Innovation Surprises: Fresh Insights from New Methods

Gerard J. Tellis

University of Southern California Marshall School of Business

Conference on Innovation Nuremberg 28-29th 2009

Motivation

Innovation critical driver of
Creation, growth, and obsolescence of markets
Survival, growth and success of firms
Wealth of nations

Prior Research

Relies much on

- Micro case method
- Macro country data
- Organizational or country surveys

New Paradigm of Research

Historical (archival) market data
Longitudinal and cross sectional
All firms/innovations/technologies in market

- Combined with performance (stock market, sales)
- Within and across countries

Research Questions

- 1. How do technologies evolve?
- 2. Who introduces disruptive innovations?
- 3. Does R&D in innovation payoff?
- 4. Should you make or buy innovations?
- 5. When do innovations takeoff?
- 6. Which countries most innovative?

With Ashish Sood, Abhishek Borah, Peter Golder Available at <u>www.gtellis.net</u>

Study 1: Research Question

How do technologies evolve?
 Belief: Series of successive S-curves that intersect once

From Theory of S-Curves

Tellis MKT 585: Session 2

Study 1: Method

Selected 7 markets (lighting, analgesics, printers, data transfer, memory, monitors, auto engines)

Collected entry & performance of all technologies in each market over extended time periods

Study 1 Results: Lighting

Study 1 Results: Desktop Printers

Study 1: Conclusions

- Evolution follows step function not S-curve
- Sharp jumps in performance follow long flat performance
- Multiple crossings in performance
- Old technologies do not die easily, but compete on multiple dimensions to multiple segments simultaneously
- SAW Model can predict evolution

Study 2: Research Question

Who introduces "disruptive technologies"
 Belief: new entrants

Study 2: Method

Collected technological evolution as in prior study
 Added incumbent and entrant strategies and performance

Study 2: Results

- Incumbents introduce at least as much "potentially disruptive innovations" as entrants
- Incumbents cause more disruptions than entrants
- Hazard model can predict disruptions fairly well

Study 3: Research Question

 Does R&D on innovation pay off?
 Belief: Stock market short sighted, discourages investment in long term, uncertain innovations

Study 3: Method

Prior data as in study 1 and 2

Plus collected all announcements of every stage and event in every technology (project) of every market and firm: Over 5431 announcements

Plus stock market returns for each of above events

Results 3: Returns to Initiation

Initiation

Average of 4.7 years before launch

Sood and Tellis Returns to Innovation 03-09

Study 3: Returns by Phases

Study 3: Returns by Event

Average time from statutation: 4.7 years

Study 3: Conclusions

 Markets strongly responsive to all stages of development of innovation
 Strongest returns to start and development

years before launch

Returns to launch lowest of all events

Returns exceed investments

Study 4: Question

 Is it better to buy or make innovations?
 Belief: Watch & see: acquire if and when an innovation takes off

Study 4: Method

Prior data as in studies 1 to 3
 Plus data on acquisitions events and stock market returns

Study 4: Results

Average Abnormal Return (AAR) for make and buy innovation events

Study 4: Conclusions

- Make significantly outperforms buy
- Make events lead to positive returns
- Buy events lead to negative returns
- Marketing intensity positively affects buy strategy & all returns

Study 5: Research Question

Why and when do new innovations take off?

Belief: due to word of mouth diffusion

Study 5 Method

Collect data on radical innovations that started a new category
 Sales, prices, market penetration, type of category. Year of introduction
 Define takeoff
 Build hazard model of takeoff

Study 5 Conclusions

- Takeoff distinct event in diffusion of innovation
- Innovations do not take off even when well known
- Takeoff highly dependent on price
- Time to takeoff declining with calendar time
- "Visible" categories take off faster

Study 6 Question

Do countries differ in innovativeness?Belief: major economies most innovative

Study 6 Method

Data in study 5Plus data across countries

Country	Time To Takeoff	Categories
Denmark	3.7	9
Norway	4.0	7
Sweden	4.4	8
Finland	4.6	8
Belgium	5.0	9
Austria	5.1	7
Swiss	5.3	3
Ireland	5.8	4
Germany	6.3	4
Netherlands	6.5	8
Spain	7.4	8
Italy	7.9	8
UK	8.5	6
Portugal	9.3	7
France	9.4	7
Greece	9.8	6

С

0

U

Ν

Т

R

Y

Ε

F

F

Ε

С

Т

S

Study 6 Results

Time-to-takeoff is good metric of innovativeness
Countries can be ranked on time-to-takeoff
Economics not primary determinant of (takeoff) innovativeness

General Conclusions

Importance of

Market data vs only case or survey
Longitudinal vs only cross sectional
Performance vs only input measures
Micro x country vs only macro-country

Thank you!