownership 

structure; its R&D intensity and R&D workforce ratio; and, finally, a measure of regional 

and local spillovers.  

[Insert Table 1 about here] 
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Table 2 shows the estimation results for the discrete time proportional hazard 

cloglog model. We find evidence of unobserved individual heterogeneity given that the 

hypothesis of the unobserved heterogeneity variance component ( 2σ ) being equal to zero is 

rejected at a 7% significance level. Furthermore, once controlling for unobserved individual 

heterogeneity, the duration dependence parameter is not significantly different from zero.  

[Insert Table 2 about here] 

For continuous variables, the interpretation of the estimated coefficients is as 

follows. A positive (negative) coefficient means that if the corresponding covariate 

increases, the hazard risk of ending the spell rises (decreases), and so, the expected duration 

of the R&D spell decreases (rises). The interpretation is analogous for sets of dummy 

variables, but in this case we do not generally refer to increases of the covariates but to the 

way in which the hazard (duration) is affected when the firm belongs to different 

components of each set of dummies. 

According to our results, there are only two industries, Leather and shoes and 

Motors and cars, showing a differential longer R&D spell duration. Exporting firms 

experience longer R&D spells. This may indicate that firms in more competitive markets 

have greater incentives to undertake R&D activities in a continuous way in order to 

maintain market competitiveness and high quality standard products required by 

international markets (Kleinschmidt and Cooper, 1990, and Kotable, 1990). Firms’ age 

increases the probability of experiencing longer R&D spells in a non linear manner. It is 

especially remarkable the effect on spell length for firms between 40 to 50 years old. For 

firms with more than 50 years the effect of age on duration decreases considerably and also 

the significance level with which this coefficient is estimated. These results are consistent 

with Huergo and Jaumandreu (2004) who also found a non linear effect of age and the 

probability to innovate.  
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Regarding the relationship between firm’s size and R&D investments, our results 

confirm that R&D spells of larger firms have lower chances of ending. Arguments related to 

superior firm internal capabilities associated with size, such as exploitation of economies of 

scale and scope, larger market size, lower risk, higher appropriability conditions, financial 

means, etc., are the usual arguments to support a positive association between firm size and 

innovative activities in general. The coefficients corresponding to the two included size 

groups (the excluded one is the group with less or equal to 100 employees) are negative and 

significant, justifying then a lower ending risk and consequently a longer spell duration. 

However, the impact of firm size on the length of the R&D spell is not linear, as the 

comparison of both coefficients suggests that R&D spells of firms with more than 200 

employees (size200) endure better survival prospects than firms between 100 and 200 

employees.11  

Firms that are not legally organized as a limited liability corporation have shorter 

R&D spells. This result is consistent with the hypothesis that these firms are relatively more 

risk averse (as compared to managed firms) and thus less willing to undertake risky 

investments such as R&D activities (Love et al., 1996). 

In relation to R&D intensity and the nature of the R&D investments, we have 

included two different measures. The first is the yearly ratio of R&D expenditure over sales 

and the second the yearly ratio of R&D employees over total number of employees in the 

firm. The greater these two ratios, the more the firm is expected to perform R&D activities 

in a continuous way. Both measures may be capturing the extent of sunk costs in which 

firms incur when undertaking R&D projects (Cohen and Klepper, 1996). According to our 

results, those firms in medium/high R&D intensity industries enjoy R&D spells with longer 

                                                 
11 We obtain that, in absolute value, the negative coefficient of size100200 is significantly smaller than the 

coefficient of size200. 
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survival prospects, as compared to those firms in low R&D intensity industries (the 

coefficient for medium/high R&D intensity is negative and significant at 1% level). As 

regards the ratio of R&D specialized workforce, which may also capture technological 

opportunities, we find a very strong effect in decreasing the risk of ending an R&D spell, 

contributing then to explain longer spells duration. This variable has appeared to be the best 

one in capturing the internal nature of the R&D activities.  

Finally, the literature on R&D has stressed the importance of spillovers on the 

decision to innovate. We find evidence of regional spillovers increasing the R&D spell 

duration. Local spillovers do not seem to be relevant, and industrial spillovers cannot be 

separately identified in the estimation from the industry dummies. 

To conclude this section, we evaluate the goodness of fit of the duration model in 

Table 2. Provided that the hazard function with discrete time has the interpretation of a 

conditional probability (which lies between 0 and 1), we use for this purpose the 

information on predicted hazards. For each firm on each of the survival years of a given 

spell, we use the predicted value of the hazard to classify the firm as a firm ending the spell 

in a particular survival year or continuing the spell at least one more year. Given that the 

hazard is defined as the probability of ending the spell in year t provided the spell has lasted 

until t-1, a firm observation in a given spell is classified as continuing the spell when the 

predicted hazard for abandoning it is lower than 0.5, and as finishing the spell when this 

predicted hazard is higher than 0.5. This classification rule allows classifying correctly 

70.7% of the exit/no-exit statuses for firms’ observations along spells. 

 

4.2 Out- of-sample Prediction for Right Censored Spells 

Once the parameters from the duration model have been estimated, we are interested in 

computing the average duration of right censored R&D spells for firms with different 
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characteristics. To do this, we need to know the shape of the survival function. As Jenkins 

(2004) has noticed, there are not typically closed form expressions for the mean in discrete 

time models, requiring then numerical solutions. In general, 
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Therefore, for right censored spells we may obtain the mean expected duration of the 

spell by predicting the hazard rates, given the values of the covariates and the value of k  

(survival time) in the relevant spell years. This allows generating survival function values 

per spell-years, and aggregating them until the maximum survival time (spell-year in which 

the survival probability is zero). This is what Jenkins (2004) calls “out of sample 

prediction”, which requires from the model a parametric specification of the baseline hazard 

to be able to project to the future, with the model estimates, for right censored spells. 

In our sample there are 219 right censored spells with observed durations from 1 to 13 

years.12 The distribution of observed durations for these spells can be found in Table 3. For 

all these spells we are going to calculate the value of the survival function from survival 

time 1 to survival time 200 (survival time that guaranties that for all the right censored 

spells the survival function value reaches 0). For the observed survival periods, the value of 

that function is calculated with the parameter estimates in the duration model applied to the 

value of the explanatory variables of any given firm in that survival time period. For the 

                                                 
12 The 13 years observed spell length for right censored spells corresponds to firms that were born in 1990, and 

already in this year and in all the subsequent years, including the year 2002, claimed to invest in R&D. 
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non-observed survival periods in the future, we fix the values of the explanatory variables at 

their values in the observed final year (2002 for all of them), with the exception of the 

variable log(t) (log of the survival time) that before taking logs it is increased by one each 

considered extra year of the spell. Among other things, the need to project to the future for 

right censored spells was already conditioning the type of variables to be included in the 

first step estimation (duration model). We tried to capture main characteristics of the firms 

without the inclusion of highly time varying variables and/or variables with a clearly 

increasing or decreasing trend. The only exception was for the variable survival time itself, 

which value should increase by one each spell period. We did the full procedure for all the 

right censored spells, which graphical representation may be found in Figure 2.  

[Insert Table 3 about here] 

[Insert Figure 2 about here] 

Finally, we imputed as the total spell duration for a right censored spell the already 

observed number or years plus the expected duration remaining afterwards. That is, for 

instance, for right censored spells which observed duration is of 13 years we apply the 

formula in (11) to get as expected spell duration  
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(see in Figure 2 the remaining survival function values after the vertical line at survival time 

13 years). The distribution of predicted durations for the right censored spells can be found 

in Table 4. 

[Insert Table 4 about here] 

 

4.3. Non-Parametric Prediction for Left and Left-and-Right Censored Spells 
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In order to impute predicted spell durations for those spells that are either left or left-and-

right censored we proceed as follows. In the case of no censored spells and right censored 

spells we have either the actual spell duration or the (previously obtained) predicted spell 

duration, respectively. Thus, for each spell in these two spell categories we can associate its 

spell duration with a given value of β β+0 ijx  in (A6) in Appendix A.13 From here, and 

according to the differences in the values of β β+0 ijx  for the aforementioned two spell 

categories with respect to the values of β β+0 ijx  for spells that are left or left-and-right 

censored, we can calculate by non-parametric regression (kernel regression) the prediction 

for the spell duration of left or left-and-right censored spells. The intuition behind the 

method is to predict the missing spell duration of any left and left-and-right censored spell 

by weighting the known (or predicted) spell durations for no censored and right censored 

spells, according to the corresponding differences in the linear index of characteristics in 

(A6), that is, β β+0 ijx . Then, the spell duration we are seeking will be a weighted average 

of other spells durations, with higher weights for spells that are close in terms of the value 

of β β+0 ijx , and lower weights for spells that are far in terms of this value. The weighting 

function is going to be a kernel function that is a probability density function which formula 

will be given in Appendix B.  

We first calculate the value of the index β β+0 ijx  associated with each spell. For the 

matching step, the ijx  are not taken at any particular survival time (j) value, but taken as 

fixed during the spell and equal to its mean value over the observed years of the 

corresponding spell. Furthermore, the parameters in the index are the parameter estimates in 

                                                 
13 Given that the individual unobserved heterogeneity component is unknown, the value of ( )lni iu ν≡  in (A6) 

is settled to zero, since the random term iν  has unit mean. 
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the duration model. Consequently, our working index is β β+0̂
ˆ

ix , which can be reduced to 

β̂ix  given that β0̂  is a common constant to all spells. 

 For left and left-and-right censored spells, the conditional expectations ( )* ˆ
i iE T x β  

are replaced by non-parametric estimators ( )* ˆˆ
i iE T x β , such as kernel estimators. In order to 

compute the ( )* ˆˆ
i iE T x β  values, in our application we will use the so-called  Nadaraya-

Watson kernel regression function estimator (details for this estimator are given in 

Appendix B). 

In our sample there are 197 left censored spells, and 205 spells which are left-and-

right censored spells. The distribution of observed durations for these spells can be found in 

Table 5. Observed left censored durations are more concentrated in the low part of the 

durations’ distribution than observed durations for left-and-right censored spells. For all 

these spells we are going to calculate the expected value of the spell duration by the kernel 

regression method just described above.  

[Insert Table 5 about here] 

As we have already stated, we use the information related to the total spell length of 

observed complete spells and the one predicted for right censored spells (a total of 569 

spells, of which 350 are complete and 219 are right censored). The total durations’ 

distribution for these spells can be found in Table 6. For the left and left-and-right censored 

spells, which observed durations are denoted by ,o iT , we use for the implicit matching 

procedure in the non-parametric regression (kernel regression) those observed complete and 

predicted right censored spells with duration equal or higher than ,o iT . The corresponding 

number of matching spells with *
,j o iT T≥  are included in the first column of Table 5. 
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Finally, the distribution of predicted durations for the left and left-and-right censored spells 

can be found in Table 7. 

 

[Insert Table 6 about here] 

[Insert Table 7 about here] 

 

5. ESTIMATES OF THE INNOVATION PRODUCTION FUNCTION 

Using the results of the previous section we estimate the innovation production function. 

Recall from section 2 our estimating equation (10), which takes the form  

 λ α α α β= + + + +2
0 1 2 2log log ( ) log log logit it it it it it itA t R E R E R z  (14) 

Our R&D-experience variable (Eit) is constructed as the sum of the number of years the firm 

has been investing in R&D in the past. For firms undertaking R&D activities the first year 

they are observed, this past history of R&D investments is estimated following the 

procedure in section 4. Control variables in zit include informal innovation-related activities 

carried out by firms, firm size, and the type of industry in which the firm operates according 

to the degree of technological intensity (see the Table 1 for details). Additionally, a time 

trend and its squared value substituting for log A(t) are included. 

 In the estimation we follow the econometric approach pioneered by Hausman, Hall, 

and Griliches (1984), (HHG from now onwards). Their work develops and adapts statistical 

models of counts in the context of panel data to analyze the relationship between patents 

and R&D expenditures. 

 Using the Poisson specification as our starting point, and following HHG, we 

estimate the model under three alternative distributional assumptions: the existence of 

overdispersion in the data, the existence of random firm specific effects, and the existence 

of fixed firm specific effects potentially correlated with the regressors.  
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 One limitation of the Poisson model is the assumption that the variance of Nit equals 

its mean (see equation 5), which neglects the possible existence of ‘overdispersion’ in the 

data. In the presence of such overdispersion, though the estimated parameters will be 

consistent, their standard errors will typically be under-estimated, leading to spuriously high 

levels of significance. After an initial estimation of the Poisson model, we shall consider the 

possibility of such overdispersion. If the results indicate the presence of such overdispersion 

in the data, we will proceed to the estimation of a Negative Binomial (NB) regression 

model. The NB is an extension of the Poisson regression model which allows the variance 

of the process to differ from the mean. One way for the model to arise is as a modification 

of the Poisson model in which λit is re-specified as  

 it it it log  = xλ β ε+  (15) 

where exp(εit) has a gamma distribution with mean 1 and variance α. This is a natural form 

of ‘overdispersion’ in that the overdispersion rate is given by 

 αit
it

it

Var[N ]=1+  E[N ]
E[N ]

 (16) 

If the results render an estimate for α different from zero, we will be rejecting the Poisson 

model against the NB model.  

Both the Poisson and NB models may be changed to allow for fixed and random effects. 

Apparently, these extensions mirror the panel data models for the linear regression model. 

For the fixed effects case the model takes the form 

 λ µ β ε+ +it i it log  =   (  for the NB model)itx  (17) 

where µi is the coefficient of a binary variable indicating membership to the i-th group. The 

difference with linear regression panel data models is that now the model cannot be fit by 

least squares using deviations from group means. Instead, a conditional maximum 

likelihood approach is used which removes µi from (17). The random effects model is 
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 λ β +it it i log  = x v  (18) 

where vi is a random effect for the i-th group such that ive  has gamma distribution with 

parameters (θ,θ). For the NB model, it is assumed that ive  is distributed as gamma with 

parameters (θi , θi), which brings in a model with a parameter that varies across groups. 

Moreover, it is assumed that θi /(1+θi) is distributed as beta (r, s). An estimate for s  

statistically different from zero indicates a variance to the mean ratio, that is, a value for the 

overdispersion ratio, different from one (the Poisson case, see HHH, 1984, pp. 372-373). 

The approach for the NB model is to integrate out the random effect and estimate by 

maximum likelihood the parameters of the resulting distribution. To evaluate the 

convenience of estimating a random effects version of the model, a likelihood ratio (LR) 

test will be performed testing the random effects model versus a pooled estimation of the 

model. Subsequently, a Hausman’s (1978) specification test is used to compare the 

estimated vectors under the random and fixed effects versions of the model, that is, to test 

fixed versus random effects.  

 Before turning to the econometric results, we present in Table 8 the descriptive 

statistics for two firm size groups (firms with 200 employees or less, and firms with more 

than 200 employees), according to the sample procedure of the ESEE. The first column 

shows intervals of years of R&D-experience. For instance, the first interval “1-3 years” 

corresponds to firms that are either in their first, second or third year of R&D-experience. 

This R&D-experience is calculated for each observed period as the sum of past years with 

positive R&D spending, using, at this descriptive stage, only the observed data of firms with 

no problems of left censoring. Thus, what we report in this table are averages of the number 

of product innovations, the number of patents and the R&D-to-sales ratio that firms achieve 

each year when they are in their 1st to 3rd year of R&D-experience, in their 4th to 6th year of 

R&D-experience, and so on.  
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[Insert Table 8 about here] 

 A first comparison between the two size groups suggests that large firms have, on 

average, longer R&D-experience: the percentage of firms in the first interval is above 61% 

in the case of small firms, whereas this percentage is about 49% in the case of large firms. 

Consequently, the percentage of observations in the higher intervals is higher in the case of 

large firms. This could be indicating that R&D-experience is positively correlated with firm 

size, which is consistent with the well established empirical finding of a positive correlation 

of firm size with the probability of performing R&D activities. 

 As regards to the average number of product innovations that firms achieve 

yearly, figures in Table 8 indicate that they rise with R&D-experience. For the group of 

small (large) firms this average number ranges from 0.83 (0.73) in the first three years of 

R&D-experience to 1.42 (1.68) in the highest observed interval of R&D-experience (10th-

13th years). In the case of the average number of patents, similar patterns are observed, 

although for the group of large firms there is a decline between the second and the third 

interval, which is recovered in the last interval. Thus, at a descriptive level, the data in our 

sample show that firms tend to achieve more innovation results as they accumulate years of 

R&D-experience. Finally, the average R&D-to-sales ratio also shows a positive relationship 

with R&D-experience. This ratio goes from 1.82 to 2.75 in the case of small firms, and from 

0.95 to 1.76 in the case of large firms.  

 Therefore, both the average number of our measures of innovation results and the 

R&D effort made by firms seem to increase with firms’ R&D-experience. However, we 

cannot at this stage discern whether we are simply observing the well established and 

intuitive result that higher R&D efforts lead to higher number of innovation results, or 

whether it is the case that R&D effectiveness rises with R&D experience, that is, whether 

each “euro” spent in R&D activities is more effective in achieving innovation results if 
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combined with higher R&D-experience. In order to test this last hypothesis, which is our 

main objective in this paper, we turn to the analysis of our econometric results.  

 The econometric results from estimation for both product innovations and patents 

are reported in Tables 9 and 10, respectively. All regressions include our R&D-capital 

variable and its interactions with R&D-experience and with squared R&D-experience. 

Additionally, our estimation equations include a set of dummy variables accounting for 

other informal innovation related activities carried out by firms (scientific and technical 

services, quality control, imported technology, marketing, design, and other). It has been 

argued that a considerable amount of firms’ innovation output may be the result of these 

informal innovation activities undertaken by firms (Sirrili, 1987). Furthermore, a set of 

control variables such as firm size (in the form of six size dummies), three dummy variables 

that indicate whether or not the firm belongs to a low, medium or high technological 

industry and, finally, a time trend and its square have been included. Details about the 

construction and definition of these variables are given in Table 1.  

 Columns 1 and 2 in tables 9 and 10 report the pooled regressions results both 

under the Poisson and the NB distributional assumptions, respectively.14 In both tables, the 

parameter capturing overdispersion is statistically significant at conventional levels, 

indicating the rejection of the Poisson against the NB model (see columns (2) in both 

tables). Moreover, in column (3), the NB random effects model is estimated and tested 

against the NB pooled model. In this case, the LR test leads to the rejection of the NB 

pooled model. Finally, column (4) reports the fixed effects NB model, and the 

                                                 
14 The number of observations included in each table differs slightly due to missing data in the dependent 

variable. It is also noticeable that the fixed effects estimation drops out part of the sample because the 

conditional method in this case needs at least one observation per firm on the dependent variable to be 

different from zero along the whole period. 
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corresponding Hausman test rejects the null of no-correlated fixed effects. Our econometric 

sequence, therefore, suggests the choice of the estimates of the NB fixed effects model for 

both product innovations and patents as measures of innovation output. 

 A first result in Table 9 is that both R&D-capital and the interaction of R&D-

capital with R&D-experience have positive estimated signs, while the sign of the interaction 

of R&D with squared experience is negative. These results would be suggesting that the 

relationship between R&D effectiveness (here expressed in elasticity form) and R&D 

experience is of an inverted U-type. These results arise regardless of the distributional 

assumptions considered in the estimation, although the coefficients are somewhat lower in 

the panel estimation, that is, in columns (3) and (4). If we take the (statistically significant) 

results in column (4), the corresponding R&D-elasticity would be of a magnitude of 0.043 + 

0.008 ⋅ Eit  - 0.0003 ⋅ Eit
2 . 

 These results indicate that our measure of R&D effectiveness is different for 

firms with different R&D-experience, and that the effectiveness of R&D rises with R&D-

experience, although at a decreasing rate. For instance, in our sample, and for a value of 7 

years undertaking R&D activities (corresponding approximately to the median of the 

sample distribution) the value of the elasticity would be of 0.084, that is, by about a 66% 

larger than the elasticity of a firm that has been undertaking R&D for only one year. 

Moreover, the maximum value of the estimated elasticity, 0.096, corresponds to an R&D-

experience of about 13.3 years, and beyond that value the estimated elasticity decreases.  

[Insert Table 9 about here] 

 Figure 3 illustrates the R&D-capital elasticities for product innovations and 

patents. The R&D-capital elasticity for product innovations is represented in Graph 1. As 

already stated, our estimated elasticity reaches its maximum value between the 13th and 14th 

year of R&D-experience, and decreases for further years of R&D-experience. However, not 
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all points depicted in Graph 1 are equally probable in our sample, and, in particular, 90% of 

the distribution is below 14 years of experience. 

[Insert Figure 3 about here] 

 If we turn now to Table 10, we observe somewhat different results when patent 

counts are taken as our indicator of innovation output. Our preferred results are also those 

from the NB fixed effects estimation but, in this case, the coefficient of the interaction term 

of R&D-capital with R&D-experience is not statistically significant, whereas the coefficient 

of the interaction term of R&D-capital with squared R&D-experience turns out to be 

positive and statistically significant. The formula for the calculus of the R&D-elasticity 

would be now 0.071 + 0.0003 ⋅Eit
2. This R&D-elasticity is monotonically increasing with 

R&D-experience. However, for low levels of R&D-experience, the effect of the interaction 

term above is very small, and it becomes more noticeable as R&D-experience rises. This 

result is illustrated in Figure 3, Graph 2, where the (positive) slope of the curve rises with 

R&D-experience. For a value of 8 years of R&D-experience, which represents 

approximately the median of the sample distribution, the value of the elasticity is about 

26.5% higher than the elasticity of a firm that has been undertaking R&D for only one year. 

We also observe, for instance, that a firm with 14 years of experience has an elasticity 

which is about 82% higher than the elasticity of a firm with only one year of R&D 

experience. Therefore, we obtain that the longer the R&D-experience the higher the value 

of the elasticity, possibly indicating that it is required a lengthy R&D-experience to benefit 

from dynamic economies of scale, but that, once accumulated the necessary knowledge, 

further R&D efforts pay more and more in terms of patents. Thus, our results indicate that 

the effectiveness of R&D-capital changes along the R&D history of the firm, and that the 

results may differ depending on the indicator of innovation results.  

[Insert Table 10 about here] 
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The inverted U-shape of the R&D effectiveness for product innovations could be 

related to a decrease in technological opportunities of the life cycle of the firms’ product. 

However, the joint consideration of the results for product innovations and for patents may 

be interpreted in a more suggestive manner: it might be the case that as firms accumulate 

experience in the development of their R&D activities, they are able to select more 

successfully those innovation projects with more innovative content and thus, more likely to 

be translated into patents. This would explain the joint occurrence of a decreasing R&D 

effectiveness in terms of product innovations but an increasing R&D effectiveness in terms 

of patents as R&D-experience grows.  

The interpretation above would be in line with Beneito (2006), who has highlighted 

how the joint consideration of alternative indicators of innovation output may enrich the 

understanding of R&D performance. Unfortunately the available data do not allow us to 

distinguish the innovative and/or economic content of each of the obtained innovations the 

firm declares to have introduced in a given year. Instead we only know the number of 

innovations obtained, as well as the number of patents registered. With such a detailed data 

the offered interpretation could be tested more accurately. 

 Other complementary results in Tables 9 and 10 that deserve some attention are 

those related to informal innovation activities. In our preferred specification, all the dummy 

variables capturing these informal activities have turned out to be robustly significant. In the 

case of product innovations, all kinds of informal activities contribute to the achievement of 

product innovations, whereas importing technology and marketing is negatively correlated 

with the number of patents obtained by the firm. This negative and significant sign of 

‘assimilation of imported technologies’ in the case of patents might be indicating that the 

more orientated the firm’s technological strategy is towards the import of (already existing) 
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technologies, the lower the propensity to patent innovations. Informal innovation activities 

exhibit in our sample a positive correlation with formal R&D activities, raising the 

estimated R&D-elasticity if they are excluded from the estimation.15 This point is 

remarkable in our sample because of two reasons. On the one hand, in the case of the 

Spanish industry, with a considerable percentage of firms of small and medium size, these 

informal R&D activities may be important for their innovation effectiveness. On the other 

hand, empirical work in this area does not typically include this information in the R&D 

patents relationship, a point that, among others, may help to explain the lower obtained 

magnitude of our R&D elasticities. 

 

6. CONCLUSIONS 

In this paper we have tested the hypothesis that, due to knowledge cumulativeness, the 

period of time during which firms perform R&D activities, which we call R&D-experience, 

is a key determinant of the firms’ innovation success. We have argued that the temporal 

dimension captured by R&D-experience goes beyond the effect of R&D investments. In 

particular, we have tested the hypothesis that the effect of R&D-capital stock in the 

achievement of innovations depends on R&D-experience, that is, the number of years the 

firm has been performing R&D activities. By doing so, this paper has been an attempt to 

contribute to a better understanding of the nature of the cumulative process of learning and 

the importance of experience in the achievement of innovations. 

We have investigated the role of firms’ R&D-experience in the achievement of 

innovations using a representative sample of Spanish manufacturing firms (ESEE) for the 

period 1990-2002. We first have analysed firms R&D patterns in order to determine the 

duration of firms’ R&D spells. For those spells for which, due to data restrictions, the 

                                                 
15 These results are available from the authors upon request. 
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starting year is unknown (left censored spells), we have implemented a three steps 

procedure. First, we have estimated a duration model to identify firm and industry 

characteristics affecting R&D durations; secondly, and as a necessary intermediate step, we 

have used the duration model results to predict expected durations for right censored spells; 

thirdly, the information on complete spells and estimated right censored spells has been 

used to non-parametrically impute durations to left-censored spells. Once we have estimated 

the R&D-experience of firms as described above, we have proceeded to estimate, within the 

framework of a knowledge production function and using count data models, the influence 

of firms’ accumulated R&D-experience on their R&D innovative effectiveness.  

 Our empirical analysis has indicated that, after controlling for R&D-capital stock 

and other firms’ individual heterogeneity, firms’ R&D effectiveness rises with R&D-

experience, that is, with the accumulation of technical skills and knowledge that emerge as 

firms invest in R&D in a continuous way over time. However, the relationship between 

R&D-effectiveness and R&D experience is somewhat different depending on the innovation 

output we consider (product innovations or patents). The results suggest an inverted U-type 

relationship between R&D effectiveness and R&D-experience in the case of product 

innovations, and a monotonic increasing relationship between them in the case of patents. 

Our preferred interpretation for such a result is that, possibly, as firms accumulate 

experience in the development of their R&D activities, they are able to select more 

successfully those innovation projects with more innovative content and thus, more likely to 

be translated into patents. Further investigation with other data sources and more detailed 

information could reinforce this hypothesis. Finally, and in addition to past innovation 

experience, the performance of informal innovation activities and the technological 

intensity of the industry in which the firm operates have also been found to be important 

determinants in the achievement of innovations.  
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 These findings may contribute to a better understanding of the cumulative process of 

learning and the importance of R&D-experience in the effectiveness of R&D investments, 

and may be a guide for policy makers in the design of policy measures to be implemented in 

order to stimulate the production of R&D knowledge. In particular, given that R&D-

experience matters for innovation, our results suggest the convenience of implementing 

measures aimed at inducing firms to engage in R&D activities in a continuous way. Among 

these measures, a technological policy planed within a medium run perspective, or measures 

designed with the aim of creating a stable institutional framework, could help firms to 

persistently perform innovative activities. 
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APPENDIX A. The duration model: econometric methodology. 

 

Time intervals in our data set are of one year. Thus, the interval boundaries are the positive 

integers j=1, 2, 3, 4,…, and the interval j is ( ]1,j j− . For estimation, one R&D spell can 

either be complete ( 1ic = ) or right censored ( 0ic = ). A censored R&D spell i with length j 

intervals contributes to the likelihood function with the discrete time survival function (the 

probability of survival until the end of interval j):  

 ( ) ( ) ( )
1

Pr 1
j

i i ik
k

S j T j h
=

= > = −∏  (A1) 

where { }* *min ,i i iT T C= , and *
iT  is some latent failure time and *

iC  some latent censoring 

time for spell i, and ( )Pr 1 1ik i ih k T k T k= − < ≤ > −  is the discrete hazard (the probability 

of ending the spell in interval k conditional to the probability of survival up to the beginning 

of this interval). A complete spell i in the j interval contributes to the likelihood with the 

discrete time density function (the probability of ending the spell within the j interval):  

 ( ) ( ) ( ) ( ) ( )
1

Pr 1 1 1
1

j
ij

i i ik
kij

h
f j j T j S j S j h

h =

= − < ≤ = − − = −
− ∏  (A2) 

Using (A1) and (A2), the log likelihood function for the sample of spells is: 

 ( )
1 1 1

log log log 1
1

jn n
ij

i ik
i i kij

h
L c h

h= = =

⎛ ⎞
= + −⎜ ⎟⎜ ⎟−⎝ ⎠
∑ ∑∑  (A3) 

Allison (1984) and Jenkins (1995, 2004) show that (A3) can be rewritten as the log 

likelihood function of a binary dependent variable iky  with value one if spell i ends in year 

k, and zero otherwise: 

 ( ) ( )
1 1

log log 1 log 1
= =

= ⎡ + − − ⎤⎣ ⎦∑∑
jn

ik ik ik ik
i k

L y h y h  (A4) 

This allows discrete time hazard models to be estimated by binary dependent variable methods and 

time-varying covariates to be incorporated.  
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Following Prentice and Gloeckler (1978), we assume that hik is distributed as a 

complementary log-log (cloglog) function to obtain the discrete time representation of an 

underlying continuous time proportional hazard: 16  

 
( ) ( )( ) ( )

( ) ( )( )
0

0

log log 1 log log 1

                                 1 exp exp

j ij j ij ij

j ij ij

c h x h x x c j

h x x c j

β β

β β

⎡ ⎤ ⎡ ⎤− ≡ − − = + +⎣ ⎦ ⎣ ⎦

⎡ ⎤⇒ = − − + +⎣ ⎦

 (A5) 

where ( )c j  is the baseline hazard parametrically specified as in a Weibull 

( ( ) ( ) ( )= −1 lnc j q j ),17 and ijx  are explanatory variables (covariates), which may be time-

varying (although constant within intervals). 

Incorporating unobserved heterogeneity, the cloglog model in (A5) becomes  

 ( ) ( ) ( )( )β β⎡ ⎤= − − + + − +⎣ ⎦01 exp exp 1 lnj ij ij ih x x q j u  (A6) 

where ( )lni iu ν≡ , and νi originally enters the underlying continuous hazard function 

( ) ( ) β β ν+= 0
0, exp itx

it ih t x h t  multiplicatively. It is standard to assume that ν is Gamma 

distributed with unit mean and variance 2σ , to be estimated from the data (Meyer, 1990).18  

                                                 
16 Given that we are interested in a proportional hazard specification with duration data observed discrete but 

with an underlying continuous time generating process, the complementary log-log function is the most 

appropriate one. 

17 If q>1, that is, if (q-1)>0, there is positive duration dependence, what means that survival time increases the 

risk of ending the R&D spell. If q<1, that is, if (q-1)<0, there is negative duration dependence, what means 

that survival time decreases the risk of ending the R&D spell. If q=1, that is if (q-1)=0, there is not duration 

dependence. 

18 An up-to-date Stata program drawn up by S. Jenkins that implements the cloglog with gamma distributed 

unobserved heterogeneity is available from http://www.bc.edu/RePEc/bocode/p or it can also be obtained, 

inside the Stata program, by typing “ssc install pgmhaz8”. An initial version of the program was presented in 

Jenkins (2001). 
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Not controlling for unobserved individual heterogeneity may cause two problems. First, the 

degree of negative (positive) duration dependence in the hazard (the parameter estimate for 

(q-1)) is over-estimated (under-estimated). This is the result of a selection process. For 

instance, with negative duration dependence, individuals with high ν-value finish the spell 

more rapidly. Then, as time goes by, a higher proportion of individuals with low values of ν 

remain in the spell, which implies a lower hazard. Secondly, positive (negative) β  

parameters are under-estimated (over-estimated). 

 

 

APPENDIX B. The kernel regression function estimator: the Nadaraya-Watson model. 

 

 According to the Nadaraya-Watson kernel regression function estimator the corresponding 

non-parametric regression function estimator of ( )* ˆˆ
i iE T x β  is 
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which are leave-one-out kernel estimators constructed without *
iT  being used in estimating 

( )* ˆˆ
i iE T x β . This is convenient both theoretically and for our particular application of the 

method, given that we do not observe *
iT  for left and left-and-right censored spells.  

In order to apply this method, one needs to choose the kernel function K  and a particular 

bandwidth parameter cN .  We implement a univariate second order bias reducing kernel of 

Bierens (1987), corresponding to a normal probability density function of the form: 
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( )

'

1

1,2

ˆ ˆ ˆ ˆ1exp
2ˆ ˆ

2 det

i j i j

N N
i j

N

x x x x
c cx x

K
c

β β β β

β β

π

−
⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎜ ⎟− Ω⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎛ ⎞− ⎝ ⎠ ⎝ ⎠⎝ ⎠=⎜ ⎟⎜ ⎟ ⋅ Ω⎝ ⎠

 (B2) 

where Ω  is a positive definite matrix . We specify Ω = ,V  where V  is the sample variance 

matrix; that is, ( ) ( )'
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We will now focus on the problem of the bandwidth selection. We need the convergence 

rate of ( )* ˆˆ
i iE T x β  to the true value to be faster enough. According to Bierens (1987), the 

best uniform consistency rate for a univariate kernel of order two is obtained for 

1 6
Nc c N −= ⋅ , and so we use this form in the estimation.19 Therefore, the bandwidth 

selection problem is reduced to choosing the constant c . In our application, the constant 

part of the bandwidth was chosen to be equal to 1. There was no serious attempt at choosing 

c  optimally, but we avoided values which could entail extreme bias or variability. 

 

                                                 
19 If we were focused on convergence in distribution, the optimal rate would have been obtained by setting 

1 5−= ⋅Nc c N . 
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Figure 1: Sample distribution, number and types of R&D spells 

 

 
 

 

Figure 2: Out of sample prediction of the survival function 
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Figure 3. R&D-capital elasticities 
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Table 1. Variable definitions for the duration model 

Ln(t) Ln of spell duration in years 

Industry dummies Industry dummies accounting for 20 industrial sectors of the NACE-93 
classification. See Table 2 for the classification of industries. 

International market Dummy variable taking value 1 if the geographic limits of the firm main 
market are foreign or both national and foreign, and 0 otherwise. 

Age5 Dummy variable taking value 1 if the firm mean age during the spell is 
smaller or equal than 5 years, and 0 otherwise. 

Age510 Dummy variable taking value 1 if the firm mean age during the spell is 
greater than 5 and smaller or equal than 10 years, and 0 otherwise. 

Age1020 Dummy variable taking value 1 if the firm mean age during the spell is 
greater than 10 and smaller or equal than 20 years, and 0 otherwise. 

Age2030 Dummy variable taking value 1 if the firm mean age during the spell is 
greater than 20 and smaller or equal than 30 years, and 0 otherwise. 

Age3040 Dummy variable taking value 1 if the firm mean age during the spell is 
greater than 30 and smaller or equal than 40 years, and 0 otherwise. 

Age4050 Dummy variable taking value 1 if the firm mean age during the spell is 
greater than 40 and smaller or equal than 50 years, and 0 otherwise. 

Age50 Dummy variable taking value 1 if the firm mean age during the spell is 
greater than 50 years, and 0 otherwise. 

Size100 Dummy variable taking value 1 if the firm number of workers is smaller or 
equal than 100, and 0 otherwise. 

Size100200 Dummy variable taking value 1 if the firm number of workers is greater 
than 100 and smaller or equal than 200, and 0 otherwise. 

Size200 Dummy variable taking value 1 if the firm number of workers is greater 
than 200, and 0 otherwise. 

No Corporate Dummy variable taking value 1 if the firm is not a limited liability 
corporation, and 0 otherwise. 

Med/High R&D intens. Dummy variable taking value 1 if the firm’s R&D intensity (R&D 
expenditure to sales ratio) belongs to the second and third thirds of the 
sample R&D intensity distribution, and 0 otherwise. 

R&D workers ratio Ratio of R&D workers to total number of workers. 

Regional spillovers Ratio of firms that perform R&D in the same region but outside the 
corresponding two digit NACE-93 industry. 

Local spillovers Ratio of firms that perform R&D in the same region and the same two digit 
NACE-93 industry. 
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Table 1 (continued). Variable definitions for the count data model 

Patents Number of patents registered during the year both in Spain and abroad. 

Product innovations Number of product innovations introduced by the firm during the year. 

Scientific/technical 
services 

Dummy variable taking value 1 if the firm has undertaken services of 
scientific and technical information, and 0 otherwise. 

Quality control Dummy variable taking value 1 if the firm has undertaken works of 
normalisation and quality control, and 0 otherwise. 

Imported technology Dummy variable taking value 1 if the firm has undertaken efforts to 
assimilate imported technologies, and 0 otherwise. 

Marketing Dummy variable taking value 1 if the firm has undertaken marketing 
studies orientated to the commercialisation of new products, and 0 
otherwise. 

Design Dummy variable taking value 1 if the firm has undertaken design activities, 
and 0 otherwise. 

Other Dummy variable taking value 1 if the firm has undertaken other informal 
innovation activities, and 0 otherwise.  

Low technological sector Dummy variable taking value 1 if the firm belongs to a low technological 
intensity sector: meat products; beverages; textiles; leather and shoes; 
wood; paper; printing; non metallic minerals; metallic products; furnitures; 
other manufacturing goods. 

Medium technological 
sector 

Dummy variable taking value 1 if the firm belongs to a medium 
technological intensity sector: food and tobacco, rubber and plastic; 
metallurgy; machinery and mechanical equipment; electronic. 

High technological 
sector 

Dummy variable taking value 1 if the firm belongs to a high technological 
intensity sector: chemical products; office machines; electronic; other 
transport material. 

E: R&D-experience Number of years the firm has been investing in R&D in the past. For firms 
undertaking R&D activities the first year they are observed, this past 
history of R&D investments is estimated following the procedure in section 
4. 

Size1 Dummy variable that equals 1 if the number of employees of the firm is 
below or equal to 20, and 0 if otherwise. 

Size2 Dummy variable that equals 1 if the number of employees of the firm is 
above 20 and below or equal to 50, and 0 if otherwise. 

Size3 Dummy variable that equals 1 if the number of employees of the firm is 
above 50 and below or equal to 100, and 0 if otherwise. 

Size4 Dummy variable that equals 1 if the number of employees of the firm is 
above 100 and below or equal to 200, and 0 if otherwise. 

Size5 Dummy variable that equals 1 if the number of employees of the firm is 
above 200 and below or equal to 500, and 0 if otherwise. 

Size6 Dummy variable that equals 1 if the number of employees of the firm is 
above 500, and 0 if otherwise. 

K: R&D-capital The knowledge capital derived from the firm’s R&D investment follows the 
historical or perpetual inventory method:  

Kit  = (1- δ) Kit-1 + Rit-1     
where δ is the rate of depreciation, K is the R&D-capital stock and R are 
real R&D expenditures (current R&D has been deflated using industrial 
prices for the whole manufacturing industry). 
To calculate the R&D-capital according to the equation above we need an 
initial value for R to start the recursion. We use for that purpose the 
information about the number of years the firm has been undertaking R&D 
activities, that is the firm’s R&D-experience, that comes from the 
estimation and predictions explained in section 4. By backwards induction, 
the sequence of past R&D expenditures can be imputed till the first year of 
R&D activities, when the initial R&D-capital stock is equal to zero. The 
R&D-capital is defined for a depreciation rate of 15 percent and a pre-
sample growth rate of real R&D investment equal to the mean growth rate 
for the firms which perform R&D activities and are observed during the 
sample period, that is g = 4,5%. 
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Table 2. Maximum likelihood estimates for  
the discrete time proportional hazard model 

cloglog with Gamma individual unobserved 
heterogeneity and Weibull type duration dependence 

 
 Coefficientsa p-value 
Ln(t) 0.305 0.72 
Food and tobaccob -1.189 0.23 
Beverages -1.673 0.15 
Textiles -1.385 0.21 
Leather and shoes -2.747* 0.08 
Wood  -2.579 0.11 
Paper  -1.739 0.16 
Printing  -0.395 0.70 
Chemical products -1.983 0.11 
Rubber and plastic  -1.876 0.19 
Non metallic miner  -1.618 0.17 
Metallurgy  -0.077 0.94 
Metallic products -0.858 0.38 
Machin. and mech. eq. -1.376 0.23 
Office machines -1.026 0.57 
Electronic  -2.137 0.12 
Motors and cars  -2.244* 0.09 
Other transp. material -0.756 0.51 
Furniture -1.789 0.20 
Other manufact. goods -1.580 0.30 
International market -0.383* 0.06 
Age510 -1.076** 0.03 
Age1020 -1.012** 0.05 
Age2030 -1.732** 0.03 
Age3040 -1.865** 0.03 
Age4050 -2.882** 0.04 
Age50 -1.631* 0.06 
Size100200 -0.763* 0.10 
Size200 -0.989*** 0.01 
No Corporate 0.636* 0.09 
Med/High R&D intens. -0.714*** 0.01 
R&D workers ratio -4.860** 0.04 
Regional spillovers -1.571** 0.05 
Local spillovers -0.235 0.61 
Intercept 3.666 0.11 
   
Log likelihood -717.008  
N. of observations 1653  
N. of spells 569  
Test for unobserved 
individual heterogeneity 
 

LR test of Gamma variance=0
Chibar2(01)= 2.152 
p-value =0.07 

a (***), (**), and (*), means statistically different from
zero at the one, five, and ten-percent significance level. 
b The meat industry is the reference category. 
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Table 3. Distribution of observed durations (To) 
for right censored spells 

To 

Number of 
spells % 

1 61 27.85 
2 31 14.16 
3 19 8.68 
4 20 9.13 
5 18 8.22 
6 12 5.48 
7 13 5.94 
8 10 4.57 
9 7 3.20 
10 10 4.57 
11 5 2.28 
12 11 5.02 
13 2 0.91 

Total 219 100 
 
 
 
 

Table 4. Distribution of predicted durations  

( )( )*
iE T  for right censored spells. 

To 

Number of 
spells % 

2 27 12.33 
3 31 14.16 
4 24 10.96 
5 26 11.87 
6 17 7.76 
7 21 9.59 
8 13 5.94 
9 15 6.85 
10 7 3.20 
11 10 4.57 
12 5 2.28 
13 11 5.02 
14 3 1.37 
16 2 0.91 
17 1 0.46 
19 2 0.91 
21 1 0.46 
33 1 0.46 
37 1 0.46 
41 1 0.46 

Total 219 100 
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Table 5. Distribution of observed durations (To) for left and both left/right censored spells 

 
Left and both left/right 

censored spells 
Left censored spells Both left/right censored 

spells 
To 

(Number of matching spells 

( )*
,T Tj o i≥ )a 

Number of 
spells % 

Number of 
spells % 

Number of 
spells % 

1 (569) 59 14.68 59 29.95   
2 (381) 40 9.95 35 17.77 5 2.44 
3 (274) 100 24.88 33 16.75 67 32.68 
4 (208) 30 7.46 25 12.69 5 2.44 
5 (161) 16 3.98 16 8.12   
6 (121) 29 7.21 8 4.06 21 10.24 
7 (100) 10 2.49 6 3.05 4 1.95 
8 (75) 2 0.50 2 1.02   
9 (61) 6 1.49 4 2.03 2 0.98 
10 (45) 5 1.24 4 2.03 1 0.49 
11 (38) 4 1.00 4 2.03   
12 (28) 7 1.74 1 0.51 6 2.93 
13 (23) 94 23.38   94 45.85 
Total 402 100 197 100 205 100 

a For left and left-and-right censored spells, which observed durations are denoted by ,To i , we use for the implicit 

matching procedure in the non-parametric regression (kernel regression) those observed complete and predicted 

right censored spells with duration equal or higher than ,o iT . 

 
Table 6. Distribution of observed complete durations  

and predicted right censored durations 

To 

Number of 
spells % 

1 188 33.04 
2 107 18.80 
3 66 11.60 
4 47 8.26 
5 40 7.03 
6 21 3.69 
7 25 4.39 
8 14 2.46 
9 16 2.81 
10 7 1.23 
11 10 1.76 
12 5 0.88 
13 11 1.93 
14 3 0.53 
16 2 0.35 
17 1 0.18 
19 2 0.35 
21 1 0.18 
33 1 0.18 
37 1 0.18 
41 1 0.18 

Total 569 100 
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Table 7. Distribution of predicted durations  

( )( )*
iE T  for left and both left/right censored spells 

To 

Number of 
spells % 

2 8 1.99 
3 23 5.72 
4 41 10.20 
5 32 7.96 
6 47 11.69 
7 49 12.19 
8 28 6.97 
9 28 6.97 
10 14 3.48 
11 7 1.74 
12 11 2.74 
13 8 1.99 
14 55 13.68 
15 16 3.98 
16 12 2.99 
17 10 2.49 
19 3 0.75 
20 1 0.25 
25 3 0.75 
26 2 0.50 
29 2 0.50 
32 2 0.50 

Total 402 100 
 
 



 
 
 
 
 

Table 8. Descriptive statistics on R&D-experience and innovation results. 
  

Firms with ≤ 200 employees 
  

Firms with > 200 employees 
Intervals of 

R&D-
experience 

 (years) 

 
N.obs. 
 (%) 

Average 
number of 
product 

innovations 
in each year  

Average  
number 
patents 

registered 
in each 

year 

 

sales
D&R

 

  
N.obs. 
 (%) 

Average 
number 
product 

innovations 
in each 

year 

Average  
number 
patents 

registered 
in each 

year 

 

sales
D&R

 

          
1 – 3 years 381 

 (61.75 %) 
0.83 0.05 1.82  163  

(48.95 %) 
0.73 0.51 0.95 

4 – 6 years 149 
(24.25 %) 

1.05 0.05 1.77  88 
(26.43 %) 

0.76 0.69 1.39 

7 – 9 years 68 
(11.02 %) 

1.04 0.08 1.90  52 
(15.62 %) 

1.11 0.34 1.44 

10 – 13 years 19 
(2.90 %) 

1.42 0.09 2.75  30 
(9.0 %) 

1.68 0.60 1.76 

          
Total 617     333    

 



 
Table 9. Estimates of the Innovation Production Function. 

 PRODUCT INNOVATIONS 
 Poisson 

(pooled) 
Neg. Bin. 
(pooled) 

Neg. Bin. 
(random eff.) 

Neg Bin. 
(fixed eff.) 

 (1) (2) (3) (4) 
log  K .064**   (.003) .064**   (.016) .047**    (.011) .043**   (.011) 
log K × E .014**   (.7e-03) .010**   (.003) .007**    (.002) .008**   (.002) 

log K × E2 -.8e-03**(.4e-05) -.6e-04**(.2e-04) -.3e-04**(.1e-04) -.3e-04**(.1e-04) 
size2 .805**   (.023) .470**    (.117) .015       (.091) .036      (.098) 
size3 .576**   (.027) .489**    (.150) .013       (.115) .008      (.125) 
size4 .259**   (.028) .240*     (.141) .221**    (.109) .188      (.120) 
size5 -.089**  (.026) -.021     (.124) -.270**   (.101) -.325**  (.112) 
size6 -.428**  (.034) .007**    (.168) -.035      (.129) -.037     (.144) 
cient./tecnic. services .234**   (.016) .048      (.088) .234**    (.056) .237**   (.059) 
quality control -.731**  (.015) -.558**  (.090) .165**    (.057) .163**   (.060) 
imported tech. .250**   (.017) .128      (.105) .087       (.061) .130**   (.064) 
marketing .171**   (.016) .207**   (.094) .235**    (.059) .213**   (.061) 
design .900**   (.015) .764**   (.086) .267**    (.056) .181**   (.058) 
other -.001     (.049) -.160     (.307) .545**    (.161) .540**   (.166) 
med. tech. sectors -.865**  (.020) -.619**  (.095) .207**    (.072) .194 **  (.077) 
high tech. sectors -.563**  (.020) -.309**  (.110) .455**    (.081) .481**   (.087) 
trend -.082**  (.008) .059      (.047) .024       (.029) .028      (.030) 
trend2 .003**   (.5e-03) -.003     (.003) -.002      (.002) -.003     (.002) 
intercept .459**   (0.036) .023      (.187) -2.18**   (.129) -2.11**  (.135) 
N. obs (N.firms) 6464  (670) 6464  (670)  6464 (670) 5094  (510) 
log likelihood -53383.9 -10058.8 -8977.2 -6451.1 
parameter ≠ 0  
indicates overdispersion 

7.860** 
(0.209) 

1.246** 
(0.112) 

 

LR test pooled vs. random effects.  1965.57 
p-value: 0.000 

 

Hausman test of correlated fixed effects  89.27 
p-value: 0.000 

Standard errors in parenthesis.  ** significant at 1% level;  * significant at 5% level 
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Table 10. Estimates of the Innovation Production Function. 

 PATENTS 
 Poisson 

(pooled) 
Neg. Bin. 
(pooled) 

Neg. Bin. 
(random eff.) 

Neg Bin. 
(fixed eff.) 

 (1) (2) (3) (4) 
log  K .139**    (.010) .056**   (.016) .088**   (.021) .071**   (.022) 
log K × E .005**    (.001) .008      (.005) -.003     (.003) -.003     (.003) 

log K × E2 -.5e-05   (.5e-05) -.1e-04**(.2e-04) .3e-04*(.16e-04) .3e-04**(.1e-04) 
size2 .693**    (.106) .550**   (.211) .151      (.202) .019       (.232) 
size3 1.024**  (.111) 1.096** (.260) -.081     (.263) -.202      (.300) 
size4 .599**    (.110) .853**   (.238) .300      (.232) .078       (.268) 
size5 1.300**  (.099) 1.455** (.213) .266      (.213)  .017      (.250) 
size6 .674**    (.109) 1.156** (.266) .169      (.248) -.080      (.284) 
cient./tecnic. services .573**    (.039) .298      (.161) .361**   (.111) .348**    (.118) 
quality control -.078*    (.044) -.160     (.145) .258**   (.113) .286**    (.121) 
imported tech. -.303**  (.040) -.288     (.176) -.237**  (.114) -.215*    (.119) 
marketing .364**    (.038) .525**   (.155) -.267**  (.107) -.352**   (.111) 
design .363**    (.037) .929**   (.138) .371**   (.104) .224**    (.109) 
other -.309*    (.176) -.525     (.510) 1.159** (.359) 1.35**    (.381) 
med. tech. sectors -.199**  (.051) -.116     (.152) .179      (.146) .204       (.160) 
high tech. sectors .597**   (.044) .391**   (.187) .211      (.149) .182       (.158) 
trend -.273**  (.021) -.235**  (.078) -.155**  (.052) -.134**   (.053) 
trend2 .011**    (.001) .011**   (.005) .006*     (.003) .004       (.003) 
intercept -2.75**  (.123) -2.44**  (.321) -1.98**  (.261) -1.579** (.185) 
N. obs (N.firms) 6627  (671) 6627  (671)  6627 (671) 2261  (219) 
log likelihood -9415.49 -3437.0 -3007.4 -1870.4 
parameter ≠ 0  
indicates overdispersion 

17.801** 
(0.946) 

0.256** 
(0.029) 

 

LR test pooled vs. random effects.  863.72 
p-value: 0.000 

 

Hausman test of correlated fixed effects  82.27 
p-value: 0.000 

 
 


