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Abstract 
Loglinear modeling methods have become quite straightforward to apply to discrete data X.  The models for 
missing data involve minor extensions of hot-deck methods (Little and Rubin 2002).  Edits are structural 
zeros that forbid certain patterns.  Winkler (2003) provided the theory for connecting edit with imputation.  
In this paper, we give methods and algorithms for modeling/edit/imputation under linear and convex 
constraints. The methods can be used for statistical matching (D’Orazio, Di Zio, and Scanu 2006), 
edit/imputation in which models are also controlled for external constraints such as in benchmark data, and 
for creating synthetic data with significantly reduced risk of re-identification (Winkler 2007).  
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1.  Introduction 
 
   A primary purpose of collecting data is to produce a data file that can be used for two or more analytic 
purposes.  The methods for ‘cleaning up’ the data include edit/imputation for removing ‘implausible 
combinations of values of fields’ and for imputing values that are consistent with underlying uses of the data.  
The intention of the ‘clean-up’ procedures is to produce data that are ‘fit for use.’  In an ideal world, a final 
data file that has gone through extensive ‘clean-up’ could be used for several (or all) sets of analyses. 
   The intent of various clean-up procedures that statistical agencies apply is to replace missing data with 
plausible values and to change mutually contradictory values to values that are consistent with edit 
constraints.  Edit constraints are conditions that eliminate certain situations such as a child of fifteen or less 
that is married.  Fellegi and Holt (1976) provided a theory of editing that tied certain edit restraints with 
methods of imputation such as the widely used hot-deck.  The advantage of their methods is that edit 
restraints were contained in easily maintained tables and that imputation (when properly applied) was assured 
of imputing values that satisfied edits. 
   Until a few years ago, most editing work involved developing combinatorial optimization algorithms.  The 
algorithms were used in determining the minimum number of fields to impute for missing data or to change 
for data that contradicted edit restraints.  A key difficulty was determining all of the edit restraints that could 
be logically derived from the original set of edit restraints.  Prior to Fellegi and Holt (1976), as a record r0 
was changed to satisfy certain edit constraints that it had failed, the newly changed record r1 would fail edits 
that r0 had not previously failed.  Winkler (1997) introduced new set covering and integer programming 
methods that, in large situations, speeded up computation by as much as a factor of 100 over the previous 
fastest methods (Garfinkel, Kunnathur, and Liepins 1986). 
   Winkler (2003) provided theory connecting editing with modern imputation as given by Little and Rubin 
(2002).  In the simplest situations, the methods for imputation involve model building based on 
straightforward extensions of the missing-at-random assumption that is used in hot-deck imputation.  The 
edit restraints give the structure into which the model building is performed using generalized iterative fitting 
procedures that have the capability of automatically checking the logical consistency of the system. 
   The generalization of the modeling/edit/imputation methods allows for convex constraints that can improve 
the quality of the imputations or control the overall model to benchmark constraints.  The convex constraints 
have been used in record linkage (Winkler 1993) to improve models based on a priori knowledge, in 
statistical matching to control to benchmarks characteristics (D’Orazio et al. 2006), or in microdata 
confidentiality to place upper and lower bounds on certain sets of cells to maintain analytic properties while 
significantly reducing re-identification risk (Winkler 2007).  The core set of computational algorithms in 
these different areas is nearly identical. 



   This paper provides a summary of the theory and an outline of new generalized modeling/edit/imputation 
methods that can be easily applied to a large variety of discrete data files quite rapidly.  The set covering 
algorithms (Winkler 1997, Winkler and Chen 2002) provide a file that creates a structure that is used during 
the main model-building phase.  In this paper we do not cover the specifics of finding all of the logically 
derived edits that, in turn, yield all of the structural zeros needed for the modeling.  We assume that the 
structural zeros are given.  The edit part of the software marks certain unacceptable values in combinations of 
variables as structural zeros. 
    The model building phase uses a generalized iterative fitting procedure (Winkler 1993) that is similar to 
the MCECM algorithm of Meng and Rubin (1993) but allows for convex constraints and the structural zeros 
(Winkler 1990).  With the built model (essentially the limited solution under the best-fitting interaction 
constraints), imputation is straightforward.  The values to be imputed are those that are either originally 
missing or marked as needing to be replaced because certain edits were failed.  Cells in the model are 
matched on the non-missing values in a record and then sampled via a probability- proportional-to-size (pps) 
procedure.  The missing values in the record are substituted from the values associated with the sampled cell.   
Because the model is logically consistent, all imputations are guaranteed to satisfy edits and to preserve the 
joint distributions of the model. 
    With hot-deck, there are typically no donors when matching on a moderate number of non-missing values 
(say 9 of 12 variables are non-missing).  To find donors, the number of variables on which matching is 
performed is typically reduced (collapsed) until a potential donor record is found.  These hot-deck collapsing 
rules for finding donors severely distort joint distributions. It is well-known, that even without collapsing, 
hot-deck will distort joint distributions (e.g. Rao 1997).  With the probability structure of the model, variance 
estimation is straightforward. Estimation of imputation variance is difficult with hot-deck.  None of the more 
than 40 Census Bureau surveys that collect discrete, demographic data and use hot-deck attempt to find the 
best variables on which to collapse.  None attempt estimation of hot-deck imputation variance. 
   What is remarkable about these new modeling/edit/imputation methods is the ease to which they can be 
applied to produce good fitting models, high quality joint distributions, and logically consistent data.  For 
smaller discrete-data situations, the methods can be applied in a few days; with larger data situations, several 
weeks (Winkler and Petkunas 1997; Kovar and Winkler 1996).  This is in marked contrast to hot-deck based 
edit/imputation in which each system is built from scratch, little or no formal modeling is performed to get 
minimally suitable hot-deck matching rules, hundreds or thousands of if-then-else rules must be checked and 
often contain errors (both in logic and in programming code), joint distributions are severely compromised, 
and variance estimation is not possible.  Earlier editing methods only assured that imputed values satisfied 
edits.  They did not assure that imputed values preserved joint distributions.  
   The outline of this paper is as follows.  Following this introduction, we provide background on standard 
loglinear modeling, model building for imputation as in Little and Rubin (2002), the iterative fitting 
extensions for edit and linear constraints, and the substantial ease with which production systems can be 
built.  In the third section, we provide the main summation of the model building methods that lead to the 
generalized software.  All of the basic methods are known (Winkler 1990, 1993, 2003; Little and Rubin 
2002; D’Orazio et al. 2006) but have not been put together in one coherent framework.  The methods even 
extend from general linear constraints to general convex constraints (Winkler 1990, 1993; D’Orazio et al. 
2006).  The fourth section is discussion, and we end with concluding remarks. 
 

2.  Background 
 
In this section we provide background on classical edit/imputation that uses hot-deck and provide a 
description of how hot-deck was assumed to work by practitioners.  As far as we know, there has never been 
a rigorous development that may justify some of the assumed properties of hot-deck.  We also provide 
background methods of creating loglinear models Y (Bishop, Fienberg and Holland 1975) that are 
straightforward to apply to general discrete data, background on general methods of imputation and editing 
for missing data under linear constraints that extend the basic methods and can also be straightforward to 
apply, and an elementary review of the EM algorithm.  The application of the general methods and software 
is straightforward.  The application can be done without any modifications that are specific to a particular 
data file or analytic use. 
 
 



2.1  Classical data collection, edit rules, and hot-deck imputation 
The intent of classical data collection and clean-up was to provide a data file that was free of logical errors 
and missing data.  For a statistical agency, a survey form might be filled out by an interviewer during a face-
to-face interview with the respondent.  The ‘experienced’ interviewer would often be able to ‘correct’ 
contradictory data or ‘replace’ missing data during the interview.  At a later time analysts might make further 
‘corrections’ prior to the data being placed in computer files.  The purpose was to produce a ‘complete’ (i.e., 
no missing values) data file that had no contradictory values in some variables.  The final ‘cleaned’ file 
would be suitable for various statistical analyses.  In particular, the statistical file would allow determination 
of the proportion of specific values of the multiple variables (i.e., joint inclusion probabilities). 
    In a naïve viewpoint dealing with edits is straightforward.  If a child of less than sixteen years old is given 
a marital status of ‘married’, then either the age associated with the child might be changed (i.e., to older than 
16) or the marital status might be changed to ‘single’.  The difficulty consistently arose that, as a 
(computerized) record r0 was changed to a different record r1 by changing values in fields in which edits 
failed, then the new record r1 would fail other edits that the original record r0 had not failed. 
   Fellegi and Holt (1976) were the first to provide an overall model to assure that a changed record r1 would 
not fail edits.  Their theory required the computation of all implicit edits that could be logically derived from 
an originally specified set of ‘explicit’ edits.  If the implicit edits were available, then it was always possible 
to change an edit-failing record r0 to an edit passing record r1.  The availability of ‘implicit’ edits makes it 
quite straightforward and fast to determine the minimum number of fields to change in an edit-failing record 
r0 to obtain an edit-passing record r1.  Further, Fellegi and Holt indicated how hot-deck might be used to 
provide the values for filling in missing values or replacing contradictory values.  As we shall see, hot-deck 
is not generally suitable for filling in missing values in a manner that yields records that satisfy edits and 
preserve joint distributions. 
   The early set-covering algorithms necessary for the computation of ‘implicit’ edits required extremely large 
amounts of computer time (Garfinkel, Kunnathur, and Liepins 1986).  A later algorithm (Winkler 1997), 
while as much as 100 times as fast, is not completely theoretically valid but works in most situations where 
skip patterns are not present in the survey form.  Due to hardware-speed increases, the latter algorithm should 
work well in most day-to-day survey situations.  Boskovitz (2008) recently provided a complete theoretical 
development, however software based on her algorithms has not yet been written and will likely be 10 times 
as slow due to the significantly greater amount of information that must be accounted for at different levels 
of the computational algorithms. 
   The intent of filling-in missing or contradictory values in edit-failing records r0 is to obtain a records r1 that 
can be used in computing the joint probabilities in a principled manner.  The difficulty that had been 
observed by many individuals is that a well-implemented hot-deck does not preserve joint probabilities.  
Indeed, Rao (1997) provided a theoretical characterization of why hot-deck fails even in two-dimensional 
situations.  The failure occurs even in ‘nice’ situations where individuals had previously assumed that hot-
deck would work well.  
   In a real-world survey situation, subject matter ‘experts’ may develop hundreds or thousands of if-then-else 
rules that are used for the editing and hot-deck.  Because it is exceptionally difficult to develop the logic for 
such rules, most edit/imputation systems do not assure that records satisfy edits or preserve joint inclusion 
probabilities.  Further, such systems are exceptionally difficult to implement because of (1) logic errors in 
specifications, (2) errors in computer code, and (3) no effective modeling of hot-deck matching rules.  As we 
will demonstrate, it is effectively impossible with the methods (classical if-then-else and hot-deck) that many 
agencies use to develop edit/imputation systems that preserve either joint probabilities or that satisfy edit 
restraints.  This is true even in the situations when Fellegi-Holt methods are used for the editing and hot-deck 
is used for imputation. 
   An edit/imputation system that effectively uses the edit ideas of Fellegi and Holt (1976) and modern 
imputation ideas (such as in Little and Rubin 2002) has distinct advantages.  First, it is far easier to 
implement (as we will demonstrate).  Edit rules are in easily modified tables, and the logical consistency of 
the entire system is tested automatically according the mathematics of the Fellegi-Holt model and additional 
requirements on the preservation of joint inclusion probabilities (Winkler 2003).  Second, the optimization 
that determines the minimum number of fields to change or replace in an edit-failing record is in a fixed 
mathematical routine that does not need to change.  Third, imputation is determined from a model (limiting 
distribution).  Most modeling is very straightforward.  It is based on variants of loglinear modeling and 
extensions of missing data methods that is contained in easily applied, extremely fast computational 



algorithms (Winkler 2006, 2007, 2008b).  The methods create records that always satisfy edits and preserve 
joint inclusion probabilities. 
 
2.2  How classical hot-deck is assumed to work 
In this subsection we provide an explanation of some of the (possibly) subtle issues that significantly degrade 
the overall analytic characteristics of realistic data files (8 or more variables) that are subjected to well-
implemented hot-deck. The reason that the issues may be subtle is that in many situations with hot-deck, the 
probabilistic model is not written down and the effects of the statistical evaluations (say logistic or ordinary 
regression) on hot-deck collapsing rules for matching are not evaluated.  We will describe why it is 
effectively impossible in many practical survey situations to do the empirical testing and develop program 
logic necessary for a well-implemented hot-deck.  Prior to this we provide some notation and background 
that will allow us to describe why hot-deck breaks down in terms of the basic modeling frameworks of Little 
and Rubin (2002) and Winkler (2003). 
    We assume X = Xi = (xij), 1 ≤ i ≤ N, 1 ≤ j ≤ M is a representation of the survey data with N rows (records) 
and M columns (variables).  Record xi has values xij, 1 ≤ j ≤ M.  The jth variables Xj takes values xjk, 1≤ k ≤ 
nj.  The total number of patterns is npat = n1 × … × nM.  In most realistic survey situations (8 or more 
variables), the number of possible patterns npat is far greater than N (i.e., N << npat).  Under classical hot-
deck assumptions (that are essentially universally used in statistical agencies), the typical assumption is that 
we will be able to match a record r0 = (x01, x02, …., x0M) having missing values of certain variables against a 
large number of donor records that have no missing variables and that agree with record r0 on the non-
missing values.  If record r0 has eight variables with the last three variables having missing values, then the 
intent of hot-deck (after it is implemented over an entire file) is to create a set of records that preserve the 
original probability structure of a hypothetical file X having no missing values. 
   We start with record r0 = (x01, x02, …, x05, b, b, b) where b represents a missing value for x06, x07, and x08.  
Under the hot-deck assumptions, our matching would allow use to effectively draw from the distribution of 
P(X6, X7, X8 | X1=x01, …, X5=x05).  In practice with real-world data, we typically have zero donors (rather 
than an exceptionally large number that would be needed to preserve joint distributions).  Statistical agencies 
typically use ad hoc collapsing in which they attempt to match on a subset of the values x01, x02, …, x05.  For 
instance, there may be a matching hierarchy in which the first match attempt is on x01, x02, x03.  If a donor 
record is not found matching may be done on x01 and x02.  If no donor is found, then matching might be done 
on only x01 where it might be possible to always find a donor. 
   If we are able to match on x01, x02 and x03, we obtain a record rd = (xd1, …. xd8) that yields a hot-deck 
completed record r0c = (x01, …, x05, xd6, xd7, xd8).   There is no assurance that the substituted values will 
preserve joint distributions or create a record that satisfies edits.  Indeed, elementary empirical work with 
exceptionally simple simulated data (that should preserve joint distributions under the hot-deck assumption) 
also demonstrate that joint distributions are not preserved.  Although the elementary work uses data 
situations that are much nicer than many real-world situations, it still fails to yield hot-deck imputations that 
preserve joint distributions.  To preserve joint distributions, it might be necessary to create some type of basic 
model for collapsing.  A simplistic approach might be to use logistic regression to find what subsets of x01, 
…, x05 are the best predictors of the remaining variables and choose the collapsing hierarchy based on a very 
large set of logistic regressions. 
    Even after such work (that is very specific to an individual data set), it is not clear why the joint 
distributions would be preserved.  It would be much better to have a general modeling framework (possibly 
an extension of Little and Rubin (2002), chapter 13) and software that would work for arbitrary discrete data 
under mild assumptions.  One mild assumption is the missing-at-random assumption (Little and Rubin 2002) 
that is effectively the hot-deck assumption in a framework in which it is possible to preserve joint inclusion 
probabilities.  An effective model might be multinomial (or multinomial with weak Dirichlet prior) that all 
non-structural-zero cells are given a non-zero (but possibly very close to zero) values.  In this situation (pi), 1 
≤ i ≤ npat are the probabilities of the multinomial with the individual cells, and we have a suitable probability 
structure.  With this extended hot-deck (effectively Little-Rubin ideas), we match against cells that agree 
with the non-missing part of a record r0 and choose one cell (donor pattern or record) with probability 
proportional to size of the cell probability.   
 
2.2  Loglinear modeling  



Standard references for loglinear modeling and categorical data analysis are Agresti (2007) and Bishop, 
Fienberg, and Holland (1975).   If Xi is a table of cell counts from a discrete population, then we are 
interested in finding a more parsimonious representation iX̂  of the table.  If k-dimensional table Xi has n = 
n1 × n2 × …  × nk cells, then we fit models via an iterative proportional fitting procedure (IPF) in which we fit 
to specific observed margins in cyclic order.  The IPF procedure is assured to increase likelihood and 
typically increases to a maximum likelihood estimate under a multinomial or Poisson model.  We will 
assume multinomial.   
   In the 3-dimensional situation, we have a general index i = (i1, i2, i3).  The original table has n1 × n2 × n3 -
1degrees of freedom.  The different fitted models will have fewer degrees of freedom.  If we fit an 
independence model, then we successively fit to the observed margins for each single variable and repeat 
until convergence.  If we fit using an all 2-way interaction model, we fit successively to the set of n1 x n2 
margins determined by X1 and X2, then the n1 × n3 margins, then n2 × n3 and repeat in a cyclic manner.  If we 
use a multinomial distribution (or multinomial distribution with dirichlet prior), we have the log likelihood 
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where the summation is over the set of cells, xi is the count in cell i, and t

i
p̂  is the probability estimate from 

the multinomial distribution at the tth stage of the fitting.   We use the standard convention that 0 ln 0 = 0.  If 
we have complete data in X, then the log likelihood is known to increase to the maximum likelihood 
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    Commercial software and the software written for this paper have straightforward ways of specifying the 
interactions.  The software user puts in an epsilon that controls the desired accuracy of the final fitted model 
and an upper bound on the number of iterative-fitting cycles.  The software typically monitors either the 
maximum deviation of the fitted model X̂  from the original data X or the Kullback-Liebler distance.  The 

maximum deviation is given by  
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where tot(X) is the sum of the entries in X, Xk is the proportion on the total count tot(X) in cell k, and 

k
X̂   is 

the proportion of the modeled count in cell k.  The Kullback-Liebler distance is given by 
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If we multiply the Kullback-Liebler distance by 2 tot(X), then we get the difference between the maximum 
likelihood and the likelihood from the fitted 

k
X̂ .  

The approximate Chi-square value corresponding to the Kullback-Liebler distance is given by  
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The Kullback-Liebler distance tends to be more conservative than the maximum deviation. 
 
2.4  Missing Data Imputation and Editing 
In this section we describe methods of creating a loglinear model Y (Bishop, Fienberg and Holland 1975) 
that is straightforward to extend to models that take account of edit restraints (Fellegi and Holt 1976).  If X is 
original data and Xi is a specific cell, then Xi is a structural zero or cell forbidden by an edit if its count must 
be zero.  For instance, in most Western societies and others, a fifteen year old child is not allowed to be 
married.  To implement a set of edits that are typically pre-specified by subject matter experts, we enumerate 
them and then use algorithms (Winkler 1997) to determine all implicit edits.  For now, we do not need to 



know details.  We merely need to know that there are straightforward methods for enumerating all implicit 
edits (structural zeros).  Although the current enumeration methods are still ad hoc (Winkler 1997, Winkler 
and Chen 2002), the methods will quickly enumerate the implicit edits (structural zeros) for most survey 
situations in which the survey form does not contain skip patterns. 
   The theoretical justification connecting editing (structural zeros) with imputation (e.g., Little and Rubin 
2002) or loglinear modeling is given in Winkler (2003, 1990).  The main difference between the EM 
algorithm of Little and Rubin (2002) and that of Winkler (2003) is that the more general EM algorithm 
accounts for the structural zeros (and convex constraints that are described in the next section).  If the 
constraints are consistent with the model assumptions and the data, then the fitting procedure is guaranteed to 
converge to a solution (the likelihood increases) that is dependent on the starting point.  We may need to use 
a set of starting points to insure the robustness of the limiting model that we select.  Little and Rubin (2002) 
typically use a starting point based on the complete data.   A complete-data starting point is not always 
available because the complete data may not be considered to be sufficiently reliable, the sample size may be 
too small, or an insufficient number of cells have nonzero values.   
   The models M (or iX̂ ) for the original data X are created under a missing-at-random (mar) assumption that 
is also assumed by hot-deck imputation methods.  The basic methods involve imputation only using the EM 
or various generalizations of EM (Meng and Rubin 1993, Winkler 1993) that have been applied for modeling 
in the context of statistical matching (D’Orazio, Di Zio, and Scanu 2006) or edit/imputation (Winkler 2003) 
under either the linear constraints of loglinear modeling or more general convex constraints (Winkler 1990, 
1993).   
   Although we can use a model M (e.g. multinomial or multinomial with Dirichlet prior), it is much more 
convenient to use the fitted data iX̂  directly.  If we have a record r that contains missing data, then we 

merely match against the records in iX̂  that agree on the non-missing values in r and sample the set of 
matched records probability proportional to size.  The replacement values needed in r are substituted from 
the sampled record rs to obtain a completed record rc.  This procedure preserves the joint probabilities from 
the original data X in a principled manner. 
    Hot-deck procedures (when exceptionally well implemented) do not preserve joint probabilities (e.g., Rao 
1997, Di Zio et al. 2004).  An additional difficulty with hot-deck is the modeling (often using logistic or 
ordinary regression) needed to create the hot-deck matching rules.  If a record represents 12 variables of 
which three have missing values, then collapsing is often performed so that matching is performed on 
considerably less than nine variables.  The ad hoc and difficult nature of the collapsing rules can cause 
further distortions in the joint probability distributions and may even distort univariate distributions.  With 
the general procedures of Little and Rubin or of this paper, estimation of the variance component due to 
imputation is straightforward. 
 
2.5  Review of the EM Algorithm 
The EM algorithm was first described generally in Dempster, Laird, and Rubin (1977).  A general MCECM 
(multi-cycle expectation conditional maximization) for linear constraints was described by Meng and Rubin 
(1993).  Winkler (1993) provided a general MCECM algorithm that was extended to convex constraints.  It 
was used in an application to record linkage in which a priori bounds were placed on certain combinations of 
cells.   
    We begin by describing the general EM for linear constraints.  If f(Y | Θ) is the density associated with 
data Y given a parametric form represented by Θ, then 
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where Ymis represents the missing data in Y and Yobs represents the observed data.   The missing data Ymis can 
be as a result of actual missing data or of data that are ‘blanked’ due to a record failing an edit.  Taking 
natural logarithms, the likelihood can be written as 
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YΘl  is the observed data likelihood, )|( YΘl  is the complete data likelihood that is quite 

straightforward to maximize in many situations, and the last term in equation (7) is the missing part of the 
complete data likelihood. 
   If we take the expectation of both sides of equation (7) over the missing data Ymis given the observed data 
Yobs and the current estimate of Θ, say Θ(t) , then we obtain 
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and the summations are over the missing data cells.  By Jensen’s inequality (Rao 1972, p. 47), we have  
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   The appendices give details of several EM algorithms that include convex constraints for controlling the 
lower and upper bounds of margins, cell probabilities, and combinations of cells to external constraints.  The 
generality of Jensen’s inequality (11) gives great flexibility during the E-step.  Under very general 
conditions, I-Projections under convex constraints correspond to maximum likelihood estimates obtained in 
the M-step (Dykstra and Lemke 1988, El Barmi and Dykstra 1998).  Classic iterative fitting algorithms find 
maximum likelihood estimates via a procedure that progressively finds I-Projections under linear constraints 
(Bishop, Fienberg, and Holland 1975).  Because we are working with a set of probabilities over a set of cells, 
we can often place upper bounds on certain complementary probabilities that correspond to lower bounds on 
probabilities (Winkler 1993).  This gives great flexibility in assuring that the models represented by the final 
estimate of  Θ approximately satisfy a set of marginal constraints from benchmarks and constraints due to the 
original data. 
 

3.  Illustrating Examples 
We consider two variants of a data set and several extensions and variants of the basic EM modeling methods 
of Little and Rubin (2002, Chapter 13).  We compare the imputation methods with hot-deck.  Where needed, 
we also give variants of the EM fitting methods with more realistic data and with convex constraints. 
 
3.1  Example using an Expanded Data of D’Orazio, Di Zio, and Scanu 
In this subsection, we use a slightly modified version of the data of D’Orazio et al. (2006).  Although the data 
were used in an application of statistical matching, we use it for an application of edit/imputation that is a 
straightforward extension of the ideas of Little and Rubin.  Our version of the data expands to a fourth 
variable and one additional edit constraint.  The expanded data make it much more straightforward to 
demonstrate the severe limitations of hot-deck imputation. 
   To make some of the ideas more clear, we use a modified version of the data of D’Orazio, Di Zio, and 
Scanu (2006).  The data is a sample of records from a large Italian survey for which only three fields were 
considered.  The original fields are AGE, PRO (profession), and EDU (education).  An additional field EX is 
used to illustrate edit constraints and how hot-deck fails to impute records satisfying edit restraints.   
 
 
 



Table 1.   Response Categories for Fields 
_____________________________________________________________________ 
Fields                                     Transformed Response Categories 
_____________________________________________________________________ 
Age (AGE)                            “0”=15-17 years old; “1”=18-22; “2”=23-64; “3”=65+; 
 
Profession (PRO)                   “0”=Manager; “1”=Clerk; “2”=Worker 
 
Education (EDU)                  “0”=None or compulsory school; “1”=Vocational school; 
                                               “2”=Secondary school; “3”=Degree 
 
Extra (EX)                             “0”=first value; “1”=second value 
______________________________________________________________________ 
 
 
There are 96 (=4x3x4x2) data patterns of which many are structural zeros.  For instance, a person of age 15-
17 cannot have a college degree.  The sample size is 2313 that we give as a table of counts and then as a table 
of probabilities.   In Tables 2 and 3, we use a lexicographic ordering in which (0,0,0,0)=0, (0.0,0,1)=1, …, 
(3,2,3,1)=95.  We obtain this with the mapping (a1, a2, a3, a4)=a1*24+a2*8+a3*2+a4*1.  The first row of 
the table is cells 0-7; the second row is cells 8-15, and so on.  We use ‘z’ to represent a structural zero that 
always have probability zero of having a positive value. 
    The counts in Table 2 can be representative of counts that we might obtain by taking a relatively small 
proportion of records from a larger population file.  If the counts in Table 2 are based on a 1% sampling rate, 
then most cells having original population counts of 40 or less will not be in the sample (i.e., they are 
sampling zeros).  Sampling zeros are cells having count of zero in the sample where the same cells in the 
original population can have counts greater than zero.  A sampling zero is a cell (pattern based on the values 
that the specific variables may assume) that can plausibly occur with a probability greater than zero in a 
(much) larger population.  To assure that cells corresponding with sampling zeros can possibly be associated 
with non-zero probability estimates, we often use a Dirichlet prior (say, 0.1) with the multinomial 
distribution.  
 
 
 
 
Table 2.  Population Counts from Sample File 
             ______________________________________________________________ 
      z      z       z      z      z      z      z      z 
      z      z       z      z      z      z      z      z 
     15      z       0      0      z      z      z      z 
      z      z       z      z      z      z      z      z 
      z      z       0      0      6      0      z      z 
     27      z       5      0      9      0      z      z 
      z      z       z      z     95     47    145     75 
      z      z      86     37    420    133     63     24 
    759      z      62     28    100     43      0      0 
      z      z       z      z      0      0      0      0 
      z      z       0      0      0      0      0      0 
     12      z       0      0      0      0      0      0 
 
 
 
 
 



Table 3.  Probabilities for Cells from Sample File    
_______________________________________________________________________ 
 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  
 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  
 0.00678  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  
 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  
 0.00000  0.00000  0.00000  0.00000  0.00271  0.00000  0.00000  0.00000  
 0.01220  0.00000  0.00226  0.00000  0.00407  0.00000  0.00000  0.00000  
 0.00000  0.00000  0.00000  0.00000  0.04293  0.02124  0.06552  0.03389  
 0.00000  0.00000  0.03886  0.01672  0.18979  0.06010  0.02847  0.01085  
 0.34297  0.00000  0.02802  0.01265  0.04519  0.01943  0.00000  0.00000  
 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  
 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  
 0.00542  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  
Italics represent structural zeros.  Cell probabilities are independently rounded to 5 decimal places.   
 
 
The empirical data is useful due to having only four variables and 96 cells.  Because there are 50 structural 
zeros, we do not have much flexibility in the fitting procedures.  With larger, more realistic situations the 
much smaller proportion of structural zeros will make the fitting much easier.  The structural zeros are 
induced by certain marginal constraints that are the edit rules specifying that certain combinations of values 
of certain variables are forbidden.   For instance, the marginal (edit) restraint (0, 0, ., .) indicates that any cell 
for which there is a value of 0 for the first variable and value of 0 for the second variable corresponds to 
structural zeros. 
 
 
Table 4.  Edits  
____________________________________ 
(0, 0, ., .)     (0, 1, ., .)  (0, ., 2, .)    (0, ., 3, .) 
( ., 1, 0, .)    (1, ., 3, .)  ( ., 0, 0, .)    ( ., 0, 1, .) 
( ., ., 0, 1)____________________________ 
 
 
   If we fit a three-way interaction model, we obtain the probabilities given in Table 5 that agrees quite 
closely with the true underlying probabilities in Table 3.  We build the model with the complete data records 
only.     
 
 
Table 5.  Estimated Probabilities for Cells Using All 3-way Interactions      
  ____________________________________________________________________________________ 
 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 
 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 
 0.00678  0.00000  0.00002  0.00002  0.00000  0.00000  0.00000  0.00000 
 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 
 0.00000  0.00000  0.00045  0.00037  0.00267  0.00182  0.00000  0.00000 
 0.01220  0.00000  0.00221  0.00229  0.00472  0.00399  0.00000  0.00000 
 0.00000  0.00000  0.00000  0.00000  0.04339  0.02078  0.06506  0.03435 
 0.00000  0.00000  0.03973  0.01584  0.18850  0.06140  0.02893  0.01039 
 0.34297  0.00000  0.02719  0.01349  0.04598  0.01863  0.00006  0.00003 
 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00004  0.00005 
 0.00000  0.00000  0.00000  0.00000  0.00001  0.00000  0.00001  0.00001 
 0.00542  0.00000  0.00005  0.00005  0.00006  0.00005  0.00000  0.00000 
   Italics represent structural zeros.   Cell probabilities are independently rounded to 5 decimal places.   



 
   With the example data, it is straightforward to demonstrate how the hot-deck can break down.  Assume we 
have record r0 = (3, 2, ., 1) where the value of the third variable is missing.  If we attempt to match on the 
values (3, 2, ., 1), there are no records in the set of complete data records having those values.  If we attempt 
to match on values (3, ., ., 1) only, there are also no complete data records that we can use as donors.  If we 
match on the value of 3 for the first variable, we can obtain the complete data record rd = (3, 2, 0, 0) that we 
use to create the completed data record roc=(3, 2, 0, 1) by substituting that value of the third variable from 
record rd.  The record roc=(3, 2, 0, 1) fails edits. 
   The situation of hot-deck causing edit failures never occurs with imputation using the probabilities of Table 
5 (or an alternate table that would model by including records with missing data).   First, we always have 
matching cells.  In the case of matching on (3, 2, ., 1), we obtain cells 91=(3, 2, 1, 1), 93=(3, 2, 2, 1), and 
95=(3, 2, 3, 1) that have estimated probabilities 0.00005, 0.00005, and 0.00000 (rounded for 5 decimal 
places), respectively.  When we sample these matching cells with probability proportional to size, we sample 
cell (3, 2, 1, 1) approximately 50% of the time and cell (3, 2, 2, 1) approximately 50% of the time.  The pps 
sampling procedure assures that joint inclusion probabilities are maintained.  It is well known that hot-deck 
does not maintain joint inclusion probabilities and, in certain rare situations, may not maintain single-variable 
inclusion probabilities.  Our model and match-sample procedures assure that edit constraints are satisfied. 
 
Summarizing Comments 
    The procedure in which we create models (sets of probabilities) as in Table 5 assures that the imputation 
procedure maintains joint inclusion probabilities and creates records that always satisfy edit constraints. 
    As noted by Winkler and Petkunas (1997), it is quite straightforward to put edits into tables of a 
generalized system that implements the ideas of Fellegi and Holt.  They were able to put the edits into tables 
and build the edit software in less than a half day for each of two small surveys.  Their system assured that 
imputed missing or ‘replaced’ values always created records that satisfied all edits.  By ‘replaced’ we mean 
certain values of variables that are set to missing due to failing edits prior to being imputed.  Furthermore, 
Fellegi-Holt systems can check with logical consistency of the entire edit system without training/test data.  
The actual source code never needs to be changed because the edits are contained in easily maintained tables. 
 
3.2  2nd Example using an Expanded Data of D’Orazio, Di Zio, and Scanu 
The intent in this section is to provide an expanded example that extends the ideas in sections 3.1.  The 
extension also generalizes the methods of Little and Rubin (2002, section 13.4) to situations where we 
additionally use convex constraints.  The computational algorithms are based on the EMH algorithm 
(Winkler 1993).  We use the best fitting (all 3-way interaction) model that was used in the fitting of section 
3.1.  We induce (mild) non-ignorable nonresponse and then use convex constraints to ‘adjust’ the fitted data 
to better correspond to underlying true population proportions.  If we impute from the fitted model, then we 
better preserve the underlying true population proportions.  This situation possibly corresponds to the 
situation where subject matter experts might look at certain margins to determine how closely the margins 
correspond to alternative estimates from external data. 
   We use a second expanded set of data that are similar to the data of D’Orazio et al. (2006).  The counts in 
Table 6a represent the subtable where EX=1, the counts in Table 6b represent the subtable where EX=0, and 
the counts in Table 6c represent the subtable where EX=missing.  The methods for this example have some 
similarity to the methods of section 3.1.  We created the non-ignorable missing data in the following manner.  
We first took a 50% sample of the records in Tables 6a and 6b and then dropped 50% of the records in the 
sample that had EX=1.  This means that the probability of nonresponse corresponds to whether EX=0 or 
EX=1.  The fully observed complete data in Tables 6a and 6b are available cases that we assume correspond 
to the true population proportions. 
 
 
 
 
 
 



Table 6a.  Expanded Data (EX = 1 subtable)  
 
                                                             ________  Education (EDU)_____________ 
Age (AGE)    Profession (PRO)           None or       Vocational__Secondary  Degree 
                                                 (a) completely classified 
15-17            Manager                              z                   z               z                z 
                      Clerk                                  z                   z                  z                z 
                      Worker                               z                   0                  z                z 
18-22             Manager                             z                   z                  z                z 
                      Clerk                                  z                    1                  0                z 
                      Worker                               z                    0                  0                z 
23-64             Manager                            z                    z                  32            105 
                      Clerk                                  z                  23                138             32 
                      Worker                               z                  10                  38               0 
65+                Manager                             z                   z                  0                0 
                      Clerk                                  z                    0                  0                0 
                      Worker                               z                   0                  0                0__ 
                        
 
Table 6b.  Expanded Data (EX = 0 subtable)  
 
                                                             ________  Education (EDU)_____________ 
Age (AGE)    Profession (PRO)           None or       Vocational__Secondary  Degree 
                                                 (a) completely classified 
15-17            Manager                           z                   z                  z                z 
                      Clerk                                  z                   z                  z               z 
                      Worker                             15                   0                  z               z 
18-22             Manager                             z                   z                  z               z 
                      Clerk                                  z                   0                   5               z 
                      Worker                             27                   5                  9               z 
23-64             Manager                             z                   z                110            115 
                      Clerk                                  z                100                415             55 
                      Worker                           759                 80                105              0 
65+                Manager                             z                   z                   0               0 
                      Clerk                                  z                   0                  0               0 
                      Worker                             12                  0                  0                0__ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 6c.  Expanded Data (EX = missing subtable)  
 
                                                             ________  Education (EDU)_____________ 
Age (AGE)    Profession (PRO)           None or       Vocational__Secondary  Degree 
                                                 (a) completely classified 
15-17            Manager                             z                   z                  z                z 
                      Clerk                                  z                   z                  z                z 
                      Worker                               7                   0                  z               z 
18-22             Manager                             z                   z                  z               z 
                      Clerk                                  z                   0                  3               z 
                      Worker                             13                   2                  4               z 
23-64             Manager                             z                   z                  63              83 
                      Clerk                                  z                  56                242             30 
                      Worker                           380                 42                  61              0 
65+                Manager                             z                   z                   0               0 
                      Clerk                                  z                   0                  0               0 
                      Worker                               6                  0                  0                0__ 
 
 
Table 7.  Comparison of Marginal Probabilities 
                 Available Case, LR model, Model with 
                   Convex Constraint on 4th variable EX 
 
Variable/Value    AVC         LR            Convex 
  AGE: 0              0.00685    0.00691    0.00689 
  AGE: 1              0.02145    0.02168    0.02162 
  AGE: 2              0.96623    0.96576    0.96586 
  AGE: 3              0.00548    0.00566    0.00564 
 
  PRO: 0              0.16522    0.15960    0.16023 
  PRO: 1              0.35098    0.34559    0.34614 
  PRO: 2              0.48380    0.49482    0.49364 
 
  EDU: 0              0.37106    0.38297    0.38175 
  EDU: 1              0.09950    0.09991    0.09987 
  EDU: 2              0.38932    0.38517    0.38573 
  EDU: 3              0.14012    0.13195    0.13265 
 
  EX: 0                 0.82702    0.83158    0.82800 
  EX: 1                 0.17298    0.16842    0.17200 
Independent rounding to 5 decimal places. 
 
   We fit using the all 3-way interaction model with or without convex constraints to obtain tables similar to 
Table 5 (that we do not show).  In examining the margins given in Table 7, we see that the margin associated 
with EX=1 under the basic model (without convex constraints) has probability 0.16842 that is lower than the 
available case probability of 0.17298 that we are assuming is the truth (because of the manner in which we 
created the data).  If we put a convex constraint of P(EX=0) ≤ 0.82800 and repeat the fitting, we get the 
marginal estimate P(EX=1)=0.17200 that is closer to 0.17298 than the estimate of 0.16842 that we obtained 
without the convex constraint.  We further observe that the marginal probabilities associated with the first 
three variables change very little.  The marginal probabilities in Table 7 do not necessarily add to 1.0 due to 
independent rounding.  The underlying individual cell probabilities always add to 1.0 (to at least eight 
decimal places). 
 
 



4.  Discussion 
 
Although we cannot typically use the convex constraints to overcome non-ignorable nonresponse when the 
deviations from the missing-at-random assumption are substantial, the convex constraints are useful when the 
deviations are not severe.  As we were able to repeat the types of results of Table 7 with a number of other 
data sets, we believe the methods that use convex constraints are a useful tool in creating models for 
imputation that better correspond to data from a variety of sources. 
   Prior to using the convex constraints, individuals should attempt to determine whether originally observed 
data (corresponding to the data of Table 6) is a representative subset of a population where the marginal 
estimates from external sources might be assumed to be valid. 
   Subject-matter experts will typically have much more confidence in the microdata produced by an 
edit/imputation system (Fellegi-Holt based or otherwise) if certain marginal estimates from the microdata do 
not deviate too severely from corresponding estimates from known external sources.  This is particularly true 
if marginal estimates in the microdata correspond to certain estimates in certain income categories available 
from other sources. 
   The present version of the software is suitably fast for iterative fitting under linear constraints on tables 
having 50 million cells.  The general software for fitting under a combination of linear and convex 
constraints of this paper is equally fast.  The current version of the software for fitting under a combination of 
linear and general convex constraints (Winkler 2007) is one tenth as fast.  
   The methods of this paper and associated software (Winkler 2008b) provide very fast, general methods for 
cleaning up data in preparation for data mining (Winkler 2008a). 
 

5.  Concluding Remarks 
 
This paper provides a method of modeling in the presence of structural zeros (known as edit constraints).  
With the final models, it is straightforward to impute for missing data by sampling probability-proportion-to-
size in the limiting model among model rows that agree on the non-missing values of the records.  Unlike 
hot-deck imputation, joint distributions are preserved, edit constraints are satisfied automatically, and 
imputation-variance estimation is straightforward. 
 
 
1/   This report is released to inform interested parties of (ongoing) research and to encourage discussion (of 
work in progress).  Any views expressed on (statistical, methodological, technical, or operational) issues are 
those of the author(s) and not necessarily those of the U.S. Census Bureau.  The author thanks Dr. Maria 
Garcia for a number of helpful comments that help improve the exposition.   
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Appendix.  Fitting under general convex constraints 
We emphasize that the results of this appendix are only valid for probabilities on a finite set of points X 
having size n.  For convenience, we assume that the underlying distribution is multinomial (or Dirichlet-
multinomial where a Dirichlet prior so that sampling-zero cells can have probability greater than zero. 
 
A.1  Basic I-Projections 
Let J ⊂ I be a subset of the set of indices associated with the set of probabilities P.  Let b > 0 be a positive 
constant.  Let r∈P be an arbitrary probability.  We note that r can be obtained by taking any finite measure on 
the index set I and renormalizing it to be a probability.  Then an I-Projection of the form (El Barmi and 
Dykstra 1998) 
 



  inf          Σi∈I pi  ln(pi / ri )                                                                                             (A.1) 

      p∈P 
  Σj∈J pj ≤ b  
 
is given by 
 
  ⎧ ri                                if   Σj∈J rj ≤ b,                                                                               (A.2a)  
  | 
  ⎨ ri b / Σj∈J rj                 if   i∈J and Σj∈J rj > b,                                                                 (A.2b)   
  | 
  ⎩ ri (1-b) / Σj∈J

c rj          if  i∈Jc and Σj∈J rj > b.                                                                 (A.2c) 
 
Equation (A.2a) is the I-projection in the situation when probability r already satisfies the convex constraint.  
Such I-Projections in the above form or in somewhat more general form (Σj∈J cj pj ≤ b for positive constants 
cj that add to 1) have been used in record linkage applications in Winkler (1993).  Although such I-
Projections will not generally increase likelihood, they do in the M-step of the EM algorithm of this paper 
(see next appendix).  Alternative characterizations based on different types of duality allow general 
computation of I-Projections that increase the likelihood (Dykstra and Lemke 1988, El Barmi and Dykstra 
1998). 
 
A.2  A generalized EM algorithm under convex constraints 
As with the EM under linear constraints (e.g., Little and Rubin 2002), the EM under convex constraints is 
intended to replace a (much) more complicated direct computational algorithm with a series of 
straightforward iterative computational steps.  As with other work (Dykstra and Lemke 1988), our constraints 
need to be both mutually compatible with each other and with the observed data.   
   To begin, we give additional background and notation that gives insight into the theory and the 
computational algorithms.  Assume that the set of points X is from n variables X1, …, Xn that take k1, …, kn 
values respectively.   Assume that the total count of records is N that is divided into Nc, the set of complete 
records having no missing data, and Ni, the set of incomplete records in which some variables having missing 
values.  Then the product npat = k1 …  kn is the number of patterns of the form {X1=j1, …, Xl=jl, …, Xn=jn}.  
If record r ={X1=j1, …, Xm1= b , …Xm2=b, Xn=jn}has missing values for variables Xm1 and Xm2 , then the 
count (or probability) associated should be dispersed to jm1 × jm2 cells in which the missing values have been 
filled with either expected values based on the current estimates of the parameters or values based on a 
particular convex constraint.  In this situation, we say that we have dispersed the observed count to the jm1 × 
jm2 virtual cells associated with the missing values.  If there are nz structural zeros within the jm1 × jm2 cells, 
then we only disperse to the jm1 × jm2 - nz cells that are allowed to be have nonzero counts. 
   We let ci be the count associated with cell i∈I and pi (= ci/N) the corresponding probability.  The counts (or 
equivalently probabilities) can be obtained adding the integer counts from complete data records and the real 
number counts from the dispersal of the missing data records to the virtual cells. 
    To facilitate our general EM under convex constraints, we begin by describing the EM for the standard 
loglinear constraints for the types of discrete-data situations of this paper.  Let 
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represent the likelihood for the Nc complete data records and the Ni incomplete data records.  Here 
)( i

p
ι

 is 

the specific cell (pattern) associated with the ith complete data record,  
)( jm

p  is the marginal probability 

associated with the jth record that has missing data, 
),( gjs

p is the probability of one of the )( jλ  virtual 

records associated with the observed jth incomplete record, and 
ig

z  is an unobserved indicator of whether the 

jth incomplete record is from the gth virtual cell associated with it (i.e., 
ig

z  = 1 is the jth record is from 

associated virtual cell s(j, g); 0 otherwise).  The third term in equation (A.3) is the likelihood from the 
observed data and the fourth term is the likelihood that includes the missing data mechanism given by the z-
terms.  We observe that the third term is typically difficult to maximize directly.  If we knew the 
unknown

ig
z  , then the fourth term is often straightforward to maximize.  

   We observe that the p-probabilities (pi, i ≤ npat) are the parameters that we wish to maximize.  Our EM-
procedure takes an initial guess (pi

(0) , i ≤ npat) with t=0 and updates successively to (pi
(t) , i ≤ npat) t=1, 2, 

….  We take natural logarithms of both sides of equation (A.3) and move terms across the equality sign to 
obtain 
 

.),|(ln)|()|( Θ−Θ=Θ
obsmisobs

YYfYlYl                                                  (A.4) 

Here ),|( Θ
obsmis

YYf  is the density of 
ig

z  given particular observed 
j

y and a current estimate of .Θ   

If we take expectations of the right hand side of (A.4) with respect to the current estimate 
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YYf Θ  where 

)( tΘ  is the current estimate of Θ , we obtain 
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to the p-probabilities.  It is straightforward to choose a value of Θ that maximizes or increases the complete 
data likelihood in equation (A.6) using standard loglinear methods (Bishop et al. 1975, Agresti 2007).  Each  
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with the inequality a particular case of Jensen’s inequality.  (pi), i ≤ npat, is an arbitrary probability so that 
the summations in (A.7) are well defined.  
    To better describe the generalizations from linear constraints to convex constraints, we slightly digress to 
the (Multi-Cycle) Expectation Conditional Maximization (MCECM) of Meng and Rubin (1993).  Meng and 
Rubin observed, under the linear constraints of their paper, that one could first fill-in missing 

jg
z   values and 



then go through one cycle of iterative proportional fitting (IPF) or one could repeatedly fill-in expected 
values and do individual (conditional) maximizations according to a single marginal restraint of IPF.  
Further, we can observe that the expectation in equation (A.5) can be performed with respect to any 
probability measure pt,i (current estimate) that is particular to the observed data, the underlying probability 
model, and a particular marginal constraint.  Here pt,i is the probability that we use to fill-in expected values 
prior to performing a maximization (or computation that only increases likelihood) that is consistent with a 
given constraint. 
  With standard MCECM under linear constraints, we easily (and implicitly) get the expected values in the 
correct form.  We could, however, choose the probabilities pt,i to yield expectations for which a maximization 
(or parameter value that increases the likelihood) with respect to a given convex constraint is straightforward.  
We observe that we can choose any probability pt,i that differs from pt,ip and the H-values in equation (A.7) 
would decrease.  Here ip refers to the restraint situation immediately preceding the situation with i.   We note 
that each pt,i is a probability that must be compatible with a particular marginal or convex constraint, the 
observed data, and the particular model (multinomial or Dirichlet-multinomial).  We first fill-in ‘expected’ 
values according to pt,i and then perform a step that increases the likelihood for the ‘completed’ likelihood.  If 
pt,i is compatible with the appropriate convex constraint and expectations are taken with respect to pt,i, then 
the maximization (via an I-Projection) with respect to the same convex constraint will increase the 
likelihood. 
   To be more specific, we give more details of the specific MCECM procedure under convex constraints.  
First, initially assume that we are able to find a suitable probability measure r at any given stage (specific 
iteration step within a cycle) that will yield observed plus expected data that satisfies the desired convex 
constraint.  It is possible to monitor the computation to determine whether this is possible at any given stage.  
If we are able to do this, then were obtain an equation of the form 
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where (pi), i ≤ npat, is the probability that we wish to maximize with respect to the data (qi), i ≤ npat, and the 
data (qi), i ≤ npat, satisfy the particular convex constraint at the particular stage of the computation.  In 
comparison to equation (A.6), each     
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where V(i) is the set of indices of virtual cells that are associated with observed cell i, 
i

1 is an indicator for 

the observed data yi because there may be no observed data for cell i in some situations, and zjh is the 
indicator from the appropriate virtual cell.  The collected of appropriate terms in (A.8) is straightforward as it 
is with usual EM procedure (Little and Rubin 2002, section 13.4).  If we use (A.2) to obtain the I-projection 
(si), i ≤ npat, then by Csiszár’s inequality we have 
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where )/(ln)||(

iii i
pqqpqI ∑=  and (qi), i ≤ npat, could be any probability measure satisfying the 

convex constraint.  Because the Kullback-Leibler Information number I( || ) is positive, if we drop the I(s || p) 
and combine terms from (A.10) we obtain that the likelihood increases 
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  We must be able to choose a probability measure so that (qi), i ≤ npat, is obtained via (A.9) satisfies the 
desired convex constraint.  It is straightforward to put in computer code that monitors that each (qi), i ≤ npat, 
satisfies the convex constraint.   



   The above algorithm is essentially the same as the EMH algorithm (Winkler 1993) that was used by 
D’Orazio et al. (2006).  In a particular sense, the EMH algorithm generalizes Dykstra and Lemke (1988) and 
El Barmi and Dykstra (1998) were proved using Fenchel Duality and a generalization that does not require a 
specific type of duality, respectively.  The particular sense is in some situations where we can artificially 
induce nonresponse (say with a latent variable) and we have convex constraints that are consistent with the 
observed data and the model assumptions.  The authors of the alternate algorithms in the no-missing data 
situations needed to assume that the space of possible solutions contained the constant probabilities that we 
do not need to assume in this paper.  In some situations, we can also change the no-missing-data situation to 
the missing-data situation using the methods of Rubin (1983).  We note that the non-missing-data situations 
typically require very specific analytic work and computations and will likely be much faster than the 
methods of this paper.  The methods of this paper, while possibly much slower, allow identical sets of 
computation (i.e., one set of generalized software) for a very wide range of real data situations. 
 


